The clinical pharmacology of tafenoquine in the radical cure of Plasmodium vivax malaria: An individual patient data meta-analysis

James A Watson, Robert J Commons, Joel Tarning, Julie A Simpson, Alejandro Llanos Cuentas, Marcus V G Lacerda, Justin A Green, Gavin C K W Koh, Cindy S Chu, François H Nosten, Richard N Price, Nicholas P J Day, Nicholas J White, James A Watson, Robert J Commons, Joel Tarning, Julie A Simpson, Alejandro Llanos Cuentas, Marcus V G Lacerda, Justin A Green, Gavin C K W Koh, Cindy S Chu, François H Nosten, Richard N Price, Nicholas P J Day, Nicholas J White

Abstract

Tafenoquine is a newly licensed antimalarial drug for the radical cure of Plasmodium vivax malaria. The mechanism of action and optimal dosing are uncertain. We pooled individual data from 1102 patients and 72 healthy volunteers studied in the pre-registration trials. We show that tafenoquine dose is the primary determinant of efficacy. Under an Emax model, we estimate the currently recommended 300 mg dose in a 60 kg adult (5 mg/kg) results in 70% of the maximal obtainable hypnozoiticidal effect. Increasing the dose to 7.5 mg/kg (i.e. 450 mg) would result in 90% reduction in the risk of P. vivax recurrence. After adjustment for dose, the tafenoquine terminal elimination half-life, and day 7 methaemoglobin concentration, but not the parent compound exposure, were also associated with recurrence. These results suggest that the production of oxidative metabolites is central to tafenoquine's hypnozoiticidal efficacy. Clinical trials of higher tafenoquine doses are needed to characterise their efficacy, safety and tolerability.

Keywords: Plasmodium vivax; epidemiology; global health; haemolysis; infectious disease; microbiology; radical cure; tafenoquine.

Conflict of interest statement

JW, JS, AL, ML, CC, FN, RP, ND, NW No competing interests declared, RC has received an Emerging Leader Investigator Grant (1194702) from the Australian National Health & Medical Research Council. The author has no other competing interests to declare, JT Joel Tarning has participated on the Novartis Malaria Advisory Council (payments made to their institution) and acts as an ASCPT Infectious Diseases steering committee member. The author has no other competing interests to declare, JG, GK was formerly an employee of GlaxoSmithKline who funded the pre-registration studies of tafenoquine. The author holds stock in GlaxoSmithKline. The author has no other competing interests to declare

© 2022, Watson, Commons et al.

Figures

Figure 1.. Kaplan-Meier survival curves for the…
Figure 1.. Kaplan-Meier survival curves for the time to first recurrence in 1073 patients with P. vivax malaria in the efficacy analysis population.
Patients are grouped by tafenoquine mg/kg dosing category (dashed and dotted lines) versus low-dose primaquine (15 mg base for 14 days) or no radical cure (thick lines). The vertical ticks show the censoring times.
Figure 2.. Tafenoquine mg/kg dose and the…
Figure 2.. Tafenoquine mg/kg dose and the probability of a recurrence of P.
vivax malaria within 4 months under the Emax model. Thick blue (shaded blue): mean probability of recurrence as a function of the tafenoquine mg/kg dose (95% CI); thick red (shaded pink): mean probability of P. vivax recurrence after 3.5 mg/kg primaquine (95% CI). The distribution of administered tafenoquine mg/kg doses is shown by the histogram above (this includes patients who received no radical cure treatment, but for clarity does not include patients who received primaquine: n=816; range: 0–14.3 mg/kg).
Figure 3.. Tafenoquine and methaemoglobin (MetHb) production.
Figure 3.. Tafenoquine and methaemoglobin (MetHb) production.
Panels a and b: dose-dependent increases in blood MetHb concentrations expressed as a proportion (%) of the haemoglobin concentration following tafenoquine +chloroquine administration in patients with P. vivax malaria (mean: thick lines; 10th and 90th percentiles: thin lines). The approximate peak concentrations occur one week after receiving tafenoquine (shown by the vertical dashed lines). Panel c: relationship between the administered tafenoquine doses (mg/kg) and the interpolated MetHb concentrations on day 7 (log10 scale). Panel d: relationship between the estimated individual tafenoquine terminal elimination half-lives (t1/2) and the interpolated MetHb concentrations on day 7 (log10 scale). Panels c and d: patients who had a recurrence within 4 months are shown by the filled red circles.
Figure 4.. Hypothetical causal model of the…
Figure 4.. Hypothetical causal model of the clinical pharmacology of tafenoquine for the radical treatment of P.
vivax malaria. The dark grey shaded boxes represent non-observables; lighter shaded grey represents partially observable measures. *Potential host factors include genetic factors such as CYP2D6 polymorphisms; age related enzyme maturation; drug-drug interactions.
Appendix 1—figure 1.. Flow diagram showing the…
Appendix 1—figure 1.. Flow diagram showing the construction of the analysis datasets for the binary endpoint efficacy analyses (note that the patients who dropped out before day 31 are included in the time to event analyses), the pharmacometric analysesAUC[0,∞), Cmax, and t1/2) and the day 7 methaemoglobin analyses.
Appendix 1—figure 2.. Distribution of patient weights…
Appendix 1—figure 2.. Distribution of patient weights across the nine countries.
The vertical red lines show the median weights.
Appendix 1—figure 3.. Kaplan-Meier survival curves for…
Appendix 1—figure 3.. Kaplan-Meier survival curves for the time to first recurrence by region after administration of chloroquine without tafenoquine or with tafenoquine 300mg in P.vivax patients.
Results include 455 patients from the Americas, 171 patients from Asia-Pacific and 42 patients from Africa. TQ: tafenoquine.
Appendix 1—figure 4.. Comparison of estimated odds-ratios…
Appendix 1—figure 4.. Comparison of estimated odds-ratios (95% CI) for the two endpoints (any recurrence by 4 months and any recurrence by 6 months); the sensitivity analysis in the 300mg group only; subgroups by geographic region.
Appendix 1—figure 5.. Comparison of estimated adjusted…
Appendix 1—figure 5.. Comparison of estimated adjusted hazards ratio (95% CI) using time to event analysis for the two endpoints (any recurrence by 4 months and any recurrence by 6 months); subgroups by geographic region.
Appendix 1—figure 6.. Comparison of logistic regression…
Appendix 1—figure 6.. Comparison of logistic regression and Emax model fits for any recurrence within 4 months.
Appendix 1—figure 7.. Estimated dose-response curve for…
Appendix 1—figure 7.. Estimated dose-response curve for tafenoquine mg/kg dose, whereby the maximal effect is defined as the effect for a 15mg/kg dose (the highest tolerated dose).
The histogram above shows the distribution of mg/kg doses expected in patients using the empirical weight distribution from the three efficacy studies. The vertical lines show the 10, 50 and 90th percentiles of the expected mg/kg distribution.
Appendix 1—figure 8.. Tafenoquine mg/kg dose and…
Appendix 1—figure 8.. Tafenoquine mg/kg dose and the probability of any recurrence of P.vivax malaria at 6 months under the Emax model.
Thick blue (shaded blue): Emax fit (95% CI) for any recurrence by 6 months; dashed red (shaded pink): estimated probability of any recurrence by 6 months after 3.5mg/kg primaquine (95% CI).
Appendix 1—figure 9.. The distributions of the…
Appendix 1—figure 9.. The distributions of the expected weight based efficacy (defined as the % reduction in recurrence at 4 months relative to the maximum dose of 15mg/kg) for a 300 mg single dose (thick line) and a 450mg fixed dose (dashed line).
This is based on the empirical weight distribution from the three efficacy studies.
Appendix 1—figure 10.. The posterior distribution over…
Appendix 1—figure 10.. The posterior distribution over the number needed to treat to prevent one recurrence at 4 months under the Bayesian Emax model.
Appendix 1—figure 11.. The number needed to…
Appendix 1—figure 11.. The number needed to treat with 450mg instead of 300mg to prevent one recurrence at 4 months as a function of patient weight under the Emax model.
Appendix 1—figure 12.. Relationship between mg/kg dose…
Appendix 1—figure 12.. Relationship between mg/kg dose of tafenoquine and the AUC[0,∞).
Linear and spline fits are overlaid to show trend. The red dots show the patients who received a 300 mg dose (current recommended treatment), the black circles show the other doses (50, 100 and 600mg).
Appendix 1—figure 13.. Comparison of day 7…
Appendix 1—figure 13.. Comparison of day 7 methaemoglobin values after administration of tafenoquine 300 mg in P.vivax patients (all received chloroquine [CQ]) and healthy volunteers who were randomised to either no partner drug, AL, or DHA-PQP.
The distributions of weights are shown in the right panels as the mg/kg dose is the primary driver of day 7 methaemoglobin. The mean weight in patients was slightly lower than in the healthy volunteers (although with a much larger variation).
Appendix 1—figure 14.. Day 7 methaemoglobin as…
Appendix 1—figure 14.. Day 7 methaemoglobin as a function of day 7 lumefantrine (n=23) or day 7 piperaquine concentrations (n=24) in the subjects randomised to tafenoquine +ACT in the phase 1 healthy volunteer trial (Green et al., 2016).
The thick line shows a linear model fit; dashed line shows a robust linear model fit (rlm in MASS package in R). Both x and y axes are shown on the log scale. The grey lines show the median and 10/90th percentiles of the day 7 methaemoglobin levels in the tafenoquine only group (n=24).
Appendix 1—figure 15.. Plasma tafenoquine concentrations over…
Appendix 1—figure 15.. Plasma tafenoquine concentrations over time across the four studies (4499 concentrations in =n718 individuals).
Concentrations below the lower level of quantification (BLQ) are shown by the triangles with a value of 1ng/ml (lower limit of quantification is shown by the dashed line at 2ng/ml). Circles are coloured by dose.
Appendix 1—figure 16.. Distribution of the number…
Appendix 1—figure 16.. Distribution of the number of plasma tafenoquine concentrations per patient in the three efficacy trials.
The very large majority of patients had 5 or 6 observed concentrations each. For those with few samples (e.g. 1–2), the estimates of the PK summary statistics (AUC0,∞, Cmax and t1/2) will be shrunk towards the population mean estimates.
Appendix 3—figure 1.. Multivariable model comparison of…
Appendix 3—figure 1.. Multivariable model comparison of predictors of recurrence at 4 months in patients who received tafenoquine and who had recorded values (n=566).
The circles (thick and thin lines) show the odds-ratios (80% and 95% credible intervals) for recurrence under a Bayesian penalised logistic regression model.
Appendix 6—figure 1.. Goodness-of-fit diagnostics of the…
Appendix 6—figure 1.. Goodness-of-fit diagnostics of the final population pharmacokinetic model of tafenoquine.
Observations are represented by open blue circles, solid black lines represent the line of identity or zero line, and the local polynomial regression fitting for all observations are represented by the solid red lines.
Appendix 6—figure 2.. Visual predictive plot of…
Appendix 6—figure 2.. Visual predictive plot of the final population pharmacokinetic model of tafenoquine.
Open black circles represent observed plasma concentrations. Solid and dashed blue lines represent the median, 5th, and 95th percentiles of the observations. The shaded grey areas represent the predictive 95% confidence intervals around the simulated 5th, 50th, and 95th percentiles (n = 2,000 simulations). The broken horizontal line represents the lower limit of quantification (LLOQ) of 2 ng/mL.
Appendix 6—figure 3.. Visual predictive plot of…
Appendix 6—figure 3.. Visual predictive plot of the fraction of censored tafenoquine concentrations.
The solid black line represents the observed fraction of censored data (i.e. data below the lower limit of quantification). The shaded grey area represents the predictive 95% confidence intervals of the simulated fraction of censored data (n = 2,000 simulations).

References

    1. Baird JK, Louisa M, Noviyanti R, Ekawati L, Elyazar I, Subekti D, Chand K, Gayatri A, Soebianto S, Crenna-Darusallam C, Djoko D, Hasto BD, Meriyenes D, Wesche D, Nelwan EJ, Sutanto I, Sudoyo H, Setiabudy R. Association of impaired cytochrome P450 2D6 activity genotype and phenotype with therapeutic efficacy of primaquine treatment for latent Plasmodium vivax malaria. JAMA Network Open. 2018;1:e181449. doi: 10.1001/jamanetworkopen.2018.1449.
    1. Baird JK. 8-Aminoquinoline therapy for latent malaria. Clinical Microbiology Reviews. 2019;32:e00011-19. doi: 10.1128/CMR.00011-19.
    1. Baird J, Sutanto I, Soebandrio A. Evaluation of the efficacy and safety of tafenoquine co-administered with dihydroartemisinin–piperaquine for the radical cure (anti-relapse) of Plasmodium vivax malaria in Indonesia - the INSPECTOR Study. American Society of Tropical Medicine and Hygiene 69th Annual Meeting.2020.
    1. Beal SL. Ways to fit a PK model with some data below the quantification limit. Journal of Pharmacokinetics and Pharmacodynamics. 2001;28:481–504. doi: 10.1023/a:1012299115260.
    1. Bergstrand M, Hooker AC, Wallin JE, Karlsson MO. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. The AAPS Journal. 2011;13:143–151. doi: 10.1208/s12248-011-9255-z.
    1. Brueckner RP, Lasseter KC, Lin ET, Schuster BG. First-time-in-humans safety and pharmacokinetics of WR 238605, a new antimalarial. The American Journal of Tropical Medicine and Hygiene. 1998;58:645–649. doi: 10.4269/ajtmh.1998.58.645.
    1. Bürkner PC. Brms: an R package for Bayesian multilevel models using stan. Journal of Statistical Software. 2017;80:1–28. doi: 10.18637/jss.v080.i01.
    1. Camarda G, Jirawatcharadech P, Priestley RS, Saif A, March S, Wong MHL, Leung S, Miller AB, Baker DA, Alano P, Paine MJI, Bhatia SN, O’Neill PM, Ward SA, Biagini GA. Antimalarial activity of primaquine operates via a two-step biochemical relay. Nature Communications. 2019;10:3226. doi: 10.1038/s41467-019-11239-0.
    1. Caudle KE, Sangkuhl K, Whirl-Carrillo M, Swen JJ, Haidar CE, Klein TE, Gammal RS, Relling MV, Scott SA, Hertz DL, Guchelaar HJ, Gaedigk A. Standardizing CYP2D6 genotype to phenotype translation: consensus recommendations from the clinical pharmacogenetics implementation consortium and dutch pharmacogenetics working group. Clinical and Translational Science. 2020;13:116–124. doi: 10.1111/cts.12692.
    1. Chu CS, Phyo AP, Lwin KM, Win HH, San T, Aung AA, Raksapraidee R, Carrara VI, Bancone G, Watson J, Moore KA, Wiladphaingern J, Proux S, Sriprawat K, Winterberg M, Cheah PY, Chue AL, Tarning J, Imwong M, Nosten F, White NJ. Comparison of the cumulative efficacy and safety of chloroquine, artesunate, and chloroquine-primaquine in Plasmodium vivax malaria. Clinical Infectious Diseases. 2018;67:1543–1549. doi: 10.1093/cid/ciy319.
    1. Chu CS, Watson JA, Phyo AP, Win HH, Yotyingaphiram W, Thinraow S, Soe NL, Aung AA, Wilaisrisak P, Kraft K, Imwong M, Hanpithakpong W, Blessborn D, Tarning J, Proux S, Ling C, Nosten FH, White NJ. Determinants of primaquine and carboxyprimaquine exposures in children and adults with Plasmodium vivax malaria. Antimicrobial Agents and Chemotherapy. 2021;65:e0130221. doi: 10.1128/AAC.01302-21.
    1. Commons R.J, Thriemer K, Humphreys G, Suay I, Sibley CH, Guerin PJ, Price RN. The vivax surveyor: online mapping database for Plasmodium vivax clinical trials. International Journal for Parasitology. Drugs and Drug Resistance. 2017;7:181–190. doi: 10.1016/j.ijpddr.2017.03.003.
    1. Commons RJ, Simpson JA, Thriemer K, Chu CS, Douglas NM, Abreha T, Alemu SG, Añez A, Anstey NM, Aseffa A, Assefa A, Awab GR, Baird JK, Barber BE, Borghini-Fuhrer I, D’Alessandro U, Dahal P, Daher A, de Vries PJ, Erhart A, Gomes MSM, Grigg MJ, Hwang J, Kager PA, Ketema T, Khan WA, Lacerda MVG, Leslie T, Ley B, Lidia K, Monteiro WM, Pereira DB, Phan GT, Phyo AP, Rowland M, Saravu K, Sibley CH, Siqueira AM, Stepniewska K, Taylor WRJ, Thwaites G, Tran BQ, Hien TT, Vieira JLF, Wangchuk S, Watson J, William T, Woodrow CJ, Nosten F, Guerin PJ, White NJ, Price RN. The haematological consequences of Plasmodium vivax malaria after chloroquine treatment with and without primaquine: A worldwide antimalarial resistance network systematic review and individual patient data meta-analysis. BMC Medicine. 2019;17:151. doi: 10.1186/s12916-019-1386-6.
    1. Dini S, Douglas NM, Poespoprodjo JR, Kenangalem E, Sugiarto P, Plumb ID, Price RN, Simpson JA. The risk of morbidity and mortality following recurrent malaria in Papua, Indonesia: a retrospective cohort study. BMC Medicine. 2020;18:28. doi: 10.1186/s12916-020-1497-0.
    1. Dosne AG, Bergstrand M, Karlsson MO. An automated sampling importance resampling procedure for estimating parameter uncertainty. Journal of Pharmacokinetics and Pharmacodynamics. 2017;44:509–520. doi: 10.1007/s10928-017-9542-0.
    1. Douglas NM, Anstey NM, Buffet PA, Poespoprodjo JR, Yeo TW, White NJ, Price RN. The anaemia of plasmodium vivax malaria. Malaria Journal. 2012;11:1–14. doi: 10.1186/1475-2875-11-135.
    1. Dow G, Smith B. The blood schizonticidal activity of tafenoquine makes an essential contribution to its prophylactic efficacy in nonimmune subjects at the intended dose (200 mg) Malaria Journal. 2017;16:209. doi: 10.1186/s12936-017-1862-4.
    1. Fukuda MM, Krudsood S, Mohamed K, Green JA, Warrasak S, Noedl H, Euswas A, Ittiverakul M, Buathong N, Sriwichai S, Miller RS, Ohrt C. A randomized, double-blind, active-control trial to evaluate the efficacy and safety of A three day course of tafenoquine monotherapy for the treatment of Plasmodium vivax malaria. PLOS ONE. 2017;12:e0187376. doi: 10.1371/journal.pone.0187376.
    1. Gonçalves BP, Pett H, Tiono AB, Murry D, Sirima SB, Niemi M, Bousema T, Drakeley C, Ter Heine R. Age, weight, and CYP2D6 genotype are major determinants of primaquine pharmacokinetics in African children. Antimicrobial Agents and Chemotherapy. 2017;61:e02590-16. doi: 10.1128/AAC.02590-16.
    1. Green JA, Mohamed K, Goyal N, Bouhired S, Hussaini A, Jones SW, Koh GCKW, Kostov I, Taylor M, Wolstenholm A, Duparc S. Pharmacokinetic interactions between tafenoquine and dihydroartemisinin-piperaquine or artemether-lumefantrine in healthy adult subjects. Antimicrobial Agents and Chemotherapy. 2016;60:7321–7332. doi: 10.1128/AAC.01588-16.
    1. Lacerda MVG, Llanos-Cuentas A, Krudsood S, Lon C, Saunders DL, Mohammed R, Yilma D, Batista Pereira D, Espino FEJ, Mia RZ, Chuquiyauri R, Val F, Casapía M, Monteiro WM, Brito MAM, Costa MRF, Buathong N, Noedl H, Diro E, Getie S, Wubie KM, Abdissa A, Zeynudin A, Abebe C, Tada MS, Brand F, Beck HP, Angus B, Duparc S, Kleim JP, Kellam LM, Rousell VM, Jones SW, Hardaker E, Mohamed K, Clover DD, Fletcher K, Breton JJ, Ugwuegbulam CO, Green JA, Koh G. Single-dose tafenoquine to prevent relapse of Plasmodium vivax malaria. The New England Journal of Medicine. 2019;380:215–228. doi: 10.1056/NEJMoa1710775.
    1. Lange KL, Little RJA, Taylor JMG. Robust statistical modeling using the T distribution. Journal of the American Statistical Association. 1989;84:881. doi: 10.2307/2290063.
    1. Llanos-Cuentas A, Lacerda MV, Rueangweerayut R, Krudsood S, Gupta SK, Kochar SK, Arthur P, Chuenchom N, Möhrle JJ, Duparc S, Ugwuegbulam C, Kleim JP, Carter N, Green JA, Kellam L. Tafenoquine plus chloroquine for the treatment and relapse prevention of Plasmodium vivax malaria (DETECTIVE): a multicentre, double-blind, randomised, phase 2B dose-selection study. Lancet. 2014;383:1049–1058. doi: 10.1016/S0140-6736(13)62568-4.
    1. Llanos-Cuentas A, Lacerda MVG, Hien TT, Vélez ID, Namaik-Larp C, Chu CS, Villegas MF, Val F, Monteiro WM, Brito MAM, Costa MRF, Chuquiyauri R, Casapía M, Nguyen CH, Aruachan S, Papwijitsil R, Nosten FH, Bancone G, Angus B, Duparc S, Craig G, Rousell VM, Jones SW, Hardaker E, Clover DD, Kendall L, Mohamed K, Koh G, Wilches VM, Breton JJ, Green JA. Tafenoquine versus primaquine to prevent relapse of Plasmodium vivax malaria. The New England Journal of Medicine. 2019;380:229–241. doi: 10.1056/NEJMoa1802537.
    1. Maes HHM, Neale MC, Eaves LJ. Genetic and environmental factors in relative body weight and human adiposity. Behavior Genetics. 1997;27:325–351. doi: 10.1023/a:1025635913927.
    1. Nekkab N, Lana R, Lacerda M, Obadia T, Siqueira A, Monteiro W, Villela D, Mueller I, White M. Estimated impact of tafenoquine for Plasmodium vivax control and elimination in Brazil: a modelling study. PLOS Medicine. 2021;18:e1003535. doi: 10.1371/journal.pmed.1003535.
    1. Novartis Pharmaceuticals Riamet 20mg/120mg tablets: summary of product characteristics (smpc) 2021. [November 11, 2022].
    1. Pybus BS, Sousa JC, Jin X, Ferguson JA, Christian RE, Barnhart R, Vuong C, Sciotti RJ, Reichard GA, Kozar MP, Walker LA, Ohrt C, Melendez V. CYP450 phenotyping and accurate mass identification of metabolites of the 8-aminoquinoline, anti-malarial drug primaquine. Malaria Journal. 2012;11:259. doi: 10.1186/1475-2875-11-259.
    1. Recht J, Ashley E, White N. Safety of 8-Aminoquinoline Antimalarial Medicines. World Health Organization; 2014.
    1. Rueangweerayut R, Bancone G, Harrell EJ, Beelen AP, Kongpatanakul S, Möhrle JJ, Rousell V, Mohamed K, Qureshi A, Narayan S, Yubon N, Miller A, Nosten FH, Luzzatto L, Duparc S, Kleim JP, Green JA. Hemolytic potential of tafenoquine in female volunteers heterozygous for glucose-6-phosphate dehydrogenase (G6PD) deficiency (G6PD mahidol variant) versus G6PD-normal volunteers. The American Journal of Tropical Medicine and Hygiene. 2017;97:702–711. doi: 10.4269/ajtmh.16-0779.
    1. Shanks GD, Oloo AJ, Aleman GM, Ohrt C, Klotz FW, Braitman D, Horton J, Brueckner R. A new primaquine analogue, tafenoquine (WR 238605), for prophylaxis against Plasmodium falciparum malaria. Clinical Infectious Diseases. 2001;33:1968–1974. doi: 10.1086/324081.
    1. St Jean PL, Xue Z, Carter N, Koh GCKW, Duparc S, Taylor M, Beaumont C, Llanos-Cuentas A, Rueangweerayut R, Krudsood S, Green JA, Rubio JP. Tafenoquine treatment of Plasmodium vivax malaria: suggestive evidence that CYP2D6 reduced metabolism is not associated with relapse in the phase 2B detective trial. Malaria Journal. 2016;15:97. doi: 10.1186/s12936-016-1145-5.
    1. St Jean PL, Koh G, Breton JJ, Espino FEJ, Hien TT, Krudsood S, Lacerda MVG, Llanos-Cuentas A, Lon C, Mohammed R, Namaik-Larp CS, Pereira DB, Saunders DL, Velez ID, Yilma D, Villegas MF, Duparc S, Green JA. Pharmacogenetic assessment of tafenoquine efficacy in patients with Plasmodium vivax malaria. Pharmacogenetics and Genomics. 2020;30:161–165. doi: 10.1097/FPC.0000000000000407.
    1. Taylor WRJ, Thriemer K, von Seidlein L, Yuentrakul P, Assawariyathipat T, Assefa A, Auburn S, Chand K, Chau NH, Cheah PY, Dong LT, Dhorda M, Degaga TS, Devine A, Ekawati LL, Fahmi F, Hailu A, Hasanzai MA, Hien TT, Khu H, Ley B, Lubell Y, Marfurt J, Mohammad H, Moore KA, Naddim MN, Pasaribu AP, Pasaribu S, Promnarate C, Rahim AG, Sirithiranont P, Solomon H, Sudoyo H, Sutanto I, Thanh NV, Tuyet-Trinh NT, Waithira N, Woyessa A, Yamin FY, Dondorp A, Simpson JA, Baird JK, White NJ, Day NP, Price RN. Short-course primaquine for the radical cure of Plasmodium vivax malaria: a multicentre, randomised, placebo-controlled non-inferiority trial. Lancet. 2019a;394:929–938. doi: 10.1016/S0140-6736(19)31285-1.
    1. Taylor AR, Watson JA, Chu CS, Puaprasert K, Duanguppama J, Day NPJ, Nosten F, Neafsey DE, Buckee CO, Imwong M, White NJ. Resolving the cause of recurrent Plasmodium vivax malaria probabilistically. Nature Communications. 2019b;10:5595. doi: 10.1038/s41467-019-13412-x.
    1. Thakkar N, Green JA, Koh GCKW, Duparc S, Tenero D, Goyal N. Population pharmacokinetics of tafenoquine, a novel antimalarial. Antimicrobial Agents and Chemotherapy. 2018;62:e00711-18. doi: 10.1128/AAC.00711-18.
    1. Vélez ID, Hien TT, Green JA, Martin A, Sharma H, Rousell VM, Breton JJ, Ernest TB, Rolfe K, Taylor M, Mohamed K, Jones SW, Chau NH, Hoa NT, Duparc S, Tan LK, Goyal N. Tafenoquine exposure assessment, safety, and relapse prevention efficacy in children with Plasmodium vivax malaria: open-label, single-arm, non-comparative, multicentre, pharmacokinetic bridging, phase 2 trial. The Lancet. Child & Adolescent Health. 2022;6:86–95. doi: 10.1016/S2352-4642(21)00328-X.
    1. Walsh DS, Looareesuwan S, Wilairatana P, Heppner DG, Tang DB, Brewer TG, Chokejindachai W, Viriyavejakul P, Kyle DE, Milhous WK, Schuster BG, Horton J, Braitman DJ, Brueckner RP. Randomized dose-ranging study of the safety and efficacy of WR 238605 (tafenoquine) in the prevention of relapse of Plasmodium vivax malaria in Thailand. The Journal of Infectious Diseases. 1999;180:1282–1287. doi: 10.1086/315034.
    1. Walsh DS, Wilairatana P, Tang DB, Heppner DG, Brewer TG, Krudsood S, Silachamroon U, Phumratanaprapin W, Siriyanonda D, Looareesuwan S. Randomized trial of 3-dose regimens of tafenoquine (WR238605) versus low-dose primaquine for preventing Plasmodium vivax malaria relapse. Clinical Infectious Diseases. 2004;39:1095–1103. doi: 10.1086/424508.
    1. Watson J, Chu CS, Tarning J, White NJ. Characterizing blood-stage antimalarial drug MIC values in vivo using reinfection patterns. Antimicrobial Agents and Chemotherapy. 2018;62:e02476-17. doi: 10.1128/AAC.02476-17.
    1. Watson JA, Nekkab N, White M. Tafenoquine for the prevention of Plasmodium vivax malaria relapse. The Lancet. Microbe. 2021;2:e175–e176. doi: 10.1016/S2666-5247(21)00062-8.
    1. White NJ. Determinants of relapse periodicity in Plasmodium vivax malaria. Malaria Journal. 2011;10:1–36. doi: 10.1186/1475-2875-10-297.
    1. White NJ. Anti-malarial drug effects on parasite dynamics in vivax malaria. Malaria Journal. 2021;20:161. doi: 10.1186/s12936-021-03700-7.
    1. White NJ, Watson JA, Baird JK. Methaemoglobinaemia and the radical curative efficacy of 8-aminoquinoline antimalarials. British Journal of Clinical Pharmacology. 2022;88:2657–2664. doi: 10.1111/bcp.15219.
    1. World Health Organization . Guidelines for the Treatment of Malaria. Geneva, Switzerland: World Health Organization; 2015.

Source: PubMed

3
購読する