Reversal of epigenetic aging and immunosenescent trends in humans

Gregory M Fahy, Robert T Brooke, James P Watson, Zinaida Good, Shreyas S Vasanawala, Holden Maecker, Michael D Leipold, David T S Lin, Michael S Kobor, Steve Horvath, Gregory M Fahy, Robert T Brooke, James P Watson, Zinaida Good, Shreyas S Vasanawala, Holden Maecker, Michael D Leipold, David T S Lin, Michael S Kobor, Steve Horvath

Abstract

Epigenetic "clocks" can now surpass chronological age in accuracy for estimating biological age. Here, we use four such age estimators to show that epigenetic aging can be reversed in humans. Using a protocol intended to regenerate the thymus, we observed protective immunological changes, improved risk indices for many age-related diseases, and a mean epigenetic age approximately 1.5 years less than baseline after 1 year of treatment (-2.5-year change compared to no treatment at the end of the study). The rate of epigenetic aging reversal relative to chronological age accelerated from -1.6 year/year from 0-9 month to -6.5 year/year from 9-12 month. The GrimAge predictor of human morbidity and mortality showed a 2-year decrease in epigenetic vs. chronological age that persisted six months after discontinuing treatment. This is to our knowledge the first report of an increase, based on an epigenetic age estimator, in predicted human lifespan by means of a currently accessible aging intervention.

Keywords: PD-1; PSA; c-reactive protein; lymphocyte-to-monocyte ratio; naive T cells; thymic regeneration.

Conflict of interest statement

GMF, RTB, JPW, and SH are shareholders in or have options to purchase shares in Intervene Immune, Inc., GMF and RTB are officers of Intervene Immune and are named in a related Intervene Immune patent application. All other authors declare no competing interests.

© 2019 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

Figures

Figure 1
Figure 1
Treatment safety indices. In this and other figures, error bars depict SEMs; baseline SEMs for normalized data were obtained as described in Experimental Procedures. Asterisks denote p < .05 (*), p < .01 (**), and p ≤ .001 (***). (a) Prostate‐specific antigen (PSA). (b) Fold change (FC) in percent free PSA. (c) Fold change in the ratio of PSA to percent free PSA (“risk factor”), which rises as prostate cancer risk rises. (d, e) Pro‐inflammatory indices (c‐reactive protein (CRP)) and IL‐6). (f) Serum alkaline phosphatase (AP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT). The increase in AP, while statistically significant, was quantitatively negligible and remained well within the normal range. (g) Maintenance of insulin levels within the upper and lower limits of the normal range (indicated by the horizontal lines). (h) Lack of change in serum glucose, which remained within the normal range. (i) Improvement in estimated GFR at 9 and 12 months of treatment, with a trend toward continued improvement 6 months after discontinuation of treatment
Figure 2
Figure 2
Example of treatment‐induced change in thymic MRI appearance. Darkening corresponds to replacement of fat with nonadipose tissue. White lines denote the thymic boundary. Volunteer 2 at 0 (a) and 9 (b) months
Figure 3
Figure 3
Quantitative MRI‐based regeneration outcomes. Like symbols denote the same individuals in each panel. (a) Individual absolute changes in TFFF. Statistically significant improvements are evident for each individual with the exception of two volunteers who showed high TFFF at baseline (stars); overall significance by linear mixed‐model analysis: p < 9 × 10–17 (see text). (b) Relative changes in TFFF for each individual. The age of each individual at trial entry (noted adjacent to each line) does not correlate with the magnitude of the depicted changes. The highest p values (p > .01) for significant individual responses are denoted with asterisks; for clarity, higher significance levels are not designated. (c) Sigmoidal dependence of TFFF change at 12 months on baseline TFFF, showing greater improvements for thymi with lower basal TFFFs (p < .007). (d) Individual changes in sternal bone marrow fat‐free fraction (BMFFF) (volunteer age noted adjacent to each line). (e) Mean overall changes in BMFFF. (f) Linear dependence of 12‐month BMFFF on basal BMFFF (p = .012), showing the largest relative changes in individuals with the lowest baseline BMFFFs. BMFFF data for one volunteer could not be evaluated
Figure 4
Figure 4
Immunological responses to treatment. (a) Decline (~35%) in monocyte (CD33+ cell) percentages with treatment. When normalized to baseline, the decline in monocytes remained significant even at 18 months (p = .022; Table S1). (b) Persistent decline (~40%) from baseline [(CD38+ monocytes)0] in CD38+ monocytes with treatment. (c) Persistent increase in the lymphocyte‐to‐monocyte cell ratio. Black points: lymphocyte‐to‐monocyte ratio; yellow points: lymphocyte‐to‐CD38+ monocyte ratio. (d) Decrease in normalized PD‐1‐positive CD8 cell percentage with treatment. (e) Increase in normalized naïve CD4 cells (nCD4) vs. baseline [(nCD4)0] with treatment. (f) Increase in normalized naïve CD8 cells with treatment. Black points: all volunteers (p = .03 at 9 months). Yellow points: all volunteers minus the most extreme outlier of Figure 3a–c (represented by blue stars in those figures): p = .04 at 9 months and p < .03 at 12 months
Figure 5
Figure 5
Treatment‐induced changes in epigenetic age. EA, epigenetic age; A, chronological age; changes depicted relative to EA‐A before treatment [(EA‐A)0]. (a) Decline in Horvath epigenetic age by 12 months of treatment. Overall, linear mixed‐model analyses (LMMAs) indicated a P value of .0009 over months 0–12 and .018 over months 0–18. (b) Decline in PhenoAge by 12 months of treatment. LMMA overall P values are .0064 for months 0–12 and .028 for months 0–18. (c) Decline in Hannum epigenetic age by 12 months, and continuing epigenetic age regression to 18 months. LMMA p = .012 for months 0–12 and p = .0092 for months 0–18. (d) Persistent decline in GrimAge age at 12–18 months. LMMA showed p = .0049 for months 0–12 and p = .0016 for months 0–18. (e) Mean of all four epigenetic aging clock results, indicating significant overall epigenetic aging regression at trial months 9–18. By LMMA, p = .0003 for 0–12 mo and .0016 for 0–18 mo. (f) Significant (p < .005) change in the rate of change of [(EA‐A)–(EA‐A)0] between 0–9 months of treatment (plotted at 9 months) and 9–12 months of treatment (plotted at 12 months)

References

    1. Akunuru, S. , & Geiger, H. (2016). Aging, clonality and rejuvenation of hematopoietic stem cells. Trends in Molecular Medicine, 22, 701–712. 10.1016/j.molmed.2016.06.003
    1. Arnold, C. , Wolf, J. , Brunner, S. , Herndler‐Brandstetter, D. , & Grubeck‐Loebenstein, B. (2011). Gain and loss of T cell subsets in old age – age‐associated reshaping of the T cell repertoire. Journal of Clinical Immunology, 31, 137–146.
    1. Barzilai, N. , Crandall, J. P. , Kritchevsky, S. B. , & Espeland, M. A. (2016). Metformin as a tool to study aging. Cell Metabolism, 23, 1060–1065.
    1. Bodey, B. , Bodey, B. J. , Siegel, S. E. , & Kaiser, H. E. (1997). Involution of the mammalian thymus, one of the leading regulators of aging. In Vivo, 11, 421–440.
    1. Caglayan, V. , Onen, E. , Avci, S. , Sambel, M. , Kilic, M. , … Yidiz, H. E. (2019). Lymphocyte‐to‐monocyte ratio is a valuable marker to predict cancer in patients with prostate specific antigen between 4 and 10 ng/dl. Archivio Italiano Di Urologia, Andrologia, 90, 270–275.
    1. Camacho‐Pereira, J. , Tarrago, M. G. , Chini, C. C. S. , Nin, V. , Escande, C. , … Chini, E. N. (2016). CD38 dictates age‐related NAD decline and mitochondrial dysfunction through a SIRT3‐dependent mechanism. Cell Metabolism, 23, 1127–1139.
    1. Cappola, A. R. , O'Meara, E. S. , Guo, W. , Bartz, T. M. , Fried, L. P. , & Newman, A. B. (2009). Trajectories of dehydroepiandrosterone sulfate predict mortality in older adults: The cardiovascular health study. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 64, 1268–1274. 10.1093/gerona/glp129
    1. Dai, X. , Zhang, D. , Wang, C. , Wu, Z. , & Liang, C. (2018). The pivotal role of thymus in atherosclerosis mediated by immune and inflammatory response. Internation Journal of Medical Sciences, 15, 1555–1563. 10.7150/ijms.27238
    1. Das, A. , Huang, G. X. , Bonkowski, M. S. , Longchamp, A. , Li, C. , Schultz, M. B. , … Sinclair, D. A. (2018). Impairment of an endothelial NAD+‐H2S signaling network is a reversible cause of vascular aging. Cell, 173, 74–89. 10.1016/j.cell.2018.02.008
    1. Dhahbi, J. M. , Mote, P. L. , Fahy, G. M. , & Spindler, S. R. (2005). Identification of potential calorie restriction mimetics by microarray profiling. Physiological Genomics, 23, 343–350.
    1. Dunning, M. , Barbosa‐Morais, N. , Lynch, A. , Tavare, S. , & Ritchie, M. (2008). Statistical issues in the analysis of Illumina data. BMC Bioinformatics, 9, 85 10.1186/1471-2105-9-85
    1. Fabris, N. , Mocchegiani, E. , Muzzioli, M. , & Provinciali, M. (1988). Neuroendocrine‐thymus interactions: Perspectives for intervention in aging. Annals of the New York Academy of Science, 521, 72–87. 10.1111/j.1749-6632.1988.tb35266.x
    1. Fahy, G. M. (2003). Apparent induction of partial thymic regeneration in a normal human subject: A case report. Journal of Anti‐Aging Medicine, 6, 219–227. 10.1089/109454503322733063
    1. Fahy, G. M. (2010). Precedents for the biological control of aging: Experimental postponement, prevention, and reversal of aging processes In Fahy G. M., West M. D., Coles S. L., & Harris S. B. (Eds.), The future of aging: pathways to human life extension (pp. 127–223). New York, NY: Springer.
    1. Falci, C. , Gianesin, K. , Sergi, G. , Giunco, S. , De Ronch, I. , Valpione, S. , … Zagonel, V. (2013). Immune senescence and cancer in elderly patients: Results from an exploratory study. Experimental Gerontology, 48, 1436–1442. 10.1016/j.exger.2013.09.011
    1. Ferrando‐Martínez, S. , Romero‐Sánchez, M. C. , Solana, R. , Delgado, J. , de la Rosa, R. , Muñoz‐Fernández, M. Á. , … Leal, M. (2013). Thymic function failure and C‐reactive protein levels are independent predictors of all‐cause mortality in healthy elderly humans. AGE, 35, 251–259. 10.1007/s11357-011-9341-2
    1. Fischer, M. , Raptis, D. , Montani, M. , Graf, R. , Clavien, P. , … Scheffel, H. (2012). Liver fat quantitation by dual‐echo MR imaging outperforms traditional histopathological analysis. Academic Radiology, 19, 1208–1214.
    1. Forti, P. , Maltoni, B. , Olivelli, V. , Pirazzoli, G. L. , Ravaglia, G. , & Zoli, M. (2012). Serum dehydroepiandrosterone sulfate and adverse health outcomes in older men and women. Rejuvenation Research, 15, 349–358. 10.1089/rej.2011.1248
    1. French, R. A. , Broussard, S. R. , Meier, W. A. , Minshall, C. , Arkins, S. , Zachary, J. F. , … Kelley, K. W. (2002). Age‐associated loss of bone marrow hematopoietic cells is reversed by GH and accompanies thymic reconstitution. Endocrinology, 143, 690–699. 10.1210/endo.143.2.8612
    1. Goff, B. L. , Roth, J. A. , & Arp, L. H. (1987). Growth hormone treatment stimulates thymulin production in aged dogs. Clinical and Experimental Immunology, 68, 580–587.
    1. Gong, S. , Gao, X. , Xu, F. , Shang, Z. , Li, S. , Chen, W. , & Li, J. (2018). Association of lymphocyte to monocyte ratio with severity of coronary artery disease. Medicine (Baltimore), 97, e12813 10.1097/MD.0000000000012813
    1. Goronzy, J. J. , & Weyand, C. M. (2003). T‐cell senescence and contraction of T‐cell repertoire diversity – catalysts of autoimmunity and chronic inflammation. Arthritis Research & Therapy, 5, 225–234.
    1. Haar, J. L. , Taubenberger, J. K. , Doane, L. , & Kenyon, N. (1989). Enhanced in vitro bone marrow cell migration and T‐lymphocyte responses in aged mice given subcutaneous thymic epithelial cell grafts. Mechanisms of Ageing and Development, 47, 207–219. 10.1016/0047-6374(89)90033-X
    1. Hanley, M. B. , Napolitano, L. A. , & McCune, J. M. (2005). Growth hormone‐induced stimulation of multilineage human hematopoiesis. Stem Cells, 23, 1170–1179. 10.1634/stemcells.2004-0322
    1. Hannum, G. , Guinney, J. , Zhao, L. , Zhang, L. I. , Hughes, G. , Sadda, S. V. , … Zhang, K. (2013). Genome‐wide methylation profiles reveal quantitative views of human aging rates. Molecular Cell, 49, 359–367. 10.1016/j.molcel.2012.10.016
    1. Henson, S. M. , Macaulay, R. , Franzese, O. , & Akbar, A. N. (2012). Reversal of functional defects in highly differentiated young and old CD8 T cells by PDL blockade. Immunology, 135, 355–363. 10.1111/j.1365-2567.2011.03550.x
    1. Henson, S. M. , Macaulay, R. , Riddell, N. E. , Nunn, C. J. , & Akbar, A. N. (2015). Blockade of PD‐1 or p38 MAP kinase signaling enhances senescent CD8(+) T‐cell proliferation by distinct pathways. European Journal of Immunology, 45, 1441–1451.
    1. Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14, R115 10.1186/gb-2013-14-10-r115
    1. Horvath, S. , & Levine, A. J. (2015). HIV‐1 infection accelerates age according to the epigenetic clock. Journal of Infectious Diseases, 212, 1563–1573. 10.1093/infdis/jiv277
    1. Horvath, S. , & Raj, K. (2018). DNA methylation‐based biomarkers and the epigenetic clock theory of aging. Nature Reviews Genetics, 19, 371–384.
    1. Hu, H. H. , Nayak, K. S. , & Goran, M. I. (2011). Assessment of abdominal adipose tissue and organ fat content by magnetic resonance imaging. Obesity Reviews, 12, e504–e515. 10.1111/j.1467-789X.2010.00824.x
    1. Ji, H. , Li, Y. , Fan, Z. , Zuo, B. , Jian, X. , Li, L. , & Liu, T. (2017). Monocyte/lymphocyte ratio predicts the severity of coronary artery disease: A syntax score assessment. BMC Cardiovascular Disorders, 17, 90 10.1186/s12872-017-0507-4
    1. Jylhava, J. , Pedersen, N. L. , & Hagg, S. (2017). Biological age predictors. EBioMedicine, 21, 29–36. 10.1016/j.ebiom.2017.03.046
    1. Kelley, K. W. , Brief, S. , Westly, H. J. , Novakofski, J. , Bechtel, P. J. , Simon, J. , & Walker, E. B. (1986). GH3 pituitary adenoma cells can reverse thymic aging in rats. Proceedings of the National Academy of Science, 83, 5663–5667. 10.1073/pnas.83.15.5663
    1. Khan, O. , Giles, J. R. , McDonald, S. , Manne, S. , Ngiow, S. F. , Patel, K. P. (2019). TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature, 571, 211–218. 10.1038/s41586-019-1325-x(2019)
    1. Khorram, O. , Vu, L. , & Yen, S. S. (1997). Activation of immune function by dehydroepiandrosterone (DHEA) in age‐advanced men. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 52, M1–M7. 10.1093/gerona/52A.1.M1
    1. Lee, K. A. , Shin, K. S. , Kim, G. Y. , Song, Y. C. , Bae, E. A. , … Kang, C. Y. (2016). Characterization of age‐associated exhausted CD8+ T cells defined by increased expression of Tim‐3 and PD‐1. Aging Cell, 15, 291–300.
    1. Levine, M. E. , Lu, A. T. , Quach, A. , Chen, B. H. , Assimes, T. L. , Bandinelli, S. , … Horvath, S. (2018). An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany, NY), 10, 573–591. 10.18632/aging.101414
    1. Longo, V. D. , Antebi, A. , Bartke, A. , Barzilai, N. , Brown‐Borg, H. M. , Caruso, C. , … Fontana, L. (2015). Interventions to slow aging in humans: Are we ready? Aging Cell, 14, 497–510. 10.1111/acel.12338
    1. Lu, A. T. , Quach, A. , Wilson, J. G. , Reiner, A. P. , Aviv, A. , Raj, K. , … Horvath, S. (2019). DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany, NY), 11, 303–327. 10.18632/aging.101684
    1. Marcus, R. , Butterfield, G. , Holloway, L. , Gilliland, L. , Baylink, D. J. , Hintz, R. L. , & Sherman, B. M. (1990). Effects of short‐term administration of recombinant human growth hormone to elderly people. Journal of Clinical Endocrinology and Metabolism, 70, 519–527. 10.1210/jcem-70-2-519
    1. Marioni, R. E. , Shah, S. , McRae, A. F. , Chen, B. H. , Colicino, E. , Harris, S. E. , … Deary, I. J. (2015). DNA methylation age of blood predicts all‐cause mortality in later life. Genome Biology, 16, 25 10.1186/s13059-015-0584-6
    1. McCune, J. M. , Loftus, R. , Schmidt, D. K. , Carroll, P. , Webster, D. , Swor‐Yim, L. B. , … Grant, R. M. (1998). High prevalence of thymic tissue in adults with human immunodeficiency virus‐1 infection. Journal of Clinical Investigation, 101, 2301–2308. 10.1172/JCI2834
    1. Montecino‐Rodriguez, E. , Kong, Y. , Casero, D. , Rouault, A. , Dorshkind, K. , & Pioli, P. D. (2019). Lymphoid‐biased hematopoietic stem cells are maintained with age and efficiently generate lymphoid progeny. Stem Cell Reports, 12, 584–596. 10.1016/j.stemcr.2019.01.016
    1. Napolitano, L. A. , Schmidt, D. , Gotway, M. B. , Ameli, N. , Filbert, E. L. , Ng, M. M. , … McCune, J. M. (2008). Growth hormone enhances thymic function in HIV‐1‐infected adults. Journal of Clinical Investigation, 118, 1085–1098. 10.1172/JCI32830
    1. Naylor, K. , Li, G. , Vallejo, A. N. , Lee, W.‐W. , Koetz, K. , Bryl, E. , … Goronzy, J. J. (2005). The influence of age on T cell generation and TCR diversity. The Journal of Immunology, 174, 7446–7452. 10.4049/jimmunol.174.11.7446
    1. Ocampo, A. , Reddy, P. , Martinez‐Redondo, P. , Platero‐Luengo, A. , Hatanaka, F. , … Belmonte, J. C. (2016). In vivo amelioration of age‐associated hallmarks by partial reprogramming. Cell, 167, 1719–1733.
    1. Plana, M. , Garcia, F. , Darwich, L. , Romeu, J. , López, A. , Cabrera, C. , … Bofill, M. (2011). The reconstitution of the thymus in immunosuppressed individuals restores CD4‐specific cellular and humoral immune responses. Immunology, 133, 318–328. 10.1111/j.1365-2567.2011.03442.x
    1. Poljsak, B. , & Milisav, I. (2016). NAD+ as the link between oxidative stress, inflammation, caloric restriction, exercise, DNA repair, longevity, and health span. Rejuvenation Research, 19, 406–413. 10.1089/rej.2015.1767
    1. Rae, M. J. , Butler, R. N. , Campisi, J. , de Grey, A. D. N. J. , Finch, C. E. , Gough, M. , … Logan, B. J. (2010). The demographic and biomedical case for late‐life interventions in aging. Science Translational Medicine, 2, 40cm21 10.1126/scitranslmed.3000822
    1. Ren, H. , Liu, X. , Wang, L. , & Gao, Y. (2017). Lymphocyte‐to‐monocyte ratio: A novel predictor of prognosis of acute ischemic stroke. Journal of Stroke and Cerebrovascular Diseases, 26, 2595–2602.
    1. Riley, V. , Fitzmaurice, M. A. , & Regelson, W. (1990). DHEA and thymus integrity in the mouse In Kalimi M., & Regelson W. (Eds.), The biologic role of dehydroepiandrosterone (DHEA) (pp. 131–155). New York, NY: Walter de Gruyter.
    1. Roberts‐Thomson, I. C. , Whittingham, S. , Youngschaiyud, U. , & Mackay, I. R. (1974). Ageing, immune response, and mortality. Lancet, 2, 368–370. 10.1016/S0140-6736(74)91755-3
    1. Sadagurski, M. , Landeryou, T. , Cady, G. , Kopchick, J. J. , List, E. O. , Berryman, D. E. , … Miller, R. A. (2015). Growth hormone modulates hypothalamic inflammation in long‐lived pituitary dwarf mice. Aging Cell, 14, 1045–1054. 10.1111/acel.12382
    1. Savino, W. (2007). Neuroendocrine control of T cell development in mammals: Role of growth hormone in modulating thymocyte migration. Experimental Physiology, 92, 813–817. 10.1113/expphysiol.2007.038422
    1. Shufelt, C. , Bretsky, P. , Almeida, C. M. , Johnson, B. D. , Shaw, L. J. , Azziz, R. , … Bairey Merz, C. N. (2010). DHEA‐S levels and cardiovascular disease mortality in postmenopausal women: Results from the National Institutes of Health‐National Heart, Lung, and Blood Institute (NHLBI)‐sponsored Women's Ischemia Syndrome Evaluation (WISE). Journal of Clinical Endocrinology and Metabolism, 95, 4985–4992. 10.1210/jc.2010-0143
    1. Simanovsky, N. , Hiller, N. , Loubashevsky, N. , & Rozovsky, K. (2012). Normal CT characteristics of the thymus in adults. European Journal of Radiology, 81, 3581–3586. 10.1016/j.ejrad.2011.12.015
    1. Strindhall, J. , Nilsson, B.‐O. , Lofgren, S. , Ernerudh, J. , Pawelec, G. , Johannsson, B. , & Wikby, A. (2007). No immune risk profile among individuals who reach 100 years of age: Findings from the Swedish NONA immune longitudinal study. Experimental Gerontology, 42, 753–761. 10.1016/j.exger.2007.05.001
    1. Thompson, H. L. , Smithey, M. J. , Uhrlaub, J. L. , Jeftić, I. , Jergović, M. , White, S. E. , … Nikolich‐Žugich, J. (2019). Lymph nodes as barriers to T‐cell rejuvenation in aging mice and nonhuman primates. Aging Cell, 18, e12865 10.1111/acel.12865
    1. Triche, T. J. , Weisenberger, D. J. , van den Berg, D. , Laird, P. W. , & Siegmund, K. D. (2013). Low‐level processing of Illumina Infinium DNA Methylation BeadArrays. Nucleic Acids Research, 41, e90 10.1093/nar/gkt090
    1. Ventevogel, M. S. , & Sempowski, G. D. (2013). Thymic rejuvenation and aging. Current Opinion in Immunology, 25, 516–522. 10.1016/j.coi.2013.06.002
    1. Vitale, G. , Pellegrino, G. , Vollery, M. , & Hofland, L. J. (2019). Role of IGF‐1 system in the modulation of longevity: Controversies and new insights from a centenarian's perspective. Frontiers in Endocrinology, 10, 1–11. 10.3389/fendo.2019.00027
    1. Weiss, E. P. , Villareal, D. T. , Fontana, L. , Han, D.‐H. , & Holloszy, J. O. (2011). Dehydroepiandrosterone (DHEA) replacement decreases insulin resistance and lowers inflammatory cytokines in aging humans. Aging, 3, 533–542. 10.18632/aging.100327
    1. Youm, Y. H. , Horvath, T. L. , Mangelsdorf, D. J. , Kliewer, S. A. , & Dixit, V. D. (2016). Prolongevity hormone FGF21 protects against immune senescence by delaying age‐related thymic involution. Proceedings of the National Academy of Sciences of the United States of America, 113, 1026–1031. 10.1073/pnas.1514511113
    1. Zhang, Y. , Kim, M. S. , Jia, B. , Yan, J. , Zuniga‐Hertz, J. P. , Han, C. , & Cai, D. (2017). Hypothalamic stem cells control ageing speed partly through exosomal miRNAs. Nature, 548, 52–57. 10.1038/nature23282

Source: PubMed

3
購読する