Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis

C N Harrison, A M Vannucchi, J-J Kiladjian, H K Al-Ali, H Gisslinger, L Knoops, F Cervantes, M M Jones, K Sun, M McQuitty, V Stalbovskaya, P Gopalakrishna, T Barbui, C N Harrison, A M Vannucchi, J-J Kiladjian, H K Al-Ali, H Gisslinger, L Knoops, F Cervantes, M M Jones, K Sun, M McQuitty, V Stalbovskaya, P Gopalakrishna, T Barbui

Abstract

Ruxolitinib is a Janus kinase (JAK) (JAK1/JAK2) inhibitor that has demonstrated superiority over placebo and best available therapy (BAT) in the Controlled Myelofibrosis Study with Oral JAK Inhibitor Treatment (COMFORT) studies. COMFORT-II was a randomized (2:1), open-label phase 3 study in patients with myelofibrosis; patients randomized to BAT could crossover to ruxolitinib upon protocol-defined disease progression or after the primary end point, confounding long-term comparisons. At week 48, 28% (41/146) of patients randomized to ruxolitinib achieved ⩾35% decrease in spleen volume (primary end point) compared with no patients on BAT (P<0.001). Among the 78 patients (53.4%) in the ruxolitinib arm who achieved ⩾35% reductions in spleen volume at any time, the probability of maintaining response was 0.48 (95% confidence interval (CI), 0.35-0.60) at 5 years (median, 3.2 years). Median overall survival was not reached in the ruxolitinib arm and was 4.1 years in the BAT arm. There was a 33% reduction in risk of death with ruxolitinib compared with BAT by intent-to-treat analysis (hazard ratio (HR)=0.67; 95% CI, 0.44-1.02; P=0.06); the crossover-corrected HR was 0.44 (95% CI, 0.18-1.04; P=0.06). There was no unexpected increased incidence of adverse events with longer exposure. This final analysis showed that spleen volume reductions with ruxolitinib were maintained with continued therapy and may be associated with survival benefits.

Conflict of interest statement

CNH has received research support from Novartis, Cell Therapeutics, Gilead and Baxaltra through the institution; has received personal fees from Novartis, Shire, Gilead and Baxaltra; and has received grant and non-financial support from Novartis outside the submitted work. AMV has received grant and personal fees from Novartis during the conduct of the study. J-JK has received travel grant, and research funding paid to the institution from Novartis; has acted as a consultant to Novartis and Incyte. HKA-A has received research funding from Novartis and Celgene; acted as a consultant to Novartis; and has received honoraria from Novartis and Celgene. HG has received honoraria from Novartis, Celgene and AOP Orphan Pharmaceuticals; and has two licensed patents: EP 13.18.6939.8 and 13.18.4632.1. FC has received personal fees from Novartis, CTI-Baxter and Sanofi. MMJ and KS are employees of Incyte. MM and VS are employees of and own stock in Novartis. PG is an employee of Novartis.

Figures

Figure 1
Figure 1
Best change from baseline in spleen volume for individual patients.a aOnly patients with baseline and ⩾1 postbaseline spleen volume assessments were included (ruxolitinib, n=136; BAT crossover, n=39). bPatients with a ⩾35% reduction in spleen volume were considered as responders.
Figure 2
Figure 2
Duration of maintenance of spleen response.a aDefined as the interval from first spleen volume measurement of ⩾35% reduction from baseline at any time on study and the first scan that is no longer a 35% reduction and that is a >25% increase over on-study nadir.
Figure 3
Figure 3
Best absolute reduction in JAK2 V617F allele burden for individual patients.a aOnly ruxolitinib-randomized patients with positive Janus kinase 2 (JAK2) V617F mutation status at baseline and ⩾1 postbaseline assessment were included (n=108).
Figure 4
Figure 4
Kaplan–Meier analysis of OS by ITT analysis and RPSFT corrected for crossover from the BAT arm.

References

    1. Vannucchi AM. Management of myelofibrosis. Hematol Am Soc Hematol Educ Program 2011; 2011: 222–230.
    1. Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA. New mutations and pathogenesis of myeloproliferative neoplasms. Blood 2011; 188: 1723–1735.
    1. Abdel-Wahab O, Pardanani A, Rampal R, Lasho TL, Levine RL, Tefferi A. DNMT3A mutational analysis in primary myelofibrosis, chronic myelomonocytic leukemia and advanced phases of myeloproliferative neoplasms. Leukemia 2011; 25: 1219–1220.
    1. Mesa RA, Schwager S, Radia D, Cheville A, Hussein K, Niblack J et al. The Myelofibrosis Symptom Assessment Form (MFSAF): an evidence-based brief inventory to measure quality of life and symptomatic response to treatment in myelofibrosis. Leuk Res 2009; 33: 1199–1203.
    1. Cervantes F, Dupriez B, Pereira A, PassamontiF, Reilly JT, Morra E et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 2009; 113: 2895–2901.
    1. Passamonti F, Cervantes F, Vannucchi AM, Morra E, Rumi E, Pereira et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 2010; 115: 1703–1708.
    1. Quintás-Cardama A, Vaddi K, Liu P, Manshouri T, Li J, Scherle PA et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 2010; 115: 3109–3117.
    1. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 2012; 366: 787–798.
    1. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 2012; 366: 799–807.
    1. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF et al. Efficacy, safety and survival with ruxolitinib in patients with myelofibrosis: results of a median 2-year follow-up of COMFORT-I. Haematologica 2013; 98: 1865–1871.
    1. Passamonti F, Maffioli M, Cervantes F, Vannucchi AM, Morra E, Barbui T et al. Impact of ruxolitinib on the natural history of primary myelofibrosis: a comparison of the DIPSS and the COMFORT-2 cohorts. Blood 2014; 123: 1833–1835.
    1. Verstovsek S, Kantarjian HM, Estrov Z, Cortes JE, Thomas DA, Kadia T et al. Long-term outcomes of 107 patients with myelofibrosis receiving JAK1/JAK2 inhibitor ruxolitinib: survival advantage in comparison to matched historical controls. Blood 2012; 120: 1202–1209.
    1. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF et al. Efficacy, safety, and survival with ruxolitinib in patients with myelofibrosis: results of a median 3-year follow-up of COMFORT-I. Haematologica 2015; 100: 479–488.
    1. Cervantes F, Vannucchi AM, Kiladjian JJ, Al-Ali HK, Sirulnik A, Stalbovskaya V et al. Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood 2013; 122: 4047–4053.
    1. Robins JM, Tsiatis AA. Correcting for noncompliance in randomized trials using rank preserving structural failure time models. Commun Stat Theory Methods 1991; 20: 2609–2631.
    1. Korhonen P, Zuber E, Branson M, Hollaender N, Yateman N, Katiskalahti T et al. Correcting overall survival for the impact of crossover via a rank-preserving structural failure time (RPSFT) model in the RECORD-1 trial of everolimus in metastatic renal-cell carcinoma. J Biopharm Stat 2012; 22: 1258–1271.
    1. Latimer NR, Abrams KR, Lambert PC, Crowther MJ, Wailoo AJ, Morden JP et al. Adjusting for survival time estimates to account for treatment switching in randomized controlled trials—an economic evaluation context: methods, limitations, and recommendations. Med Decis Making 2014; 34: 387–402.
    1. Tefferi A, Vardiman JW. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2008; 22: 14–22.
    1. Levine RL, Belisle C, Wadleigh M, Zahrieh D, Lee S, Chagnon P et al. X-inactivation-based clonality analysis and quantitative JAK2V617F assessment reveal a strong association between clonality and JAK2V617F in PV but not ET/MMM, and identifies a subset of JAK2V617F-negative ET and MMM patients with clonal hematopoiesis. Blood 2006; 107: 4139–4141.
    1. Thiele J, Kvasnicka HM, Facchetti F, Franco V, van der Walt J, Orazi A. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica 2005; 90: 1128–1132.
    1. Cervantes F, Kiladjian JJ, Niederwieser D, Sirulnik A, Stalbovskaya V, McQuitty M et al. Long-term efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for the treatment of myelofibrosis. Blood 2012; 120: abstract 801.
    1. Deininger M, Radich J, Burn TC, Huber R, Paranagama D, Verstovsek S. The effect of long-term ruxolitinib treatment on JAK2p.V617F allele burden in patients with myelofibrosis. Blood 2015; 126: 1551–1554.
    1. Wilkins BS, Radia D, Woodley C, Farhi SE, Keohane C, Harrison CN. Resolution of bone marrow fibrosis in a patient receiving JAK1/JAK2 inhibitor treatment with ruxolitinib. Haematologica 2013; 98: 1872–1876.
    1. Kvasnicka HM, Thiele J, Bueso-Ramos CE, Sun W, Cortes J, Kantarjian HM et al. Changes in bone marrow morphology in patients with myelofibrosis treated for up to 5 years with either ruxolitinib or best available therapy. Haematologica 2014; 99 (Suppl 1): 127 (abstract P405).
    1. Vannucchi AM, Kantarjian HM, Kiladjian JJ, Gotlib J, Cervantes F, Mesa RA et al. A pooled analysis of overall survival in COMFORT-I and COMFORT-II, 2 randomized phase 3 trials of ruxolitinib for the treatment of myelofibrosis. Haematologica 2015; 100: 1139–1145.
    1. Al-Ali HK, Stalbovskaya V, Gopalakrishna P, Perez Ronco J, Foltz LM. Ruxolitinib overcomes the adverse prognostic effect of anemia in patients with myelofibrosis. Blood 2014; 124: abstract 4583.
    1. Polverelli N, Breccia M, Benevolo G, Martino B, Tieghi A, Latagliata R et al. Risk factors for infections in myelofibrosis: role of disease status and treatment. A study on 507 patients. Blood 2015; 126: abstract 1606.
    1. Hultcrantz M, Lund SH, Andersson TM, Björkholm M, Kristinsson S. Myeloproliferative neoplasms and infections; a population-based study on 9,665 patients with myeloproliferative neoplasms diagnosed in Sweden 1987-2009. Haematologica 2015; 100 (Suppl 1): 260 (abstract P666).
    1. Tefferi A, Rumi E, Finazzi G, Gisslinger H, Vannucchi AM, Rodeghiero F et al. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia 2013; 27: 1874–1881.
    1. Hasselbalch HC. Perspectives on the impact of JAK-inhibitor therapy upon inflammation-mediated comorbidities in myelofibrosis and related neoplasms. Expert Rev Hematol 2014; 7: 203–216.
    1. Kvasnicka HM, Thiele J, Bueso-Ramos CE, Sun W, Cortes J, Kantarjian HM et al. Effects of five years of ruxolitinib therapy on bone marrow morphology in patients with myelofibrosis and comparison with best available therapy. Blood 2013; 122: abstract 4055.
    1. Passamonti F, Cervantes F, Vannucchi AM, Morra E, Rumi E, Cazzola M et al. Dynamic International Prognostic Scoring System (DIPSS) predicts progression to acute myeloid leukemia in primary myelofibrosis. Blood 2010; 116: 2857–2858.
    1. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF et al. The clinical benefit of ruxolitinib across patient subgroups: analysis of a placebo-controlled, phase III study in patients with myelofibrosis. Br J Haematol 2013; 161: 508–516.
    1. Barosi G, Tefferi A, Besses C, Birgegard G, Cervantes F, Finazzi G et al. Clinical end points for drug treatment trials in BCR-ABL1-negative classic myeloproliferative neoplasms: consensus statements from European LeukemiaNET (ELN) and International Working Group—Myeloproliferative Neoplasms Research and Treatment (IWG-MRT). Leukemia 2015; 29: 20–26.

Source: PubMed

3
購読する