Proof-of-Concept Randomized Controlled Study of Cognition Effects of the Proprietary Extract Sceletium tortuosum (Zembrin) Targeting Phosphodiesterase-4 in Cognitively Healthy Subjects: Implications for Alzheimer's Dementia

Simon Chiu, Nigel Gericke, Michel Farina-Woodbury, Vladimir Badmaev, Hana Raheb, Kristen Terpstra, Joalex Antongiorgi, Yves Bureau, Zack Cernovsky, Jirui Hou, Veronica Sanchez, Marissa Williams, John Copen, Mariwan Husni, Liz Goble, Simon Chiu, Nigel Gericke, Michel Farina-Woodbury, Vladimir Badmaev, Hana Raheb, Kristen Terpstra, Joalex Antongiorgi, Yves Bureau, Zack Cernovsky, Jirui Hou, Veronica Sanchez, Marissa Williams, John Copen, Mariwan Husni, Liz Goble

Abstract

Introduction. Converging evidence suggests that PDE-4 (phosphodiesterase subtype 4) plays a crucial role in regulating cognition via the PDE-4-cAMP cascade signaling involving phosphorylated cAMP response element binding protein (CREB). Objective. The primary endpoint was to examine the neurocognitive effects of extract Sceletium tortuosum (Zembrin) and to assess the safety and tolerability of Zembrin in cognitively healthy control subjects. Method. We chose the randomized double-blind placebo-controlled cross-over design in our study. We randomized normal healthy subjects (total n = 21) to receive either 25 mg capsule Zembrin or placebo capsule once daily for 3 weeks, in a randomized placebo-controlled 3-week cross-over design. We administered battery of neuropsychological tests: CNS Vital Signs and Hamilton depression rating scale (HAM-D) at baseline and regular intervals and monitored side effects with treatment emergent adverse events scale. Results. 21 subjects (mean age: 54.6 years ± 6.0 yrs; male/female ratio: 9/12) entered the study. Zembrin at 25 mg daily dosage significantly improved cognitive set flexibility (P < 0.032) and executive function (P < 0.022), compared with the placebo group. Positive changes in mood and sleep were found. Zembrin was well tolerated. Conclusion. The promising cognitive enhancing effects of Zembrin likely implicate the PDE-4-cAMP-CREB cascade, a novel drug target in the potential treatment of early Alzheimer's dementia. This trial is registered with ClinicalTrials.gov NCT01805518.

Figures

Figure 1
Figure 1
Chemical structures of alkaloids isolated from Sceletium tortuosum: mesembrine, mesembrenol, mesembrenone, and mesembranol.
Figure 2
Figure 2
Cognitive effects of Zembrin extract in healthy subjects: Zembrin-treated subjects and placebo-treated subjects were administered CNS Vital SignR battery of neuropsychological tests at baseline and at the end of the treatment period. Cognitive domains were derived from CNS Vital SignR tests.
Figure 3
Figure 3
PDE-4/cAMP/CREB cascade in cognition: bidirectional regulation of cyclicAMP (cAMP) homeostasis is achieved through adenylate cyclase (AD) and phosphodiesterase (PDE) subtype 4. cAMP is activated via either PDE-4 inhibition or hormone/neurotransmitter-stimulated adenylate cyclase (AD). The cAMP-dependent protein kinase A (PKA), once activated through allosteric site, can phosphorylate cAMP response element binding protein (CREB) to form phosphorylated CREB: pCREB. pCREB associates with transcription coactivator, CREB binding protein to initiate transcription and translation. The CREB-mediated gene expression contributes towards long- and short-term memory and synaptic plasticity. Zembrin extract modulates PDE-4 and participates in PDe-4/cAMP/CREB cascade in cognition. The CREB-linked gene expression has been shown to be impaired in AD model. ATP: adenosine triphosphate; cAMP: cyclic adenosine monophosphate; adenylate cyclase: AC; 5′AMP: 5′ adenosine monophosphate; CREB: cAMP response element binding protein; pCREB: phosphorylated CERB; PKA: phosphokinase A.

References

    1. Ljubuncic P., Globerson A., Reznick A. Z. Evidence-based roads to the promotion of health in old age. Journal of Nutrition, Health and Aging. 2008;12(2):139–143. doi: 10.1007/BF02982567.
    1. Nyberg L., Lövdén M., Riklund K., Lindenberger U., Bäckman L. Memory aging and brain maintenance. Trends in Cognitive Sciences. 2012;16(5):292–305. doi: 10.1016/j.tics.2012.04.005.
    1. Daffner K. R. Promoting successful cognitive aging: a comprehensive review. Journal of Alzheimer's Disease. 2010;19(4):1101–1122. doi: 10.3233/JAD-2010-1306.
    1. Hyman B. T., Phelps C. H., Beach T. G., Bigio E. H., Cairns N. J., Carrillo M. C., Dickson D. W., Duyckaerts C., Frosch M. P., Masliah E., Mirra S. S., Nelson P. T., Schneider J. A., Thal D. R., Thies B., Trojanowski J. Q., Vinters H. V., Montine T. J. National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimer's and Dementia. 2012;8(1):1–13. doi: 10.1016/j.jalz.2011.10.007.
    1. Hatashita S., Yamasaki H. Diagnosed mild cognitive impairment due to Alzheimer's disease with PET biomarkers of beta amyloid and neuronal dysfunction. PLoS ONE. 2013;8(6) doi: 10.1371/journal.pone.0066877.e66877
    1. Otaegui-Arrazola A., Amiano P., Elbusto A., Urdaneta E., Martínez-Lage P. Diet, cognition, and Alzheimer's disease: food for thought. European Journal of Nutrition. 2014;53(1):1–23. doi: 10.1007/s00394-013-0561-3.
    1. Laditka J. N., Laditka S. B., Tait E. M., Tsulukidze M. M. Use of dietary supplements for cognitive health: results of a national survey of adults in the United States. The American Journal of Alzheimer's Disease and other Dementias. 2012;27(1):55–64. doi: 10.1177/1533317511435662.
    1. Benito E., Barco A. CREB's control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends in Neurosciences. 2010;33(5):230–240. doi: 10.1016/j.tins.2010.02.001.
    1. Bollen E., Prickaerts J. Phosphodiesterases in neurodegenerative disorders. IUBMB Life. 2012;64(12):965–970. doi: 10.1002/iub.1104.
    1. Li Y.-F., Cheng Y.-F., Huang Y., Conti M., Wilson S. P., O'Donnell J. M., Zhang H.-T. Phosphodiesterase-4D knock-out and RNA interference-mediated knock-down enhance memory and increase hippocampal neurogenesis via increased cAMP signaling. Journal of Neuroscience. 2011;31(1):172–183. doi: 10.1523/JNEUROSCI.5236-10.2011.
    1. Cheng Y.-F., Wang C., Lin H.-B., Li Y.-F., Huang Y., Xu J.-P., Zhang H.-T. Inhibition of phosphodiesterase-4 reverses memory deficits produced by Aβ25-35 or Aβ1-40 peptide in rats. Psychopharmacology. 2010;212(2):181–191. doi: 10.1007/s00213-010-1943-3.
    1. Saura C. A., Valero J. The role of CREB signaling in Alzheimer's disease and other cognitive disorders. Reviews in the Neurosciences. 2011;22(2):153–169. doi: 10.1515/RNS.2011.018.
    1. Blokland A., Menniti F. S., Prickaerts J. PDE Inhibition and cognition enhancement. Expert Opinion on Therapeutic Patents. 2012;22(4):349–354. doi: 10.1517/13543776.2012.674514.
    1. Chung J. H. Metabolic benefits of inhibiting cAMP-PDEs with resveratrol. Adipocyte. 2012;1(4):256–258. doi: 10.4161/adip.21158.
    1. Rivera-Oliver M., Díaz-Ríos M. Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: a review. Life Sciences. 2014;101(1-2):1–9. doi: 10.1016/j.lfs.2014.01.083.
    1. Santos C., Costa J., Santos J., Vaz-Carneiro A., Lunet N. Caffeine intake and dementia: systematic review and meta-analysis. Journal of Alzheimer's Disease. 2010;20(1):S187–S204. doi: 10.3233/JAD-2010-091387.
    1. Eskelinen M. H., Kivipelto M. Caffeine as a protective factor in dementia and Alzheimer's disease. Journal of Alzheimer's Disease. 2010;20(supplement 1):S167–S174. doi: 10.3233/JAD-2010-1404.
    1. Eskelinen M. H., Ngandu T., Tuomilehto J., Soininen H., Kivipelto M. Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. Journal of Alzheimer's Disease. 2009;16(1):85–91. doi: 10.3233/JAD-2009-0920.
    1. Harvey A. L., Young L. C., Viljoen A. M., Gericke N. P. Pharmacological actions of the South African medicinal and functional food plant Sceletium tortuosum and its principal alkaloids. Journal of Ethnopharmacology. 2011;137(3):1124–1129. doi: 10.1016/j.jep.2011.07.035.
    1. Raheb H., Woodbury-Farina Y. B. M., Badmaev V., et al. Translational study of standardized Zembrin extract and mesembrenone targeting PDE-4 (phosphodiesterase subtype for regulation of cognition and mood). Proceedings of International Conference on Bioactive Naturals; July 2012; London, Canada.
    1. Nell H., Siebert M., Chellan P., Gericke N. A randomized, double-blind, parallel-group, placebo-controlled trial of extract Sceletium Tortuosum (Zembrin) in healthy adults. Journal of Alternative and Complementary Medicine. 2013;19(11):898–904. doi: 10.1089/acm.2012.0185.
    1. DSM-IV-TR American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders. 4th. DSM-IV-TR American Psychiatric Association; 2000.
    1. Zimmerman M., Chelminski I., Posternak M. A review of studies of the Hamilton depression rating scale in healthy controls: implications for the definition of remission in treatment studies of depression. Journal of Nervous and Mental Disease. 2004;192(9):595–601. doi: 10.1097/01.nmd.0000138226.22761.39.
    1. Gualtieri C. T., Johnson L. G. Reliability and validity of a computerized neurocognitive test battery, CNS vital signs. Archives of Clinical Neuropsychology. 2006;21(7):623–643. doi: 10.1016/j.acn.2006.05.007.
    1. Martyr A., Clare L. Executive function and activities of daily living in Alzheimer's disease: a correlational meta-analysis. Dementia and Geriatric Cognitive Disorders. 2012;33(2-3):189–203. doi: 10.1159/000338233.
    1. Albert M. S. Changes in cognition. Neurobiology of Aging. 2011;32(supplement 1):S58–S63. doi: 10.1016/j.neurobiolaging.2011.09.010.
    1. Marshall G. A., Rentz D. M., Frey M. T., Locascio J. J., Johnson K. A., Sperling R. A. Executive function and instrumental activities of daily living in mild cognitive impairment and Alzheimer's disease. Alzheimer's and Dementia. 2011;7(3):300–308. doi: 10.1016/j.jalz.2010.04.005.
    1. Clark L. R., Schiehser D. M., Weissberger G. H., Salmon D. P., Delis D. C., Bondi M. W. Specific measures of executive function predict cognitive decline in older adults. Journal of the International Neuropsychological Society. 2012;18(1):118–127. doi: 10.1017/S1355617711001524.
    1. Allain P., Etcharry-Bouyx F., Verny C. Executive functions in clinical and preclinical Alzheimer's disease. Revue Neurologique. 2013;169(10):695–708. doi: 10.1016/j.neurol.2013.07.020.
    1. Braskie M. N., Thompson P. M. Understanding cognitive deficits in alzheimer's disease based on neuroimaging findings. Trends in Cognitive Sciences. 2013;17(10):510–516. doi: 10.1016/j.tics.2013.08.007.
    1. Schroeter M. L., Vogt B., Frisch S., Becker G., Barthel H., Mueller K., Villringer A., Sabri O. Executive deficits are related to the inferior frontal junction in early dementia. Brain. 2012;135(1):201–215. doi: 10.1093/brain/awr311.
    1. Burgin A. B., Magnusson O. T., Singh J., Witte P., Staker B. L., Bjornsson J. M., Thorsteinsdottir M., Hrafnsdottir S., Hagen T., Kiselyov A. S., Stewart L. J., Gurney M. E. Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. Nature Biotechnology. 2010;28(1):63–70. doi: 10.1038/nbt.1598.
    1. Gericke N., Viljoen A. M. Sceletium—a review update. Journal of Ethnopharmacology. 2008;119(3):653–663. doi: 10.1016/j.jep.2008.07.043.
    1. Rutten K., Basile J. L., Prickaerts J., Blokland A., Vivian J. A. Selective PDE inhibitors rolipram and sildenafil improve object retrieval performance in adult cynomolgus macaques. Psychopharmacology. 2008;196(4):643–648. doi: 10.1007/s00213-007-0999-1.
    1. Hansen R. T., III, Zhang H.-T. Senescent-induced dysregulation of cAMP/CREB signaling and correlations with cognitive decline. Brain Research. 2013;1516:93–109. doi: 10.1016/j.brainres.2013.04.033.
    1. Homberg J. R. Serotonin and decision making processes. Neuroscience and Biobehavioral Reviews. 2012;36(1):218–236. doi: 10.1016/j.neubiorev.2011.06.001.
    1. Sheline Y. I., West T., Yarasheski K., Swarm R., Jasielec M. S., Fisher J. R., Ficker W. D., Yan P., Xiong C., Frederiksen C., Grzelak M. V., Chott R., Bateman R. J., Morris J. C., Mintun M. A., Lee J.-M., Cirrito J. R. An antidepressant decreases CSF Aβ production in healthy individuals and in transgenic AD mice. Science Translational Medicine. 2014;6(236) doi: 10.1126/scitranslmed.3008169.236re4
    1. Rodríguez J. J., Noristani H. N., Verkhratsky A. The serotonergic system in ageing and Alzheimer's disease. Progress in Neurobiology. 2012;99(1):15–41. doi: 10.1016/j.pneurobio.2012.06.010.
    1. Terburg D., Syal S., Rosenberger L. A., Heany S., Phillips N., Gericke N., Stein D. J., Van Honk J. Acute effects of sceletium tortuosum (Zembrin), a dual 5-HT reuptake and PDE4 inhibitor, in the human amygdala and its connection to the hypothalamus. Neuropsychopharmacology. 2013;38(13):2708–2716. doi: 10.1038/npp.2013.183.
    1. Vecsey C. G., Baillie G. S., Jaganath D., Havekes R., Daniels A., Wimmer M., Huang T., Brown K. M., Li X.-Y., Descalzi G., Kim S. S., Chen T., Shang Y.-Z., Zhuo M., Houslay M. D., Abel T. Sleep deprivation impairs cAMP signalling in the hippocampus. Nature. 2009;461(7267):1122–1125. doi: 10.1038/nature08488.
    1. Schaefer T. L., Braun A. A., Amos-Kroohs R. M., Williams M. T., Ostertag E., Vorhees C. V. A new model of Pde4d deficiency: genetic knock-down of PDE4D enzyme in rats produces an antidepressant phenotype without spatial cognitive effects. Genes, Brain and Behavior. 2012;11(5):614–622. doi: 10.1111/j.1601-183X.2012.00796.x.

Source: PubMed

3
購読する