Lower plasma PCSK9 in normocholesterolemic subjects is associated with upregulated adipose tissue surface-expression of LDLR and CD36 and NLRP3 inflammasome

Yannick Cyr, Valérie Lamantia, Simon Bissonnette, Melanie Burnette, Aurèle Besse-Patin, Annie Demers, Martin Wabitsch, Michel Chrétien, Gaétan Mayer, Jennifer L Estall, Maya Saleh, May Faraj, Yannick Cyr, Valérie Lamantia, Simon Bissonnette, Melanie Burnette, Aurèle Besse-Patin, Annie Demers, Martin Wabitsch, Michel Chrétien, Gaétan Mayer, Jennifer L Estall, Maya Saleh, May Faraj

Abstract

Background: LDL-cholesterol lowering variants that upregulate receptor uptake of LDL, such as in PCSK9 and HMGCR, are associated with diabetes via unclear mechanisms. Activation of the NLRP3 inflammasome/interleukin-1 beta (IL-1β) pathway promotes white adipose tissue (WAT) dysfunction and type 2 diabetes (T2D) and is regulated by LDL receptors (LDLR and CD36). We hypothesized that: (a) normocholesterolemic subjects with lower plasma PCSK9, identifying those with higher WAT surface-expression of LDLR and CD36, have higher activation of WAT NLRP3 inflammasome and T2D risk factors, and; (b) LDL upregulate adipocyte NLRP3 inflammasome and inhibit adipocyte function.

Methodology: Post hoc analysis was conducted in 27 overweight/ obese subjects with normal plasma LDL-C and measures of disposition index (DI during Botnia clamps) and postprandial fat metabolism. WAT was assessed for surface-expression of LDLR and CD36 (immunohistochemistry), protein expression (immunoblot), IL-1β secretion (AlphaLISA), and function (3 H-triolein storage).

Results: Compared to subjects with higher than median plasma PCSK9, subjects with lower PCSK9 had higher WAT surface-expression of LDLR (+81%) and CD36 (+36%), WAT IL-1β secretion (+284%), plasma IL-1 receptor-antagonist (+85%), and postprandial hypertriglyceridemia, and lower WAT pro-IL-1β protein (-66%), WAT function (-62%), and DI (-28%), without group-differences in body composition, energy intake or expenditure. Adjusting for WAT LDLR or CD36 eliminated group-differences in WAT function, DI, and postprandial hypertriglyceridemia. Native LDL inhibited Simpson-Golabi Behmel-syndrome (SGBS) adipocyte differentiation and function and increased inflammation.

Conclusion: Normocholesterolemic subjects with lower plasma PCSK9 and higher WAT surface-expression of LDLR and CD36 have higher WAT NLRP3 inflammasome activation and T2D risk factors. This may be due to LDL-induced inhibition of adipocyte function.

Keywords: adipose tissue and systemic inflammation; apoB-lipoproteins; cardiometabolic risk; plasma apoB-to-PCSK9.

Conflict of interest statement

The authors declare no conflict of interest associated with this manuscript.

© 2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.

Figures

FIGURE 1
FIGURE 1
Representative plasma membrane localization of CD36 and LDLR by immunohistofluorescence staining in WAT. Specificity of LDLR and CD36 detection in WAT was verified by secondary antibody‐only staining for CD36 (Alexa Fluor 555 anti‐rabbit IgG) (a), and LDLR (Alexa Fluor 647 anti‐rabbit IgG) (b), used as negative control; Positive staining (primary and secondary antibodies) of WAT section for CD36 (c) and LDLR (d) All samples counterstained with nuclear stain DAPI. A‐B represent the same WAT section, C‐D represent the same WAT section, all from the same subject
FIGURE 2
FIGURE 2
Subjects with lower PCSK9 have higher WAT surface LDLR and CD36 expression with upregulated NLRP3 inflammasome activity. Group difference in WAT surface LDLR (a) and CD36 (b), total WAT NLRP3 expression (c), pro‐IL‐1β expression (d), IL‐1β medium accumulation (e), and plasma IL‐1Ra (f). Data presented for N = 13 in the lower and N = 14 in the higher PCSK9 groups except for panel C where N = 11 in the higher PCSK9 group, panel D where N = 12 in the higher PCSK9 group, panel E where N = 12 in the lower and N = 9 in the higher PCSK9 group, and panel F where N = 12 in the higher PCSK9 group due to missing data. Women are presented as closed circles and men as open circles. Significant findings hold when performing non‐parametric sensitivity analysis
FIGURE 3
FIGURE 3
Subjects with lower PCSK9 have lower disposition index, impaired WAT function, and delayed postprandial TG clearance. Group differences in ex vivo WAT function (a), and postprandial plasma clearance of TGs (b), glucose‐induced total C‐peptide secretion (c), insulin sensitivity index M/I (d), first phase disposition index (E), and total disposition index (F). Data presented for N = 13 in the lower and N = 14 in the higher PCSK9 group in both groups except for panel A where N = 12 in the higher PCSK9 group due to insufficient WAT samples. Women are presented as closed circles and men as open circles. Significant findings hold when performing non‐parametric sensitivity analysis except for WAT function (p = 0.054)
FIGURE 4
FIGURE 4
Native human LDL impairs differentiation and function of SGBS preadipocytes. The effect of differentiation of SGBS preadipocytes for 7 days on proliferation (a) and lipid‐droplet accumulation per cell (b). A representative experiment using laser‐scanning confocal microscopy (10×) to visualize cell number and lipid‐droplet accumulation in preadipocytes, 7d‐normally differentiated adipocytes (CTL), and 7d‐differentiated adipocytes in the presence of native human LDL (0.2 g apoB/L) (c). The effect of 7d‐differentiation of SGBS preadipocytes in the presence of LDL (0–1.0 g apoB/L) on cell number (d), lipid‐droplet accumulation per cell (e), and adipocyte function per cell (f). N = 3 different experiments measured in triplicates
FIGURE 5
FIGURE 5
Native human LDL downregulate genes related to differentiation and function and upregulate MCP1 expression during SGBS preadipocyte differentiation. Expression of genes related to differentiation (a), lipid metabolism (b), glucose uptake/utilization and insulin sensitivity (c), and inflammation (d) in SGBS preadipocytes and 7d‐differentiation of SGBS preadipocytes in the presence of native human LDL (0.05 or 0.20 g apoB/L) compared to normally differentiated adipocytes. mRNA are normalized to beta‐2‐microglobulin (B2M) and expressed relative to control adipocytes. Data were analyzed by 2‐way ANOVA with interaction and Dunnett correction for multiple comparisons. N = 4 experiments in duplicates. *p < 0.05, **p < 0.01, ***p < 0.001; compared to control adipocytes

References

    1. Arner, E. , Westermark, P. O. , Spalding, K. L. , Britton, T. , Ryden, M. , Frisen, J. , Bernard, S. , & Arner, P. (2010). Adipocyte turnover: Relevance to human adipose tissue morphology. Diabetes, 59, 105–109.
    1. Bissonnette, S. , Lamantia, V. , Cyr, Y. , Provost, V. , Devaux, M. , & Faraj, M. (2018). Native LDL are priming signals for the NLRP3 inflammasome in human white adipose tissue. International Symposium on Atherosclerosis.Atherosclerosis Supplements.
    1. Bissonnette, S. , Saint‐Pierre, N. , Lamantia, V. , Cyr, Y. , Wassef, H. , & Faraj, M. (2015). Plasma IL‐1Ra: linking hyperapoB to risk factors for type 2 diabetes independent of obesity in humans. Nutr Diabetes, 5, e180.
    1. Bissonnette, S. , Saint‐Pierre, N. , Lamantia, V. , Leroux, C. , Provost, V. , Cyr, Y. , Rabasa‐Lhoret, R. , & Faraj, M. (2018). High plasma apolipoprotein B identifies obese subjects who best ameliorate white adipose tissue dysfunction and glucose‐induced hyperinsulinemia after a hypocaloric diet. The American Journal of Clinical Nutrition, 108, 62–76.
    1. Bissonnette, S. , Salem, H. , Wassef, H. , Saint‐Pierre, N. , Tardif, A. , Baass, A. , Dufour, R. , & Faraj, M. (2013). Low density lipoprotein delays clearance of triglyceride‐rich lipoprotein by human subcutaneous adipose tissue. Journal of Lipid Research, 54, 1466–1476.
    1. Calvo, D. , Gómez‐Coronado, D. , Suárez, Y. , Lasunción, M. A. , & Vega, M. A. (1998). Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL. Journal of Lipid Research, 39, 777–788.
    1. Cavelti‐Weder, C. , Babians‐Brunner, A. , Keller, C. , Stahel, M. A. , Kurz‐Levin, M. , Zayed, H. , Solinger, A. M. , Mandrup‐Poulsen, T. , Dinarello, C. A. , & Donath, M. Y. (2012). Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care, 35, 1654–1662.
    1. Connelly, P. W. , Poapst, M. , Davignon, J. , Lussier‐Cacan, S. , Reeder, B. , Lessard, R. , Hegele, R. A. , & Csima, A. (1999). Reference values of plasma apolipoproteins A‐I and B, and association with nonlipid risk factors in the populations of two Canadian provinces: Quebec and Saskatchewan. Canadian Heart Health Surveys Research Group. Canadian Journal of Cardiology, 15, 409–418.
    1. Corrao, G. , Ibrahim, B. , Nicotra, F. , Soranna, D. , Merlino, L. , Catapano, A. L. , Tragni, E. , Casula, M. , Grassi, G. , & Mancia, G. (2014). Statins and the risk of diabetes: Evidence from a large population‐based cohort study. Diabetes Care, 37, 2225–2232.
    1. Cyr, Y. , Bissonnette, S. , Lamantia, V. , Wassef, H. , Loizon, E. , NGO Sock, E. T. , Vidal, H. , Mayer, G. , Chretien, M. , & Faraj, M. (2020). White adipose tissue surface expression of LDLR and CD36 is associated with risk factors for type 2 diabetes in adults with obesity. Obesity (Silver Spring), 28, 2357–2367.
    1. Cyr, Y. , Wassef, H. , Bissonnette, S. , Lamantia, V. , Davignon, J. , & Faraj, M. (2016). White adipose tissue apoC‐I secretion; role in delayed chylomicron clearance in vivo and ex vivo in white adipose tissue in obese subjects. Journal of Lipid Research, 57, 1074–1085.
    1. Demers, A. , Samami, S. , Lauzier, B. , Des rosiers, C. , Sock, E. T. N. , Ong, H. , & Mayer, G. (2015). PCSK9 induces CD36 degradation and affects long‐chain fatty acid uptake and triglyceride metabolism in adipocytes and in mouse liver. Arteriosclerosis, Thrombosis, and Vascular Biology, 35, 2517–2525.
    1. Dubuc, G. , Chamberland, A. , Wassef, H. , Davignon, J. , Seidah, N. G. , Bernier, L. , & Prat, A. (2004). Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis‐regulated convertase‐1 implicated in familial hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1454–1459.
    1. Faraj, M. (2020). LDL, LDL receptors, and PCSK9 as modulators of the risk for type 2 diabetes: a focus on white adipose tissue. J Biomed Res, 34, 251–259.
    1. Faraj, M. , Sniderman, A. , & Cianflone, K. (2004). ASP enhances in situ lipoprotein lipase activity by increasing fatty acid trapping in adipocytes. Journal of Lipid Research, 45, 657–666.
    1. Ference, B. A. , Robinson, J. G. , Brook, R. D. , Catapano, A. L. , Chapman, M. J. , Neff, D. R. , Voros, S. , Giugliano, R. P. , Davey Smith, G. , Fazio, S. , & Sabatine, M. S. (2016). Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. New England Journal of Medicine, 375, 2144–2153.
    1. Fischer‐Posovszky, P. , Newell, F. S. , Wabitsch, M. , & Tornqvist, H. E. (2008). Human SGBS cells ‐ a unique tool for studies of human fat cell biology. Obesity Facts, 1, 184–189.
    1. Gastaldelli, A. , Gaggini, M. , & Defronzo, R. A. (2017). Role of adipose tissue insulin resistance in the natural history of T2DM: Results from the San Antonio metabolism study. Diabetes, 66(4), 815–822.
    1. Glatz, J. F. C. , & Luiken, J. J. F. P. (2018). Dynamic role of the transmembrane glycoprotein CD36 (SR‐B2) in cellular fatty acid uptake and utilization. Journal of Lipid Research, 59(7), 1084–1093. 10.1194/jlr.R082933
    1. Hamm, J. K. , Park, B. H. , & Farmer, S. R. (2001). A role for C/EBPbeta in regulating peroxisome proliferator‐activated receptor gamma activity during adipogenesis in 3T3‐L1 preadipocytes. Journal of Biological Chemistry, 276, 18464–18471.
    1. Koenen, T. B. , Stienstra, R. , van Tits, L. J. , Joosten, L. A. B. , van Velzen, J. F. , Hijmans, A. , Pol, J. A. , van der Vliet, J. A. , Netea, M. G. , Tack, C. J. , Stalenhoef, A. F. H. , & de Graaf, J. (2011). The inflammasome and caspase‐1 activation: A new mechanism underlying increased inflammatory activity in human visceral adipose tissue. Endocrinology, 152(10), 3769–3778.
    1. Lamantia, V. , Bissonnette, S. , Provost, V. , Devaux, M. , Cyr, Y. , Daneault, C. , Rosiers, C. D. , & Faraj, M. (2019). The association of polyunsaturated fatty acid delta‐5‐desaturase activity with risk factors for type 2 Diabetes Is Dependent On Plasma ApoB‐lipoproteins in overweight and obese adults. Journal of Nutrition, 149, 57–67.
    1. Lamantia, V. , Bissonnette, S. , Wassef, H. , Cyr, Y. , Baass, A. , Dufour, R. , Rabasa‐Lhoret, R. , & Faraj, M. (2017). ApoB‐lipoproteins and dysfunctional white adipose tissue; Relation to risk factors for type 2 diabetes in humans. Journal of Clinical Lipidology, 11, 34–45.
    1. Larsen, C. M. , Faulenbach, M. , Vaag, A. , Volund, A. , Ehses, J. A. , Seifert, B. , Mandrup‐Poulsen, T. , & Donath, M. Y. (2007). Interleukin‐1B receptor antagonist in type 2 diabetes mellitus. New England Journal of Medicine, 356, 1517–1526.
    1. Lefterova, M. I. , Zhang, Y. , Steger, D. J. , Schupp, M. , Schug, J. , Cristancho, A. , Feng, D. , Zhuo, D. , Stoeckert Jr, C. J. , Liu, X. S. , & Lazar, M. A. (2008). PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome‐wide scale. Genes & Development, 22, 2941–2952.
    1. Lorenzo, C. , Wagenknecht, L. E. , Rewers, M. J. , Karter, A. J. , Bergman, R. N. , Hanley, A. J. G. , & Haffner, S. M. (2010). Disposition index, glucose effectiveness, and conversion to type 2 diabetes: The Insulin Resistance Atherosclerosis Study (IRAS). Diabetes Care, 33, 2098–2103.
    1. Lotta, L. A. , Sharp, S. J. , Burgess, S. , Perry, J. R. B. , Stewart, I. D. , Willems, S. M. , Luan, J. A. , Ardanaz, E. , Arriola, L. , Balkau, B. , Boeing, H. , Deloukas, P. , Forouhi, N. G. , Franks, P. W. , Grioni, S. , Kaaks, R. , Key, T. J. , Navarro, C. , Nilsson, P. M. , … Wareham, N. J. (2016). Association between LDL‐cholesterol lowering genetic variants and risk of type 2 diabetes. JAMA, 316, 1383–1391.
    1. Mascitelli, L. , & Goldstein, M. R. (2018). Questioning the safety and benefits of evolocumab. The Lancet Diabetes & Endocrinology, 6, 11.
    1. Medina‐Gomez, G. , Gray, S. , & Vidal‐Puig, A. (2007). Adipogenesis and lipotoxicity: role of peroxisome proliferator‐activated receptor gamma (PPARgamma) and PPARgammacoactivator‐1 (PGC1). Public Health Nutrition, 10, 1132–1137.
    1. Murphy, R. M. , & Lamb, G. D. (2013). Important considerations for protein analyses using antibody based techniques: down‐sizing Western blotting up‐sizes outcomes. Journal of Physiology, 591, 5823–5831.
    1. Preiss, D. , & Sattar, N. (2015). Does the LDL receptor play a role in the risk of developing type 2 diabetes? JAMA, 313, 1016–1017.
    1. Rampanelli, E. , Orso, E. , Ochodnicky, P. , Liebisch, G. , Bakker, P. J. , Claessen, N. , Butter, L. M. , van den Bergh Weerman, M. A. , Florquin, S. , Schmitz, G. , & Leemans, J. C. (2017). Metabolic injury‐induced NLRP3 inflammasome activation dampens phospholipid degradation. Scientific Reports, 7, 2861.
    1. Ray, K. K. , Colhoun, H. M. , Szarek, M. , Baccara‐Dinet, M. , Bhatt, D. L. , Bittner, V. A. , Budaj, A. J. , Diaz, R. , Goodman, S. G. , Hanotin, C. , Harrington, R. A. , Jukema, J. W. , Loizeau, V. , Lopes, R. D. , Moryusef, A. , Murin, J. , Pordy, R. , Ristic, A. D. , Roe, M. T. , … INVESTIGATORS . (2019). Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: a prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial. Lancet Diabetes Endocrinol, 7, 618–628.
    1. Ridker, P. M. , Pradhan, A. , Macfadyen, J. , Libby, P. , & Glynn, R. J. (2012). Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: An analysis from the JUPITER trial. The Lancet, 380, 565–571.
    1. Sabatine, M. S. , Leiter, L. A. , Wiviott, S. D. , Giugliano, R. P. , Deedwania, P. , de Ferrari, G. M. , Murphy, S. A. , Kuder, J. F. , Gouni‐Berthold, I. , Lewis, B. S. , Handelsman, Y. , Pineda, A. L. , Honarpour, N. , Keech, A. C. , Sever, P. S. , & Pedersen, T. R. (2017). Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new‐onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. The Lancet Diabetes & Endocrinology, 5, 941–950.
    1. Sattar, N. , Preiss, D. , Murray, H. M. , Welsh, P. , Buckley, B. M. , de Craen, A. J. M. , Seshasai, S. R. K. , McMurray, J. J. , Freeman, D. J. , Jukema, J. W. , Macfarlane, P. W. , Packard, C. J. , Stott, D. J. , Westendorp, R. G. , Shepherd, J. , Davis, B. R. , Pressel, S. L. , Marchioli, R. , Marfisi, R. M. , … Ford, I. (2010). Statins and risk of incident diabetes: a collaborative meta‐analysis of randomised statin trials. The Lancet, 375, 735–742.
    1. Sauer, S. , (2015). Ligands for the nuclear peroxisome proliferator‐activated receptor gamma. Trends in Pharmacological Sciences, 36, 688–704.
    1. Schmidt, A. F. , Swerdlow, D. I. , Holmes, M. V. , Patel, R. S. , Fairhurst‐Hunter, Z. , Lyall, D. M. , Hartwig, F. P. , Horta, B. L. , Hyppönen, E. , Power, C. , Moldovan, M. , van Iperen, E. , Hovingh, G. K. , Demuth, I. , Norman, K. , Steinhagen‐Thiessen, E. , Demuth, J. , Bertram, L. , Liu, T. , … Völker, U. et al (2016). PCSK9 genetic variants and risk of type 2 diabetes: A mendelian randomisation study. The Lancet Diabetes & Endocrinology, 5, 97–105.
    1. Schmidt, R. J. , Beyer, T. P. , Bensch, W. R. , Qian, Y. W. , Lin, A. , Kowala, M. , Alborn, W. E. , Konrad, R. J. , & Cao, G. (2008). Secreted proprotein convertase subtilisin/kexin type 9 reduces both hepatic and extrahepatic low‐density lipoprotein receptors in vivo. Biochemical and Biophysical Research Communications, 370, 634–640.
    1. Sheedy, F. J. , Grebe, A. , Rayner, K. J. , Kalantari, P. , Ramkhelawon, B. , Carpenter, S. B. , Becker, C. E. , Ediriweera, H. N. , Mullick, A. E. , Golenbock, D. T. , Stuart, L. M. , Latz, E. , Fitzgerald, K. A. , & Moore, K. J. (2013). CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nature Immunology, 14, 812–820.
    1. Skeldon, A. M. , Faraj, M. , & Saleh, M. (2014). Caspases and inflammasomes in metabolic inflammation. Immunology and Cell Biology, 92, 304–313.
    1. Sloan‐Lancaster, J. , Abu‐Raddad, E. , Polzer, J. , Miller, J. W. , Scherer, J. C. , de Gaetano, A. , Berg, J. K. , & Landschulz, W. H. (2013). Double‐blind, randomized study evaluating the glycemic and anti‐inflammatory effects of subcutaneous LY2189102, a neutralizing IL‐1β antibody, in patients with type 2 diabetes. Diabetes Care, 36, 2239–2246.
    1. Stienstra, R. , Joosten, L. A. B. , Koenen, T. , van Tits, B. , van Diepen, J. A. , van den Berg, S. A. A. , Rensen, P. C. N. , Voshol, P. J. , Fantuzzi, G. , Hijmans, A. , Kersten, S. , Müller, M. , van den Berg, W. B. , van Rooijen, N. , Wabitsch, M. , Kullberg, B. J. , van der Meer, J. W. M. , Kanneganti, T. , Tack, C. J. , & Netea, M. G. (2010). The inflammasome‐mediated caspase‐1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metabolism, 12, 593–605.
    1. Swanson, K. V. , Deng, M. , & Ting, J. P. (2019). The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews Immunology, 19, 477–489.
    1. Swerdlow, D. I. , Preiss, D. , Kuchenbaecker, K. B. , Holmes, M. V. , Engmann, J. E. L. , Shah, T. , Sofat, R. , Stender, S. , Johnson, P. C. D. , Scott, R. A. , Leusink, M. , Verweij, N. , Sharp, S. J. , Guo, Y. , Giambartolomei, C. , Chung, C. , Peasey, A. , Amuzu, A. , Li, K. , …, Delaney, J. A. et al (2015). HMG‐coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. The Lancet, 385, 351–361.
    1. Vandanmagsar, B. , Youm, Y. H. , Ravussin, A. , Galgani, J. E. , Stadler, K. , Mynatt, R. L. , Ravussin, E. , Stephens, J. M. , & Dixit, V. D. (2011). The NLRP3 inflammasome instigates obesity‐induced inflammation and insulin resistance. Nature Medicine, 17, 179–188.
    1. Wassef, H. , Bissonnette, S. , Saint‐Pierre, N. , Lamantia, V. , Cyr, Y. , Chretien, M. , & Faraj, M. (2015). The apoB/ PCSK9 ratio: a new index for metabolic risk in humans. Journal of Clinical Lipidology, 9, 664–675.
    1. Wassef, H. , Salem, H. , Bissonnette, S. , Baass, A. , Dufour, R. , Davignon, J. , & Faraj, M. (2012). White adipose tissue‐apoC‐I secretion; relation to delayed plasma clearance of dietary fat in humans. Arterioscler Throm Vasc Biol, 32, 2785–2793.
    1. Wen, H. , Gris, D. , Lei, Y. , Jha, S. , Zhang, L. , Huang, M.‐T.‐H. , Brickey, W. J. , & Ting, J.‐P.‐Y. (2011). Fatty acid‐induced NLRP3‐ASC inflammasome activation interferes with insulin signaling. Nature Immunology, 12, 408–415.

Source: PubMed

3
購読する