COVID-19 Related Coagulopathy: A Distinct Entity?

Benjamin Marchandot, Laurent Sattler, Laurence Jesel, Kensuke Matsushita, Valerie Schini-Kerth, Lelia Grunebaum, Olivier Morel, Benjamin Marchandot, Laurent Sattler, Laurence Jesel, Kensuke Matsushita, Valerie Schini-Kerth, Lelia Grunebaum, Olivier Morel

Abstract

The coronavirus disease 2019 (COVID-19) pandemic has impacted healthcare communities across the globe on an unprecedented scale. Patients have had diverse clinical outcomes, but those developing COVID-19-related coagulopathy have shown a disproportionately worse outcome. This narrative review summarizes current evidence regarding the epidemiology, clinical features, known and presumed pathophysiology-based models, and treatment guidance regarding COVID-19 coagulopathy.

Keywords: COVID-19; antiphospholipid antibodies; coronavirus disease 2019; endothelium; hemostasis; microparticles; thrombosis.

Conflict of interest statement

All the authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation. All authors have read and approved the submission of the manuscript. The manuscript has not been published and is not being considered for publication elsewhere in whole or part in any language. The authors disclose any financial associations that might pose a conflict of interest in connection with the submitted article.

Figures

Figure 1
Figure 1
Conceptual figure highlighting major key mechanisms for COVID-19 coagulopathy and future directions in research.

References

    1. Chan J.F., Yuan S., Kok K.H., To K.K., Chu H., Yang J., Xing F., Liu J., Yip C.C., Poon R., et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet. 2020;395:514–523. doi: 10.1016/S0140-6736(20)30154-9.
    1. Dong E., Du H., Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020;20:533–534. doi: 10.1016/S1473-3099(20)30120-1.
    1. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [(accessed on 28 April 2020)]; Available online: .
    1. Matsushita K., Marchandot B., Jesel L., Ohlmann P., Morel O. Impact of COVID-19 on Cardiovascular System: A Review. J. Clin. Med. 2020;9:1407. doi: 10.3390/jcm9051407.
    1. Shi Y., Wang Y., Shao C., Huang J., Gan J., Huang X., Bucci E., Piacentini M., Ippolito G., Melino G. COVID-19 infection: The perspectives on immune responses. Cell Death Differ. 2020;27:1451–1454. doi: 10.1038/s41418-020-0530-3.
    1. Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X., Liu L., Shan H., Lei C.L., Hui D.S., et al. China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020;382:1708–1720. doi: 10.1056/NEJMoa2002032.
    1. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020;18:844–847. doi: 10.1111/jth.14768.
    1. Susen S., Tacquard C.A., Godon A., Mansour A., Garrigue D., Nguyen P., Godier A., Testa S., Albaladejo P., Gruel Y., on behalf of the GIHP and GFHT Group Diagnosis and Management of Heparin-Induced Thrombocytopenia: Proposals from the French Working Group on Perioperative Haemostasis (GIHP) and the French Study Group on Thrombosis and Haemostasis (GFHT), in Collaboration with the French Society for Anesthesia and Intensive Care (SFAR) [(accessed on 28 April 2020)]; Available online: .
    1. Shanghai Clinical Treatment Expert Group for COVID-19 Comprehensive treatment and management of coronavirus disease 2019: Expert consensus statement from Shanghai (in Chinese) Chin. J. Infect. 2020;38 published online ahead of print.
    1. Hunt B., Retter A., McClintock C. Practical Guidance for the Prevention of Thrombosis and Management of Coagulopathy and Disseminated Intravascular Coagulation of Patients Infected with COVID-19. [(accessed on 28 April 2020)]; Available online: .
    1. Marietta M., Ageno W., Artoni A., De Candia E., Gresele P., Marchetti M., Marcucci R., Tripodi A. COVID-19 and haemostasis: A position paper from Italian Society on Thrombosis and Haemostasis (SISET) Blood Transfus. 2020 doi: 10.2450/2020.0083-20.
    1. Casini A., Alberio L., Angelillo-Scherrer A., Fontana P., Gerber B., Graf L., Hegemann I., Korte W., Kremer Hovinga J., Lecompte T., et al. Thromboprophylaxis and laboratory monitoring for in-hospital patients with Covid-19-a Swiss consensus statement by the Working Party Hemostasis. Swiss Med. Wkly. 2020;150:w20247. doi: 10.4414/smw.2020.20247.
    1. Thachil J., Tang N., Gando S., Falanga A., Cattaneo M., Levi M., Clark C., Iba T. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J. Thromb. Haemost. 2020;18:1023–1026. doi: 10.1111/jth.14810.
    1. Bikdeli B., Madhavan M.V., Jimenez D., Chuich T., Dreyfus I., Driggin E., Nigoghossian C.D., Ageno W., Madjid M., Guo Y., et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-up. J. Am. Coll. Cardiol. 2020 doi: 10.1016/j.jacc.2020.04.031.
    1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020;382:727–733. doi: 10.1056/NEJMoa2001017.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Driggin E., Madhavan M.V., Bikdeli B., Chuich T., Laracy J., Bondi-Zoccai G., Brown T.S., Nigoghossian C.D., Zidar D.A., Haythe J., et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the Coronavirus Disease 2019 (COVID-19) Pandemic. J. Am. Coll. Cardiol. 2020;75:2352–2371. doi: 10.1016/j.jacc.2020.03.031.
    1. Ge X.Y., Li J.L., Yang X., Chmura A.A., Zhu G., Epstein J.H., Mazet J.K., Hu B., Zhang W., Peng C., et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013;503:535–538. doi: 10.1038/nature12711.
    1. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7.
    1. Hoffmann M., Kleine-Weber H., Schroeder S., Kruger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271–280.e8. doi: 10.1016/j.cell.2020.02.052.
    1. Zhang H., Penninger J.M., Li Y., Zhong N., Slutsky A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020 doi: 10.1007/s00134-020-05985-9.
    1. Xu H., Zhong L., Deng J., Peng J., Dan H., Zeng X., Li T., Chen Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci. 2020;12:1–5. doi: 10.1038/s41368-020-0074-x.
    1. Chen L., Li X., Chen M., Feng Y., Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc. Res. 2020;116:1097–1100. doi: 10.1093/cvr/cvaa078.
    1. Centers for Disease Control and Prevention Interim, U.S. Guidance for Risk Assessment and Public Health Management of Healthcare Personnel with Potential Exposure in a Healthcare Setting to Patients with Coronavirus Disease (COVID-19) [(accessed on 9 April 2020)]; Available online: .
    1. Zou L., Ruan F., Huang M., Liang L., Huang H., Hong Z., Yu J., Kang M., Song Y., Xia J., et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N. Engl. J. Med. 2020;382:1177–1179. doi: 10.1056/NEJMc2001737.
    1. Peiris J.S., Chu C.M., Cheng V.C., Chan K.S., Hung I.F., Poon L.L., Law K.l., Tang B.S., Hon T.Y., Chan C.S., et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study. Lancet. 2003;361:1767–1772. doi: 10.1016/S0140-6736(03)13412-5.
    1. Wu Z., McGoogan J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239. doi: 10.1001/jama.2020.2648.
    1. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., Xiang J., Wang Y., Song B., Gu X., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020;395:1054–1062. doi: 10.1016/S0140-6736(20)30566-3.
    1. Wu C., Chen X., Cai Y., Xia J., Zhou X., Xu S., Huang H., Zhang L., Zhou X., Du C., et al. Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020 doi: 10.1001/jamainternmed.2020.0994.
    1. Henry B.M., De Oliveira M.H.S., Benoit S., Plebani M., Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chem. Lab. Med. 2020 doi: 10.1515/cclm-2020-0369.
    1. Deng Y., Liu W., Liu K., Fang Y.-Y., Shang J., Zhou L., Wang K., Leng F., Wei S., Chen L., et al. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 (COVID-19) in Wuhan, China: A retrospective study. Chin. Med. J. 2020 doi: 10.1097/CM9.0000000000000824.
    1. Guo T., Fan Y., Chen M., Wu X., Zhang L., He T., Wang H., Wan J., Wang X., Lu Z. Cardiovascular Implications of Fatal Outcomes of Patients with Coronavirus Disease 2019 (COVID-19) JAMA Cardiol. 2020 doi: 10.1001/jamacardio.2020.1017.
    1. Terpos E., Ntanasis-Stathopoulos I., Elalamy I., Kastritis E., Sergentanis T.N., Politou M., Psaltopoulou T., Gerotziafas G., Dimopoulos M.A. Hematological findings and complications of COVID -19. Am. J. Hematol. 2020 doi: 10.1002/ajh.25829.
    1. Gando S., Levi M., Toh C.-H. Disseminated intravascular coagulation. Nat. Rev. Dis. Prim. 2016;2:16038. doi: 10.1038/nrdp.2016.38.
    1. Wada H., Matsumoto T., Yamashita Y. Diagnosis and treatment of disseminated intravascular coagulation (DIC) according to four DIC guidelines. J. Intensiv. Care. 2014;2:15. doi: 10.1186/2052-0492-2-15.
    1. Bick R.L. Disseminated intravascular coagulation: A review of etiology, pathophysiology, diagnosis, and management: Guidelines for care. Clin. Appl. Thromb. Hemost. 2002;8:1–31. doi: 10.1177/107602960200800103.
    1. Lillicrap D. Disseminated intravascular coagulation in patients with 2019-nCoV pneumonia. J. Thromb. Haemost. 2020;18:786–787. doi: 10.1111/jth.14781.
    1. Wong R.S., Wu A., To K.F., Lee N., Lam C.W., Wong C.K., Chan P.K., Ng M.H., Yu L.M., Hui D.S., et al. Haematological manifestations in patients with severe acute respiratory syndrome: Retrospective analysis. BMJ. 2003;326:1358–1362. doi: 10.1136/bmj.326.7403.1358.
    1. Yin S., Huang M., Li D., Tang N. Difference of coagulation features between severe pneumonia induced by SARS-CoV2 and non-SARS-CoV2. J. Thromb. Thrombolysis. 2020:1–4. doi: 10.1007/s11239-020-02105-8.
    1. Levi M., Van Der Poll T. Coagulation and sepsis. Thromb. Res. 2017;149:38–44. doi: 10.1016/j.thromres.2016.11.007.
    1. Iba T., Levy J.H., Raj A., Warkentin T.E. Advance in the Management of Sepsis-Induced Coagulopathy and Disseminated Intravascular Coagulation. J. Clin. Med. 2019;8:728. doi: 10.3390/jcm8050728.
    1. Iba T., Levy J.H., Warkentin T.E., Thachil J., van der Poll T., Levi M. Scientific and Standardization Committee on DIC, and the Scientific and Standardization Committee on Perioperative and Critical Care of the International Society on Thrombosis and Haemostasis Diagnosis and management of sepsis-induced coagulopathy and disseminated intravascular coagulation. J. Thromb. Haemost. 2019;17:1989–1994. doi: 10.1111/jth.14578.
    1. Gupta N., Zhao Y.-Y., Evans C.E. The stimulation of thrombosis by hypoxia. Thromb. Res. 2019;181:77–83. doi: 10.1016/j.thromres.2019.07.013.
    1. Luo W., Yu H., Gou J., Li X., Sun Y., Li J., Liu L. Clinical Pathology of Critical Patient with Novel Coronavirus Pneumonia (COVID-19) Preprints. 2020;2020:2020020407.
    1. Dolhnikoff M., Duarte-Neto A.N., de Almeida Monteiro R.A., Ferraz Da Silva L.F., Pierre de Oliveira E., Nascimento Saldiva P.H., Mauad T., Marcia Negri E. Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19. J. Thromb. Haemost. 2020 doi: 10.1111/jth.14844.
    1. Marongiu F., Grandone E., Barcellona D. Pulmonary thrombosis in 2019-nCoV pneumonia? J. Thromb. Haemost. 2020 doi: 10.1111/jth.14818.
    1. Zhou X., Li Y., Yang Q. Antiplatelet Therapy Following Percutaneous Coronary Intervention in Patients Complicated by COVID-19: Implications from Clinical Features to Pathological Findings. Circulation. 2020 doi: 10.1161/CIRCULATIONAHA.120.046988.
    1. Koupenova M., Clancy L., Corkrey H.A., Freedman J.E. Circulating Platelets as Mediators of Immunity, Inflammation, and Thrombosis. Circ. Res. 2018;122:337–351. doi: 10.1161/CIRCRESAHA.117.310795.
    1. Zhang C., Shi L., Wang F.S. Liver injury in COVID-19: Management and challenges. Lancet Gastroenterol. Hepatol. 2020;5:428–430. doi: 10.1016/S2468-1253(20)30057-1.
    1. Zhang Y., Xiao M., Zhang S., Xia P., Cao W., Jiang W., Chen H., Ding X., Zhao H., Zhang H., et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N. Engl. J. Med. 2020;382:e38. doi: 10.1056/NEJMc2007575.
    1. Zulfiqar A.-A., Lorenzo-Villalba N., Hassler P., Andres E. Immune Thrombocytopenic Purpura in a Patient with Covid-19. N. Engl. J. Med. 2020;382:e43. doi: 10.1056/NEJMc2010472.
    1. Fox E.A., Kahn S.R. The relationship between inflammation and venous thrombosis. A systematic review of clinical studies. Thromb. Haemost. 2005;94:362–365. doi: 10.1160/TH05-04-0266.
    1. Libby P., Loscalzo J., Ridker P.M., Farkouh M.E., Hsue P.Y., Fuster V., Hasan A.A., Amar S. Inflammation, Immunity, and Infection in Atherothrombosis: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2018;72:2071–2081. doi: 10.1016/j.jacc.2018.08.1043.
    1. Wong C.K., Lam C.W., Wu A.K.L., Ip W.K., Lee N., Chan I.H.S., Lit L.C.W., Hui D.S., Chan M.H.M., Chung S.S.C., et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol. 2004;136:95–103. doi: 10.1111/j.1365-2249.2004.02415.x.
    1. Min C.-K., Cheon S., Ha N.-Y., Sohn K.M., Kim Y., Aigerim A., Shin H.M., Choi J.-Y., Inn K.-S., Kim J.H., et al. Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity. Sci. Rep. 2016;6:25359. doi: 10.1038/srep25359.
    1. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017;39:529–539. doi: 10.1007/s00281-017-0629-x.
    1. Jackson S.P., Darbousset R., Schoenwaelder S.M. Thromboinflammation: Challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood. 2019;133:906–918. doi: 10.1182/blood-2018-11-882993.
    1. Libby P. The Heart in COVID19: Primary Target or Secondary Bystander? JACC Basic Transl. Sci. 2020 doi: 10.1016/j.jacbts.2020.04.001.
    1. Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y., Xie C., Ma K., Shang K., Wang W., et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 2020 doi: 10.2139/ssrn.3541136.
    1. Liu J., Li S., Liu J., Liang B., Wang X., Wang H., Li W., Tong Q., Yi J., Zhao L., et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. medRxiv. 2020 doi: 10.2139/ssrn.3539682. preprint.
    1. Clerkin K.J., Fried J.A., Raikhelkar J., Sayer G., Griffin J.M., Masoumi A., Jain S.S., Burkhoff D., Kumaraiah D., Rabbani L., et al. Coronavirus Disease 2019 (COVID-19) and Cardiovascular Disease. Circulation. 2020;141:1648–1655. doi: 10.1161/CIRCULATIONAHA.120.046941.
    1. Xiong T.-Y., Redwood S., Prendergast B., Chen M. Coronaviruses and the cardiovascular system: Acute and long-term implications. Eur. Hear J. 2020;41:1798–1800. doi: 10.1093/eurheartj/ehaa231.
    1. Mehta P., Mc Auley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J. COVID-19: Considercytokinestorm syndromes and immunosuppression. Lancet. 2020 doi: 10.1016/S0140-6736(20)30628-0.
    1. Siddiqi H.K., Mehra M.R. COVID-19 illness in native and immunosuppressed states: A clinical–therapeutic staging proposal. J. Hear Lung Transpl. 2020;39:405–407. doi: 10.1016/j.healun.2020.03.012.
    1. Ramacciotti E., Agati L.B., Aguiar V.C.R., Wolosker N., Guerra J.C., De Almeida R.P., Alves J.C., Lopes R.D., Wakefield T.W., Comerota A.J., et al. Zika and Chikungunya Virus and Risk for Venous Thromboembolism. Clin. Appl. Thromb. Hemost. 2019;25 doi: 10.1177/1076029618821184.
    1. Smither S.J., O’Brien L.M., Eastaugh L., Woolley T., Lever M., Fletcher T., Parmar K., Hunt B.J., Watts S., Kirkman E., et al. Haemostatic Changes in Five Patients Infected with Ebola Virus. Viruses. 2019;11:647. doi: 10.3390/v11070647.
    1. Tisoncik J.R., Korth M.J., Simmons C.P., Farrar J., Martin T.R., Katze M.G. Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev. 2012;76:16–32. doi: 10.1128/MMBR.05015-11.
    1. Sardu C., Gambardella J., Morelli M.B., Wang X., Marfella R., Santulli G. Is COVID-19 an Endothelial Disease? Clinical and Basic Evidence. Preprints. 2020:2020040204. doi: 10.20944/preprints202004.0204.v1.
    1. Escher R., Breakey N., Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb. Res. 2020;190:62. doi: 10.1016/j.thromres.2020.04.014.
    1. Varga Z., Flammer A.J., Steiger P., Haberecker M., Andermatt R., Zinkernagel A.S., Mehra M.R., Schuepbach R.A., Ruschitzka F., Moch H. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395:1417–1418. doi: 10.1016/S0140-6736(20)30937-5.
    1. Hamming I., Timens W., Bulthuis M., Lely A.T., Navis G., Van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004;203:631–637. doi: 10.1002/path.1570.
    1. Song J., Hu B., Qu H., Wang L., Huang X., Li M., Zhang M. Upregulation of angiotensin converting enzyme 2 by shear stress reduced inflammation and proliferation in vascular endothelial cells. Biochem. Biophys. Res. Commun. 2020 doi: 10.1016/j.bbrc.2020.02.151.
    1. Takei Y., Yamada M., Saito K., Kameyama Y., Sugiura H., Makiguchi T., Fujino N., Koarai A., Toyama H., Saito K., et al. Increase in circulating ACE-positive endothelial microparticles during acute lung injury. Eur. Respir. J. 2019;54:1801188. doi: 10.1183/13993003.01188-2018.
    1. Grasselli G., Zangrillo A., Zanella A., Antonelli M., Cabrini L., Castelli A., Cereda D., Coluccello A., Foti G., Fumagalli R., et al. COVID-19 Lombardy ICU Network. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323:1574. doi: 10.1001/jama.2020.5394.
    1. Xie J., Covassin N., Fan Z., Singh P., Gao W., Li G., Kara T., Somers V.K. Association Between Hypoxemia and Mortality in Patients With COVID-19. Mayo Clin. Proc. 2020 doi: 10.1016/j.mayocp.2020.04.006.
    1. Mo P., Xing Y., Xiao Y., Deng L., Zhao Q., Wang H., Xiong Y., Cheng Z., Gao S., Liang K., et al. Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Clin. Infect. Dis. 2020 doi: 10.1093/cid/ciaa270.
    1. Gattinoni L., Chiumello D., Rossi S. COVID-19 pneumonia: ARDS or not? Crit. Care. 2020;24:154. doi: 10.1186/s13054-020-02880-z.
    1. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., Zhao P., Liu H., Zhu L., et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8:420–422. doi: 10.1016/S2213-2600(20)30076-X.
    1. Fox S.E., Akmatbekov A., Harbert J.L., Li G., Quincy Brown J., Vander Heide R.S. Pulmonary and Cardiac Pathology in Covid-19: The First Autopsy Series from New Orleans. medRxiv. 2020 doi: 10.1101/2020.04.06.20050575.
    1. Ranucci M., Ballotta A., Di Dedda U., Bayshnikova E., Dei Poli M., Resta M., Falco M., Albano M., Albano G., Menicanti L. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J. Thromb. Haemost. 2020 doi: 10.1111/jth.14854.
    1. Chong P.Y., Chui P., Ling A.E., Franks T.J., Tai D.Y., Leo Y.S., Kaw G.J., Wansaicheong G., Chan K.P., Ean Oon L.L., et al. Analysis of deaths during the severe acute respiratory syndrome (SARS) epidemic in Singapore: Challenges in determining a SARS diagnosis. Arch. Pathol. Lab. Med. 2004;128:195–204.
    1. Obi A.T., Tignanelli C.J., Jacobs B.N., Arya S., Park P.K., Wakefield T.W., Henke P.K., Napolitano L.M. Empirical systemic anticoagulation is associated with decreased venous thromboembolism in critically ill influenza A H1N1 acute respiratory distress syndrome patients. J. Vasc. Surg. Venous Lymphat. Disord. 2019;7:317–324. doi: 10.1016/j.jvsv.2018.08.010.
    1. Wang T., Chen R., Liu C., Liang W., Guan W., Tang R., Tang C., Zhang N., Zhong N., Li S. Attention should be paid to venous thromboembolism prophylaxis in the management of COVID-19. Lancet Haematol. 2020;7:e362–e363. doi: 10.1016/S2352-3026(20)30109-5.
    1. Zhang L., Zhu F., Xie L., Wang C., Wang J., Chen R., Jia P., Guan H.Q., Peng L., Chen Y., et al. Clinical characteristics of COVID-19-infected cancer patients: A retrospective case study in three hospitals within Wuhan, China. Ann. Oncol. 2020 doi: 10.1016/j.annonc.2020.03.296.
    1. Danzi G.B., Loffi M., Galeazzi G., Gherbesi E. Acute pulmonary embolism and COVID-19 pneumonia: A random association? Eur. Hear. J. 2020;41:1858. doi: 10.1093/eurheartj/ehaa254.
    1. Xie Y., Wang X., Yang P., Zhang S. COVID-19 Complicated by Acute Pulmonary Embolism. Radiol. Cardiothorac. Imaging. 2020;2:e200067. doi: 10.1148/ryct.2020200067.
    1. Chen J., Wang X., Zhang S., Liu B., Wu X., Wang Y., Wang X., Yang M., Sun J., Xie Y. Findings of Acute Pulmonary Embolism in COVID-19 Patients. SSRN Electron. J. 2020 doi: 10.2139/ssrn.3548771.
    1. Cui S., Chen S., Li X., Liu S., Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J. Thromb. Haemost. 2020 doi: 10.1111/jth.14830.
    1. Klok F.A., Kruip M., Van Der Meer N., Arbous M.S., Gommers D., Kant K., Kaptein F., Van Paassen J., Stals M., Huisman M., et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020 doi: 10.1016/j.thromres.2020.04.013.
    1. Helms J., Tacquard C., Severac F., Leonard-Lorant I., Ohana M., Delabranche X., Merdji H., Clere-Jehl R., Schenck M., Fagot Gandet F., et al. High risk of thrombosis in patients in severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensiv. Care Med. 2020:1–10. doi: 10.1007/s00134-020-06062-x.
    1. Wada H., Thachil J., Di Nisio M., Mathew P., Kurosawa S., Gando S., Kim H., Nielsen J., Dempfle C.-E., Levi M., et al. Guidance for diagnosis and treatment of DIC from harmonization of the recommendations from three guidelines. The Scientific Standardization Committee on DIC of the International Society on Thrombosis Haemostasis. J. Thromb. Haemost. 2013;11:761–767. doi: 10.1111/jth.12155.
    1. Tang N., Bai H., Chen X., Gong J., Li D., Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 2020;18:1094–1099. doi: 10.1111/jth.14817.
    1. Alexander G.C., Qato D.M. Ensuring Access to Medications in the US During the COVID-19 Pandemic. JAMA. 2020 doi: 10.1001/jama.2020.6016.
    1. Poterucha T.J., Libby P., Goldhaber S.Z. More than an anticoagulant: Do heparins have direct anti-inflammatory effects? Thromb. Haemost. 2017;117:437–444. doi: 10.1160/TH16-08-0620.
    1. Shi C., Wang C., Wang H., Yang C., Cai F., Zeng F., Cheng F., Liu Y., Zhou T., Deng B., et al. The potential of low molecular weight heparin to mitigate cytokine storm in severe COVID-19 patients: A retrospective clinical study. medRxiv. 2020 doi: 10.1101/2020.03.28.20046144.
    1. Shukla D., Spear P.G. Herpesviruses and heparan sulfate: An intimate relationship in aid of viral entry. J. Clin. Investig. 2001;108:503–510. doi: 10.1172/JCI200113799.
    1. Ghezzi S., Cooper L., Rubio A., Pagani I., Capobianchi M.R., Ippolito G., Pelletier J., Meneghetti M.C.Z., Lima M.A., Skidmore M.A., et al. Heparin prevents Zika virus induced-cytopathic effects in human neural progenitor cells. Antivir. Res. 2017;140:13–17. doi: 10.1016/j.antiviral.2016.12.023.
    1. Sanders J.M., Monogue M.L., Jodlowski T.Z., Cutrell J.B. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19) A Review. JAMA. 2020 doi: 10.1001/jama.2020.6019.
    1. Thachil J. The versatile heparin in COVID-19. J. Thromb. Haemost. 2020;18:1020–1022. doi: 10.1111/jth.14821.
    1. Gibson C.M., Spyropoulos A.C., Cohen A.T., Hull R.D., Goldhaber S.Z., Yusen R.D., Hernandez A.F., Korjian S., Daaboul Y., Gold A., et al. The IMPROVEDD VTE risk score: Incorporation of D-dimer into the IMPROVE score to improve venous thromboembolism risk stratification. TH Open. 2017;1:e56–e65. doi: 10.1055/s-0037-1603929.
    1. Cohen A.T., Alikhan R., Arcelus J., Bergmann J.-F., Haas S., Merli G.J., Spyropoulos A.C., Tapson V.F., Turpie A.G.G. Assessment of venous thromboembolism risk and the benefits of thromboprophylaxis in medical patients. Thromb. Haemost. 2005;94:750–759. doi: 10.1160/TH05-06-0385.
    1. Cohen A.T., Harrington R.A., Goldhaber S.Z., Hull R.D., Wiens B.L., Gold A., Hernandez A.F., Gibson C.M. Extended Thromboprophylaxis with Betrixaban in Acutely Ill Medical Patients. N. Engl. J. Med. 2016;375:534–544. doi: 10.1056/NEJMoa1601747.
    1. Goldhaber S.Z., Leizorovicz A., Kakkar A.K., Haas S., Merli G., Knabb R.M., Weitz J.I. Apixaban versus enoxaparin for thromboprophylaxis in medically ill patients. N. Engl. J. Med. 2011;365:2167–2177. doi: 10.1056/NEJMoa1110899.
    1. Spyropoulos A.C., Ageno W., Albers G.W., Elliott C.G., Halperin J.L., Hiatt W.R., Maynard G.A., Steg P.G., Weitz J.I., Suh E., et al. Rivaroxaban for Thromboprophylaxis after Hospitalization for Medical Illness. N. Engl. J. Med. 2018;379:1118–1127. doi: 10.1056/NEJMoa1805090.
    1. Wang J., Hajizadeh N., Moore E.E., McIntyre R.C., Moore P.K., Veress L.A., Yaffe M.B., Moore H.B., Barrett C.D. Tissue Plasminogen Activator (tPA) Treatment for COVID-19 Associated Acute Respiratory Distress Syndrome (ARDS): A Case Series. J. Thromb. Haemost. 2020 doi: 10.1111/jth.14828.
    1. Lighter J., Phillips M., Hochman S., Sterling S., Johnson D., Francois F., Stachel A. Obesity in patients younger than 60 years is a risk factor for Covid-19 hospital admission. Clin. Infect. Dis. 2020:ciaa415. doi: 10.1093/cid/ciaa415.
    1. Simonnet A., Chetboun M., Poissy J., Raverdy V., Noulette J., Duhamel A., Labreuche J., Mathieu D., Pattou F., Jourdain M., et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obsity. 2020 doi: 10.1002/oby.22831.
    1. Barrasa H., Rello J., Tejada S., Martín A., Balziskueta G., Vinuesa C., Fernández-Miret B., Villagra A., Vallejo A., Sebastián A.S., et al. Alava COVID19 Study Investigators. SARS-Cov-2 in Spanish Intensive Care: Early Experience with 15-day Survival in Vitoria. Anaesth. Crit. Care Pain Med. 2020 doi: 10.1016/j.accpm.2020.04.001.
    1. Venkata C., Sampathkumar P., Afessa B. Hospitalized patients with 2009 H1N1 influenza infection: The Mayo Clinic experience. Mayo Clin. Proc. 2010;85:798–805. doi: 10.4065/mcp.2010.0166.
    1. Morel O., Luca F., Grunebaum L., Jesel L., Meyer N., Desprez D., Robert S., Dignat-George F., Toti F., Simon C., et al. Short-term very low-calorie diet in obese females improves the haemostatic balance through the reduction of leptin levels, PAI-1 concentrations and a diminished release of platelet and leukocyte-derived microparticles. Int. J. Obes. 2011;35:1479–1486. doi: 10.1038/ijo.2011.19.
    1. Badimon L., Bugiardini R., Cenko E., Cubedo J., Dorobantu M., Duncker D.J., Estruch R., Miličić D., Tousoulis D., Vasiljevic Z., et al. Position Paper of the European Society of Cardiology working group of coronary pathophysiology and microcirculation: Obesity and heart disease. Eur. Hear J. 2017;38:1951–1958. doi: 10.1093/eurheartj/ehx181.
    1. Caër C., Rouault C., Le Roy T., Poitou C., Aron-Wisnewsky J., Torcivia A., Bichet J.-C., Clément K., Guerre-Millo M., André S. Immune cell-derived cytokines contribute to obesity related inflammation, fibrogenesis and metabolic deregulation in human adipose tissue. Sci. Rep. 2017;7:3000. doi: 10.1038/s41598-017-02660-w.
    1. Morel O., Jesel L., Freyssinet J.-M., Toti F. Cellular mechanisms underlying the formation of circulating microparticles. Arter. Thromb. Vasc. Biol. 2011;31:15–26. doi: 10.1161/ATVBAHA.109.200956.
    1. Amabile N., Cheng S., Renard J.M., Larson M.G., Ghorbani A., McCabe E., Griffin G., Guerin C., Ho J.E., Shaw S.Y., et al. Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study. Eur. Hear J. 2014;35:2972–2979. doi: 10.1093/eurheartj/ehu153.
    1. Abbas M., Jesel L., Auger C., Amoura L.K., Messas N., Manin G., Rumig C., León-González A.J., Ribeiro T.P., Silva G.C., et al. Endothelial Microparticles From Acute Coronary Syndrome Patients Induce Premature Coronary Artery Endothelial Cell Aging and Thrombogenicity: Role of the Ang II/AT1 Receptor/NADPH Oxidase-Mediated Activation of MAPKs and PI3-Kinase Pathways. Circulation. 2017;135:280–296. doi: 10.1161/CIRCULATIONAHA.116.017513.
    1. Mack M., Kleinschmidt A., Brühl H., Klier C., Nelson P.J., Cihak J., Plachý J., Stangassinger M., Erfle V., Schlöndorff D. Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: A mechanism for cellular human immunodeficiency virus 1 infection. Nat. Med. 2000;6:769–775. doi: 10.1038/77498.
    1. Wang J., Chen S., Bihl J. Exosome-Mediated Transfer of ACE2 (Angiotensin-Converting Enzyme 2) from Endothelial Progenitor Cells Promotes Survival and Function of Endothelial Cell. Oxidative Med. Cell. Longev. 2020;2020:4213541–11. doi: 10.1155/2020/4213541.
    1. Lóczi L., Kappelmayer J., Tarr T., Bagoly Z. Antiphospholipid syndrome and the risk of myocardial infarction: Current evidence and uncertainties. Kardiol. Polska. 2019;78:6–14. doi: 10.33963/KP.15090.
    1. Mobarrez F., Gunnarsson I., Svenungsson E. Altered β2 glycoprotein I expression on microparticles in the presence of antiphospholipid antibodies. J. Thromb. Haemost. 2017;15:1799–1806. doi: 10.1111/jth.13765.
    1. Nomijra S., Komiyama Y., Kokawa T., Takahashi H., Koike T., Matsuura E. Binding of beta2-glycoprotein I to platelet-derived microparticles. Br. J. Haematol. 2008;85:639. doi: 10.1111/j.1365-2141.1993.tb03371.x.
    1. Gralinski L.E., Sheahan T.P., Morrison T.E., Menachery V.D., Jensen K., Leist S.R., Whitmore A., Heise M.T., Baric R.S., Enjuanes L., et al. Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis. mBio. 2018;9 doi: 10.1128/mBio.01753-18.
    1. Campbell C.M., Kahwash R. Will Complement Inhibition be the New Target in Treating COVID-19 Related Systemic Thrombosis? Circulation. 2020 doi: 10.1161/CIRCULATIONAHA.120.047419.

Source: PubMed

3
購読する