United States Pharmacopeia (USP) comprehensive review of the hepatotoxicity of green tea extracts

Hellen A Oketch-Rabah, Amy L Roe, Cynthia V Rider, Herbert L Bonkovsky, Gabriel I Giancaspro, Victor Navarro, Mary F Paine, Joseph M Betz, Robin J Marles, Steven Casper, Bill Gurley, Scott A Jordan, Kan He, Mahendra P Kapoor, Theertham P Rao, Averell H Sherker, Robert J Fontana, Simona Rossi, Raj Vuppalanchi, Leonard B Seeff, Andrew Stolz, Jawad Ahmad, Christopher Koh, Jose Serrano, Tieraona Low Dog, Richard Ko, Hellen A Oketch-Rabah, Amy L Roe, Cynthia V Rider, Herbert L Bonkovsky, Gabriel I Giancaspro, Victor Navarro, Mary F Paine, Joseph M Betz, Robin J Marles, Steven Casper, Bill Gurley, Scott A Jordan, Kan He, Mahendra P Kapoor, Theertham P Rao, Averell H Sherker, Robert J Fontana, Simona Rossi, Raj Vuppalanchi, Leonard B Seeff, Andrew Stolz, Jawad Ahmad, Christopher Koh, Jose Serrano, Tieraona Low Dog, Richard Ko

Abstract

As part of the United States Pharmacopeia's ongoing review of dietary supplement safety data, a new comprehensive systematic review on green tea extracts (GTE) has been completed. GTEs may contain hepatotoxic solvent residues, pesticide residues, pyrrolizidine alkaloids and elemental impurities, but no evidence of their involvement in GTE-induced liver injury was found during this review. GTE catechin profiles vary significantly with manufacturing processes. Animal and human data indicate that repeated oral administration of bolus doses of GTE during fasting significantly increases bioavailability of catechins, specifically EGCG, possibly involving saturation of first-pass elimination mechanisms. Toxicological studies show a hepatocellular pattern of liver injury. Published adverse event case reports associate hepatotoxicity with EGCG intake amounts from 140 mg to ∼1000 mg/day and substantial inter-individual variability in susceptibility, possibly due to genetic factors. Based on these findings, USP included a cautionary labeling requirement in its Powdered Decaffeinated Green Tea Extract monograph that reads as follows: "Do not take on an empty stomach. Take with food. Do not use if you have a liver problem and discontinue use and consult a healthcare practitioner if you develop symptoms of liver trouble, such as abdominal pain, dark urine, or jaundice (yellowing of the skin or eyes)."

Keywords: ADME, Absorption, distribution, metabolism, and excretion; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; AUC, area under the curve; Bw, body weight; C, Catechin; CAM, causality assessment method; CG, (+)‐catechin‐3‐gallate; CIH, Concanavalin A-induced hepatitis; CMC, chemistry, manufacturing, and controls; COMT, catechol‐O‐methyltransferase; Camellia sinensis; ConA, Concanavalin A; DILI, drug‐induced liver injury; DILIN, Drug‐Induced Liver Injury Network; DO, Diversity Outbred; DS, Dietary Supplement; DSAE, JS3 USP Dietary Supplements Admission Evaluations Joint Standard-Setting Subcommittee; Dietary supplements; EC, (–)‐epicatechin; ECG, (‐)‐epicatechin‐3‐gallate; EFSA, European Food Safety Authority; EGC, (–)‐epigallocatechin; EGCG, (–)‐epigallocatechin‐3‐gallate; FDA, United States Food and Drug Administration; GC, (+)‐gallocatechin; GCG, (–)‐gallocatechin‐3‐gallate; GT(E), green tea or green tea extract; GT, green tea; GTE, green tea extract; GTEH, EP Green Tea Extract Hepatotoxicity Expert Panel; Green tea; Green tea extract; HDS, herbal dietary supplement; HPMC, Hydroxypropyl methylcellulose; Hepatotoxicity; LD50, lethal dose, median; LFT(s), liver function test(s); LT(s), Liver test(s); Liver injury; MGTT, Minnesota Green Tea Trial; MIDS, multi-ingredient dietary supplement; MRL, maximum residue limit; NAA, N-acetyl aspartate; NIDDK, National Institute of Diabetes and Digestive and Kidney Diseases; NIH, National Institutes of Health; NOAEL, no observed adverse effect level; NTP, National Toxicology Program; OSM, online supplementary material; PAs, Pyrrolizidine Alkaloids; PD-1, Programmed death domain-1; PDGTE, powdered decaffeinated green tea extract; PK/PD, pharmacokinetics and pharmacodynamics; RUCAM, Roussel Uclaf Causality Assessment Method; SIDS, single-ingredient dietary supplement; TGF-beta, Transforming growth factor beta; USP, United States Pharmacopeia; γ-GT, Gamma-glutamyl transferase.

Conflict of interest statement

The authors have declared the following: HAO-R and GIG are employed by USP. The below listed authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper: Hellen A Oketch-Rabah, Gabriel I. Giancaspro, Jawad Ahmad, Steven Casper, Bill Gurley, Cynthia V. Rider, Leonard B Seef, Jose Serrano, Joseph M. Betz, Christopher Koh, Kan He, Mary F. Paine, Raj Vuppalanchi, Robin J. Marles, Averell H. Sherker, Simona Rossi, Scott Jordan, Victor J. Navarro, Andrew Stolz. The below listed authors declare the described financial interests/personal relationships which may be considered as potential competing interests: Tieraona Low Dog is a Consultant at MegaFoods; Herbert L. Bonkovsky has been and continues to be an investigator in the NIH-sponsored US Drug-Induced Liver Injury Network since 2003 and is supported by a cooperative agreement between NIDDK and UNC & Wake Forest University, U01 DK 065201; Amy L. Roe works for a company that manufactures and distributes dietary supplements; including some that may contain green tea extract; Richard Ko is the founder and owner of Herbal Synergy, a company that consults for the dietary supplement, food, and pharmaceutical companies; Kan He is employed by Herbalife, a company that manufactures and distributes dietary supplement that may contain green tea or green tea extracts; Robert J. Fontana receives research support from Gilead, Abbvie, and BristolMyerSquibb, and also provides consulting for Alynam and AstraZeneca; Mahendra P. Kapoor is an employee of Taiyo Kagaku Co Ltd, a company that manufactures several nutraceutical ingredients including green tea extracts; Theertham Pradyumna Rao is an employee of Taiyo Kagaku Co Ltd, a company that manufactures several nutraceutical ingredients including green tea extracts.

© 2020 Published by Elsevier B.V.

Figures

Fig. 1
Fig. 1
A summary of literature search results and categorization of retrieved articles. * Databases searched include: PubMed, Google Scholar, NLM, EMBASE, Cochrane Database of Systematic Reviews, Cochrane Register of Controlled Trials [CENTRAL], Agricultural Online Access [AGRICOLA], Allied and Complimentary Medicine [AMED], Computer Access to Research on Dietary Supplements [CARDS], Cumulative Index to Nursing and Allied Health Literature [CINAHL] EBSCO Health, Database of Abstracts of Reviews of Effects [DARE] PubMed Health; Embase; International Pharmaceutical Abstracts; National Technological Information Service [NTIS. ** Search strategy used a combination of [Green Tea Extract or Tea Polyphenols or EGCG] and [clinical trials or adverse reactions or adverse effects or case reports or hepatotoxicity or pharmacokinetics or liver or animals].

References

    1. Chaturvedula V.S.P., Prakash I. The aroma, taste, color and bioactive constituents of tea. J. Med. Plants Res. 2011;5(11):2110–2124.
    1. Juneja L.R. CRC Press; 2013. Green Tea Polyphenols: Nutraceuticals of Modern Life.
    1. Jurgens T.M. Green tea for weight loss and weight maintenance in overweight or obese adults. Cochrane Database Syst. Rev. 2012;(12)
    1. Tanaka T., Matsuo Y., Kouno I. In: Biochemical and Physicochemical Characteristics of Green Tea Polyphenols, in Green Tea Polyphenols: Nutraceuticals of Modern Life. Juneja L., editor. CRC Press, Taylor& Francis Group; Boca Raton, FL: 2013. pp. 19–38.
    1. Bonkovsky H.L. Hepatotoxicity associated with supplements containing Chinese green tea (Camellia sinensis) Ann. Intern. Med. 2006;144(1):68–69.
    1. Javaid A., Bonkovsky H.L. Hepatotoxicity due to extracts of Chinese green tea (Camellia sinensis): a growing concern. J. Hepatol. 2006;45(2):334–335.
    1. Araujo J.L., Worman H.J. Acute liver injury associated with a newer formulation of the herbal weight loss supplement Hydroxycut. BMJ Case Rep. 2015 2015.
    1. Brown A.L. Effects of dietary supplementation with the green tea polyphenol epigallocatechin-3-gallate on insulin resistance and associated metabolic risk factors: randomized controlled trial. Br. J. Nutr. 2008;101(6):886–894.
    1. Dekant W. Safety assessment of green tea based beverages and dried green tea extracts as nutritional supplements. Toxicol. Lett. 2017;277:104–108.
    1. EFSA Scientific opinion on the safety of green tea catechins by panel on food additives nutrient sources added to food (Younes, Maged; Aggett, Peter; Aguilar, Fernando; Crebelli, Riccardo; Dusemund, Birgit; filipič, Metka; frutos, Maria Jose; Galtier, Pierre; Gott, david) EFSA J. 2018;16(4):e05239.
    1. Hu J. The safety of green tea and green tea extract consumption in adults–results of a systematic review. Regul. Toxicol. Pharmacol. 2018;95:412–433.
    1. Mazzanti G. Hepatotoxicity from green tea: a review of the literature and two unpublished cases. Eur. J. Clin. Pharmacol. 2009;65(4):331–341.
    1. Navarro V.J. Catechins in dietary supplements and hepatotoxicity. Dig. Dis. Sci. 2013;58(9):2682–2690.
    1. Patel S.S. Green tea extract: a potential cause of acute liver failure. World J. Gastroenterol. 2013;19(31):5174–5177.
    1. NIH:National Institute of Diabetes and . Livertox: Clinical and Research Information on Drug-induced Liver Injury. US National Library of Medicine; Bethesda, MD: 2017. Digestive and kidney diseases (NIDDKD) Accessed on December 19, 2019.
    1. Yates A.A. Bioactive nutrients-time for tolerable upper intake levels to address safety. Regul. Toxicol. Pharmacol. 2017;84:94–101.
    1. Yu Z. Effect of green tea supplements on liver enzyme elevation: results from a randomized intervention study in the United States. Cancer Prev. Res. Phila. (Phila) 2017;10(10):571–579.
    1. U.S. National Library of Medicine . 2019. Green Tea (Cammelia Sinensis) in LIVERTOX DATABASE. [cited 2019 December 21]; 2018:[Available from:
    1. Sarma D.N. Safety of green tea extracts: a systematic review by the US Pharmacopeia. Drug Saf. 2008;31(6):469–484. 200831060-00003.
    1. Teschke R., Schulze J. Suspected herbal hepatotoxicity: requirements for appropriate causality assessment by the US Pharmacopeia. Drug Saf. 2012;35(12):1091–1097.
    1. USP . 2009. USP Update on the USP Green Tea Extract Monograph. available at.
    1. USP In-Process Revision: Powdered Decaffeinated Green Tea Extract available at: 22 . Pharmacopeal Forum Online 2017 [cited 2019 December 12].
    1. 2019. USP USP-NF Monographs for Powdered Decaffeinated Green Tea Extract. Official Mar 1.
    1. Bedrood Z., Rameshrad M., Hosseinzadeh H. Toxicological effects of Camellia sinensis (green tea): a review. Phytother. Res. 2018;32(7):1163–1180.
    1. DILIN . 2011. What Is Drug-Induced Liver Injury Network (DILIN)? Bethesda. [cited 2019 October 5]; Available from:
    1. Fontana R.J. Drug-induced liver injury network (DILIN) prospective study. Drug Saf. 2009;32(1):55–68.
    1. Teschke R., Xuan T. Suspected herb induced liver injury by green tea extracts: critical review and case 2 analysis applying RUCAM for causality assessment. Jpn. J. Gastroenterol. Hepatol. 2019;1(6):1–16.
    1. Danan G., Benichou C. Causality assessment of adverse reactions to drugs—I. A novel method based on the conclusions of international consensus meetings: application to drug-induced liver injuries. J. Clin. Epidemiol. 1993;46(11):1323–1330.
    1. Danan G., Teschke R. RUCAM in drug and herb induced liver injury: the update. Int. J. Mol. Sci. 2015;17(1)
    1. Rochon J. Reliability of the Roussel Uclaf Causality Assessment Method for assessing causality in drug-induced liver injury. Hepatology. 2008;48(4):1175–1183.
    1. Agarwal V.K. Important elements for the diagnosis of drug-induced liver injury. Clin. Gastroenterol. Hepatol. 2010;8(5):463–470.
    1. Kapoor . In: Green Tea: History, Processing Techniques, Principles, Traditions, Features and Attractions in Green Tea Polyphenols, Nutraceuticals of Modern Life. LR J., editor. CRS press, Taylor & Francis group; NY, USA: 2013. pp. 1–18.
    1. Vuong Q.V. Improved extraction of green tea components from teabags using the microwave oven. J. Food Compos. Anal. 2012;27(1):95–101. .
    1. Friedman M. Distribution of catechins, theaflavins, caffeine, and theobromine in 77 teas consumed in the United States. J. Food Sci. 2005;70(9)
    1. Friedman M. HPLC analysis of catechins, theaflavins, and alkaloids in commercial teas and green tea dietary supplements: comparison of water and 80% ethanol/water extracts. J. Food Sci. 2006;71(6) .
    1. Banerjee S., Chatterjee J. Efficient extraction strategies of tea (Camellia sinensis) biomolecules. J. Food Sci. Technol. 2015;52(6):3158–3168.
    1. Hara Y. CRC press; 2001. Green Tea: Health Benefits and Applications.
    1. Lorenzo J.M., Munekata P.E.S. Phenolic compounds of green tea: health benefits and technological application in food. Asian Pac. J. Trop. Biomed. 2016;6(8):709–719.
    1. Ninomiya . In: Chemical and Physiochemical Properties of Green Tea Polyphenols. Yamamoto, editor. CRS Press LLC; USA: 1997.
    1. Perva-Uzunalić A. Extraction of active ingredients from green tea (Camellia sinensis): extraction efficiency of major catechins and caffeine. Food Chem. 2006;96(4):597–605.
    1. Ziaedini A., Jafari A., Zakeri A. Extraction of antioxidants and caffeine from green tea (Camelia sinensis) leaves: kinetics and modeling. Rev. Agaroquimica Y Tecnol. Aliment. 2010;16(6):505–510.
    1. Seddik M. Y at-il des risques d’hépatotoxicité avec Exolise®. Gastroenterol. Clin. Biol. 2001;25:834–835. .
    1. Vial T. 2003. Hépatite Aiguë Imputable à l’Exolise®(Camellia Sinensis) .
    1. USP USP-NF . 2019. General Chapter <467> Residual Solvents., Official Mar 1. 2019.
    1. el Abu, Wafa Y. Anales De Medicina Interna. SciELO; Espana: 2005. Hepatitis aguda inducida por Camellia sinens (té verde)
    1. Paramasivam M., Chandrasekaran S. Persistence behaviour of deltamethrin on tea and its transfer from processed tea to infusion. Chemosphere. 2014;111:291–295.
    1. Wang J., Cheung W., Leung D. Determination of pesticide residue transfer rates (percent) from dried tea leaves to brewed tea. J. Agric. Food Chem. 2014;62(4):966–983.
    1. Xue J. Transfer of difenoconazole and azoxystrobin residues from chrysanthemum flower tea to its infusion. Food Addit. Contam. Part A. 2014;31(4):666–675.
    1. Hayward D.G., Wong J.W., Park H.Y. Determinations for pesticides on Black, Green, Oolong, and White Teas by gas chromatography triple-quadrupole mass spectrometry. J. Agric. Food Chem. 2015;63(37):8116–8124.
    1. Muraleedharan N. Strategies for reducing pesticide residues in tea. Int. J. Tea Sci. 2004;3(3 and 4)
    1. Fernández-Cáceres P.L. Differentiation of tea (Camellia sinensis) varieties and their geographical origin according to their metal content. J. Agric. Food Chem. 2001;49(10):4775–4779.
    1. Ratnaike R.N. Acute and chronic arsenic toxicity. Postgrad. Med. J. 2003;79(933):391–396.
    1. Järup L. Health effects of cadmium exposure–a review of the literature and a risk estimate. Scand. J. Work Environ. Health. 1998:1–51.
    1. Vincent J.B. The potential value and toxicity of chromium picolinate as a nutritional supplement, weight loss agent and muscle development agent. Sports Med. 2003;33(3):213–230.
    1. Cerulli J. Chromium picolinate toxicity. Ann. Pharmacother. 1998;32(4):428–431.
    1. Farmand F. Lead-induced dysregulation of superoxide dismutases, catalase, glutathione peroxidase, and guanylate cyclase. Environ. Res. 2005;98(1):33–39.
    1. Lee M.R. Blood mercury concentrations are associated with decline in liver function in an elderly population: a panel study. Environ. Health. 2017;16(1):17.
    1. Spangler J.G. Air manganese levels and chronic liver disease mortality in North Carolina counties: an ecological study. Int. J. Environ. Res. Public Health. 2012;9(9):3258–3263.
    1. Garcia-Nino W.R., Pedraza-Chaverri J. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem. Toxicol. 2014;69:182–201.
    1. Jaishankar M. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014;7(2):60–72.
    1. EFSA Dietary exposure assessment to pyrrolizidine alkaloids in the European population. Efsa J. 2016;14(8):e04572.
    1. Bodi D. Determination of pyrrolizidine alkaloids in tea, herbal drugs and honey. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2014;31(11):1886–1895.
    1. EFSA Compendium of botanicals reported to contain naturally occuring substances of possible concern for human health when used in food and food supplements. EFSA J. 2012;10(5):2663.
    1. EFSA Risks for human health related to the presence of pyrrolizidine alkaloids in honey, tea, herbal infusions and food supplements. EFSA J. 2017;15(7):e04908.
    1. Madge I. Pyrrolizidine alkaloids in herbal teas for infants, pregnant or lactating women. Food Chem. 2015;187:491–498.
    1. Merz K.H., Schrenk D. Interim relative potency factors for the toxicological risk assessment of pyrrolizidine alkaloids in food and herbal medicines. Toxicol. Lett. 2016;263:44–57.
    1. Mulder P.P.J. Occurrence of pyrrolizidine alkaloids in animal- and plant-derived food: results of a survey across Europe. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2018;35(1):118–133.
    1. Shimshoni J.A. Pyrrolizidine and tropane alkaloids in teas and the herbal teas peppermint, rooibos and chamomile in the Israeli market. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2015;32(12):2058–2067.
    1. Navarro V.J. Liver injury from herbal and dietary supplements. Hepatology. 2017;65(1):363–373.
    1. Neuman M.G. Hepatotoxicity of pyrrolizidine alkaloids. J. Pharm. Pharm. Sci. 2015;18(4):825–843.
    1. Chow H.H. Phase I pharmacokinetic study of tea polyphenols following single-dose administration of epigallocatechin gallate and polyphenon E. Cancer Epidemiol. Biomarkers Prev. 2001;10(1):53–58.
    1. Chow H.H. Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin. Cancer Res. 2003;9(9):3312–3319.
    1. Chow H.H. Effects of dosing condition on the oral bioavailability of green tea catechins after single-dose administration of Polyphenon E in healthy individuals. Clin. Cancer Res. 2005;11(12):4627–4633.
    1. Ullmann U. Plasma-kinetic characteristics of purified and isolated green tea catechin epigallocatechin gallate (EGCG) after 10 days repeated dosing in healthy volunteers. Int. J. Vitam. Nutr. Res. 2004;74(4):269–278.
    1. Ullmann U. A single ascending dose study of epigallocatechin gallate in healthy volunteers. J. Int. Med. Res. 2003;31(2):88–101. .
    1. Egert S. Simultaneous ingestion of dietary proteins reduces the bioavailability of galloylated catechins from green tea in humans. Eur. J. Nutr. 2013;52(1):281–288.
    1. Rashidinejad A. Addition of milk to tea infusions: helpful or harmful? Evidence from in vitro and in vivo studies on antioxidant properties. Crit. Rev. Food Sci. Nutr. 2017;57(15):3188–3196. .
    1. Navarro V. Liver injury from herbal and dietary supplements: an introduction. Clin. Liver Dis. (Hoboken) 2019;14(2):43–44.
    1. DILIN . Liver Tox Database, Green Tea. NIH; Bethesda, MD: 2018. DILIN clinical and research information on drug induced liver injury. (Camelia sinensis). Available at:
    1. Isomura T. Liver-related safety assessment of green tea extracts in humans: a systematic review of randomized controlled trials. Eur. J. Clin. Nutr. 2016;70(11):1340.
    1. Shanafelt T.D. Phase 2 trial of daily, oral Polyphenon E in patients with asymptomatic, Rai stage 0 to II chronic lymphocytic leukemia. Cancer. 2013;119(2):363–370.
    1. Shanafelt T.D. Phase I trial of daily oral Polyphenon E in patients with asymptomatic Rai stage 0 to II chronic lymphocytic leukemia. J. Clin. Oncol. 2009;27(23):3808–3814.
    1. Renouf M. Dose-response plasma appearance of green tea catechins in adults. Mol. Nutr. Food Res. 2013;57(5):833–839. .
    1. Bae M.J. Albumin stabilizes (–)‐epigallocatechin gallate in human serum: binding capacity and antioxidant property. Mol. Nutr. Food Res. 2009;53(6):709–715.
    1. Ishii T. Human serum albumin as an antioxidant in the oxidation of (−)-epigallocatechin gallate: participation of reversible covalent binding for interaction and stabilization. Biosci. Biotechnol. Biochem. 2011;75(1):100–106.
    1. Lee M.-J. Pharmacokinetics of tea catechins after ingestion of green tea and (−)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability. Cancer Epidemiology and Prevention Biomarkers. 2002;11(10):1025–1032.
    1. Yang C.S. Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiology and Prevention Biomarkers. 1998;7(4):351–354.
    1. Clifford M.N., van der Hooft J.J., Crozier A. Human studies on the absorption, distribution, metabolism, and excretion of tea polyphenols. Am. J. Clin. Nutr. 2013;98(6 Suppl):1619S–1630S.
    1. Auger C. Bioavailability of polyphenon E flavan-3-ols in humans with an ileostomy. J. Nutr. 2008;138(8):1535S–1542S.
    1. Proniuk S., Liederer B.M., Blanchard J. Preformulation study of epigallocatechin gallate, a promising antioxidant for topical skin cancer prevention. J. Pharm. Sci. 2002;91(1):111–116.
    1. Roach P.D. We-P14: 429 despite its instability, epigallocatechin gallate effective lowers serum cholesterol in the hypercholesterolaemic rabbit. Atheroscler. Suppl. 2006;7(3):441.
    1. Wang R., Zhou W., Jiang X. Reaction kinetics of degradation and epimerization of epigallocatechin gallate (EGCG) in aqueous system over a wide temperature range. J. Agric. Food Chem. 2008;56(8):2694–2701. .
    1. Naumovski N., Blades B.L., Roach P.D. Food inhibits the oral bioavailability of the major green tea antioxidant epigallocatechin gallate in humans. Antioxidants Basel (Basel) 2015;4(2):373–393.
    1. Kucera O. In vitro toxicity of epigallocatechin gallate in rat liver mitochondria and hepatocytes. Oxid. Med. Cell. Longev. 2015:476180. 2015.
    1. Oritani Y. Comparison of (-)-epigallocatechin-3-O-gallate (EGCG) and O-methyl EGCG bioavailability in rats. Biol. Pharm. Bull. 2013;36(10):1577–1582.
    1. Sano M. Novel antiallergic catechin derivatives isolated from oolong tea. J. Agric. Food Chem. 1999;47(5):1906–1910.
    1. Phan A.D. Binding of dietary polyphenols to cellulose: structural and nutritional aspects. Food Chem. 2015;171:388–396.
    1. Glube N., Moos L., Duchateau G. Capsule shell material impacts the in vitro disintegration and dissolution behaviour of a green tea extract. Results Pharma Sci. 2013;3:1–6.
    1. United States Pharmacopeial Convention . 2019. (USP) USP42-NF37. General Chapter <1094> Capsules—Dissolution Testing And Related Qualitry Attributes; p. 7592.
    1. Son Y.R. Combinational enhancing effects of formulation and encapsulation on digestive stability and intestinal transport of green tea catechins. J. Microencapsul. 2016;33(2):183–190.
    1. Janssens P.L., Hursel R., Westerterp-Plantenga M.S. Long-term green tea extract supplementation does not affect fat absorption, resting energy expenditure, and body composition in adults. J. Nutr. 2015;145(5):864–870.
    1. Chen L. Absorption, distribution, elimination of tea polyphenols in rats. Drug Metab. Dispos. 1997;25(9):1045–1050.
    1. Zhu B.T. Rapid conversion of tea catechins to monomethylated products by rat liver cytosolic catechol-O-methyltransferase. Xenobiotica. 2001;31(12):879–890.
    1. Zhu M., Chen Y., Li R.C. Oral absorption and bioavailability of tea catechins. Planta Med. 2000;66(5):444–447.
    1. Lambert J.D. Epigallocatechin-3-gallate is absorbed but extensively glucuronidated following oral administration to mice. J. Nutr. 2003;133(12):4172–4177.
    1. Suganuma M. Wide distribution of [3H](-)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis. 1998;19(10):1771–1776.
    1. Isbrucker R. Safety studies on epigallocatechin gallate (EGCG) preparations. Part 1: genotoxicity. Food Chem. Toxicol. 2006;44(5):626–635.
    1. Hsu Y.W. A subacute toxicity evaluation of green tea (Camellia sinensis) extract in mice. Food Chem. Toxicol. 2011;49(10):2624–2630.
    1. Nair A.B., Jacob S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016;7(2):27.
    1. FDA Center for Drug Evaluation and Research (CDER) 2005. Guidance for Industry Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers. Available at.
    1. National Toxicology Program (NTP) Toxicology studies of green tea extract in F344/NTac rats and B6C3F1/N mice and Toxicology and carcinogenesis studies of green tea extract in Wistar Han [Crl: wi (Han)] rats and B6C3F1/N mice. Toxicol. Program Tech. Rep. Ser. 2016;585 Available at.
    1. Chengelis C.P. 28-Day oral (gavage) toxicity studies of green tea catechins prepared for beverages in rats. Food Chem. Toxicol. 2008;46(3):978–989.
    1. Wang D. Evaluation of oral subchronic toxicity of Pu-erh green tea (camellia sinensis var. assamica) extract in Sprague Dawley rats. J. Ethnopharmacol. 2012;142(3):836–844.
    1. Takami S. Evaluation of toxicity of green tea catechins with 90-day dietary administration to F344 rats. Food Chem. Toxicol. 2008;46(6):2224–2229.
    1. Morita O. Safety assessment of heat-sterilized green tea catechin preparation: a 6-month repeat-dose study in rats. Food Chem. Toxicol. 2009;47(8):1760–1770.
    1. Kapetanovic I.M. Exposure and toxicity of green tea polyphenols in fasted and non-fasted dogs. Toxicology. 2009;260(1-3):28–36.
    1. James K.D., Forester S.C., Lambert J.D. Dietary pretreatment with green tea polyphenol, (-)-epigallocatechin-3-gallate reduces the bioavailability and hepatotoxicity of subsequent oral bolus doses of (-)-epigallocatechin-3-gallate. Food Chem. Toxicol. 2015;76:103–108.
    1. Wu K.M., Yao J., Boring D. Green tea extract-induced lethal toxicity in fasted but not in nonfasted dogs. Int. J. Toxicol. 2011;30(1):19–20.
    1. Samavat H. The Minnesota Green Tea Trial (MGTT), a randomized controlled trial of the efficacy of green tea extract on biomarkers of breast cancer risk: study rationale, design, methods, and participant characteristics. Cancer Causes Control. 2015;26(10):1405–1419.
    1. Dostal A.M. The safety of green tea extract supplementation in postmenopausal women at risk for breast cancer: results of the Minnesota Green Tea Trial. Food Chem. Toxicol. 2015;83:26–35.
    1. Dostal A.M. Green tea extract and catechol-O-methyltransferase genotype modify the post-prandial serum insulin response in a randomised trial of overweight and obese post-menopausal women. J. Hum. Nutr. Diet. 2017;30(2):166–176.
    1. Dostal A.M. Green tea extract and Catechol-O-Methyltransferase genotype modify fasting serum insulin and plasma adiponectin concentrations in a randomized controlled trial of overweight and obese postmenopausal women. J. Nutr. 2016;146(1):38–45.
    1. Lovera J. Polyphenon E, non-futile at neuroprotection in multiple sclerosis but unpredictably hepatotoxic: phase I single group and phase II randomized placebo-controlled studies. J. Neurol. Sci. 2015;358(1-2):46–52.
    1. Chen I.J. Therapeutic effect of high-dose green tea extract on weight reduction: a randomized, double-blind, placebo-controlled clinical trial. Clin. Nutr. 2016;35(3):592–599.
    1. Liu C.Y. Effects of green tea extract on insulin resistance and glucagon-like peptide 1 in patients with type 2 diabetes and lipid abnormalities: a randomized, double-blinded, and placebo-controlled trial. PLoS One. 2014;9(3):e91163.
    1. Liu K. Effect of green tea on glucose control and insulin sensitivity: a meta-analysis of 17 randomized controlled trials. Am. J. Clin. Nutr. 2013;98(2):340–348.
    1. Meshitsuka S. Phase 2 trial of daily, oral epigallocatechin gallate in patients with light-chain amyloidosis. Int. J. Hematol. 2017;105(3):295–308.
    1. Arzenton E. Acute hepatitis caused by green tea infusion: a case report. Adv. Pharmacoepidemiol. Drug Saf. 2012;(3):170.
    1. Bergman J., Schjøtt J. Hepatitis Caused by Lotus‐f3? Basic Clin. Pharmacol. Toxicol. 2009;104(5):414–416.
    1. Bjornsson E., Olsson R. Serious adverse liver reactions associated with herbal weight-loss supplements. J. Hepatol. 2007;47(2):295–297.
    1. Chen G.C. Acute liver injury induced by weight-loss herbal supplements. World J. Hepatol. 2010;2(11):410.
    1. Cruz A.C.D. Mo1814 fulminant liver failure secondary to “Saba appetite control and energy” weight loss supplement. Gastroenterology. 2014;146(5) p. S-1002.
    1. Dara L., Hewett J., Lim J.K. Hydroxycut hepatotoxicity: a case series and review of liver toxicity from herbal weight loss supplements. World J. Gastroenterol.: WJG. 2008;14(45):6999.
    1. Federico A., Tiso A., Loguercio C. A case of hepatotoxicity caused by green tea. Free Radic. Biol. Med. 2007;43(3):474.
    1. Fernandez J. Three cases of liver toxicity with a dietary supplement intended to stop hair loss. Rev. Esp. Enferm. Dig. 2014;106(8):552–555. Avalable in [Eng.] at: . Accessed on Octber 8, 2019.
    1. Fong T.-L. Hepatotoxicity due to hydroxycut®: a case series. Am. J. Gastroenterol. 2010;105(7)
    1. Gallo E. Is green tea a potential trigger for autoimmune hepatitis? Phytomedicine. 2013;20(13):1186–1189.
    1. Gloro R. Fulminant hepatitis during self-medication with hydroalcoholic extract of green tea. Eur. J. Gastroenterol. Hepatol. 2005;17(10):1135–1137.
    1. Haimowitz S. Liver failure after Hydroxycut™ use in a patient with undiagnosed hereditary coproporphyria. J. Gen. Intern. Med. 2015;30(6):856–859.
    1. Jiménez-Encarnación E. Euforia-induced acute hepatitis in a patient with scleroderma. BMJ Case Rep. 2012 2012:bcr2012006907. .
    1. Jimenez-Saenz M., del Carmen Martinez-Sanchez M. Acute hepatitis associated with the use of green tea infusions. J. Hepatol. 2006;44(3):616–617.
    1. Jones F.J., Andrews A.H. Acute liver injury associated with the herbal supplement hydroxycut in a soldier deployed to Iraq. Am. J. Gastroenterol. 2007;102(10):2357.
    1. Kanda T. Severe hepatotoxicity associated with chinese diet product ‘Onshidou-Genbi-Kounou’. J. Gastroenterol. Hepatol. 2003;18(3):354–355.
    1. Kaswala D. Hydroxycut-induced liver toxicity. Ann. Med. Health Sci. Res. 2014;4(1):143–145.
    1. McDonnell W.M., Bhattacharya R., Halldorson J.B. Fulminant hepatic failure after use of the herbal weight-loss supplement exilis. Ann. Intern. Med. 2009;151(9):673–674.
    1. Molinari M. Acute liver failure induced by green tea extracts: case report and review of the literature. Liver Transpl. 2006;12(12):1892–1895. 10.1002/lt.21021.
    1. Pillukat M.H. Concentrated green tea extract induces severe acute hepatitis in a 63-year-old woman--a case report with pharmaceutical analysis. J. Ethnopharmacol. 2014;155(1):165–170.
    1. Porcel J. Hepatotoxicity associated with green tea extracts. Ann. Intern. Med. 2005
    1. Radha Krishna Y. Acute liver failure caused by ‘fat burners’ and dietary supplements: a case report and literature review. Can. J. Gastroenterol. Hepatol. 2011;25(3):157–160. .
    1. Sharma T. Hydroxycut®(herbal weight loss supplement) induced hepatotoxicity: a case report and review of literature. Hawaii Med. J. 2010;69(8):188.
    1. Stevens T., Qadri A., Zein N.N. Two patients with acute liver injury associated with use of the herbal weight-loss supplement hydroxycut [7] Ann. Intern. Med. 2005;142(6):477–478.
    1. Stickel F. Liver injury from herbal and dietary supplements. Dtsch. Med. Wochenschr. 2015;140(12):908–911.
    1. Vanstraelen S., Rahier J., Geubel A.P. Jaundice as a misadventure of a green tea (camellia sinensis) lover: a case report. Acta Gastroenterol. Belg. 2008;71(4):409–412.
    1. Verhelst X. Acute hepatitis after treatment for hair loss with oral green tea extracts (Camellia Sinensis) Acta Gastroenterol. Belg. 2009;72(2):262–264.
    1. Weinstein D.H. SlimQuick™-associated hepatotoxicity in a woman with alpha-1 antitrypsin heterozygosity. World J. Hepatol. 2012;4(4):154.
    1. Whitsett M., Halegoua-De Marzio D., Rossi S. SlimQuick™-associated hepatotoxicity resulting in fulminant liver failure and orthotopic liver transplantation. ACG Case Rep. J. 2014;1(4):220.
    1. 2003. Agence Francese de Securite Sancaire des Product Sante Communiques oe Presse: Suspension de l’autorisation de mlse sur le marche de la specialite pharmaceutique Excolise® (gallate d’epigallocatechol) Available at:
    1. de Paula J.M.P., Barquero J.G., Hidalgo S.F. Hepatitis tóxica por Camellia sinensis. Gastroenterol. Hepatol. 2008;31(6):402.
    1. García-Cortés M. Liver injury induced by" natural remedies": an analysis of cases submitted to the Spanish Liver Toxicity Registry. Rev. Esp. Enferm. Dig. 2008;100(11):688.
    1. García-Morán S. Hepatitis aguda asociada a ingestión de camellia thea y orthosiphon stamineus. Gastroenterol. Hepatol. 2004;27(9):559–560.
    1. Gavilan J. Phytotherapy and hepatitis. Rev. Clin. Esp. 1999;199(10):693–694.
    1. Lorenzo-Almorós A. Hepatitis aguda por extracto de té verde. Gastroenterología y Hepatología. 2015;38(1):44–45.
    1. Martínez-Sierra C., Unceta P.R., Herrera L.M. Hepatitis aguda tras ingestión de té verde. Medicina Clínica. 2006;127(3):119.
    1. Sadornil C.D., Puigtió S.F., Durández R. Hepatotoxicidad por Camelia sinensis. Med. Clin. 2004;122(17):677–678.
    1. Thiolet C. Cytolyse aiguë après prise d’un thé chinois. Gastroentérologie clinique et biologique. 2002;26(10):939–940. .
    1. Rohde J., Jacobsen C., Kromann-Andersen H. Toksisk hepatitis udløst af grøn te. Ugeskr Læger. 2011;173:3.
    1. Mathieu N. Hépatotoxicité probable de l’X-elles® utilisé en phytothérapie. Gastroentã©rologie Clin. Biol. 2005;29(11):1188–1189.
    1. Pedrós C. Hepatotoxicidad por extracto etanólico seco de Camellia sinensis. Med Clin (Barc) 2003;121(15):598–599.
    1. Peyrin-Biroulet L. Hépatotoxicité probable du gallate d’épigallocatéchol utilisé en phytothérapie. Gastroentérologie clinique et biologique. 2004;28(4):404–406. .
    1. Benichou C., Danan G., Flahault A. Causality assessment of adverse reactions to drugs—II. An original model for validation of drug causality assessment methods: case reports with positive rechallenge. J. Clin. Epidemiol. 1993;46(11):1331–1336.
    1. Oria M., Greenwood M.R.C., editors. Use of Dietary Supplements by Military Personnel. National Academies Press; Washington DC: 2008. Institute of medicine (IOM)
    1. Qato D.M. Use of prescription and over-the-counter medications and dietary supplements among older adults in the United States. JAMA. 2008;300(24):2867–2878.
    1. Knapik J.J. Dietary supplement use in a large, representative sample of the US armed forces. J. Acad. Nutr. Diet. 2018;118(8):1370–1388.
    1. Bailey R.L. Why US adults use dietary supplements. JAMA Intern. Med. 2013;173(5):355–361.
    1. Crescioli G. Acute liver injury following Garcinia cambogia weight-loss supplementation: case series and literature review. Intern. Emerg. Med. 2018;13(6):857–872.
    1. Brown A.C. Liver toxicity related to herbs and dietary supplements: online table of case reports. Part 2 of 5 series. Food Chem. Toxicol. 2017;107(Pt A):472–501.
    1. Cohen P.A. Emergency department visits and hospitalisations for adverse events related to dietary supplements are common. Evid. Med. 2016;21(2):79.
    1. Geller A.I. Emergency department visits for adverse events related to dietary supplements. N. Engl. J. Med. 2015;373(16):1531–1540.
    1. MacKay D. Emergency department visits related to dietary supplements. N. Engl. J. Med. 2016;374(7):694–695.
    1. Pascale B. Dietary supplements: knowledge and adverse event reporting among American Medical Society for Sports Medicine physicians. Clin. J. Sport. Med. 2016;26(2):139–144.
    1. Cirulli E.T. A missense variant in PTPN22 is a risk factor for drug-induced liver injury. Gastroenterology. 2019;156(6):1707–1716. e2.
    1. Nicoletti P. Association of liver injury from specific drugs, or groups of drugs, with polymorphisms in HLA and other genes in a genome-wide association study. Gastroenterology. 2017;152(5):1078–1089.
    1. Urban T.J. Minocycline hepatotoxicity: clinical characterization and identification of HLA-B *35:02 as a risk factor. J. Hepatol. 2017;67(1):137–144.
    1. Church R.J. Sensitivity to hepatotoxicity due to epigallocatechin gallate is affected by genetic background in diversity outbred mice. Food Chem. Toxicol. 2015;76:19–26.
    1. Uetrecht J. Using PD-1 knockout mice to test the potential of Green tea extract and (-)-epigallocatechin gallate (EGCG) to cause idiosyncratic drug-induced liver injury (IDILI). Society of Toxicology, 57th Annual Meeting and ToxExpo™; San Antonio, Texas: Oxford University Press; 2018. Abstract no. 1099. Available at.
    1. Liu D. Epigallocatechin-3-gallate (EGCG) attenuates concanavalin A-induced hepatic injury in mice. Acta Histochem. 2014;116(4):654–662.
    1. Kaneko Y. Augmentation of Vα14 NKT cell–mediated cytotoxicity by interleukin 4 in an autocrine mechanism resulting in the development of concanavalin A–induced hepatitis. J. Exp. Med. 2000;191(1):105–114.
    1. Miyazawa Y. Involvement of intrasinusoidal hemostasis in the development of concanavalin A-induced hepatic injury in mice. Hepatology. 1998;27(2):497–506.
    1. Fabregat I. TGF-beta signalling and liver disease. FEBS J. 2016;283(12):2219–2232.
    1. Webster A.D. Quality of life among postmenopausal women enrolled in the Minnesota Green Tea Trial. Maturitas. 2018;108:1–6.
    1. Fabbrini E., Sullivan S., Klein S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology. 2010;51(2):679–689.
    1. Angulo P. Obesity and nonalcoholic fatty liver disease. Nutr. Rev. 2007;65(suppl_1):S57–S63.
    1. Mazzanti G., Di Sotto A., Vitalone A. Hepatotoxicity of green tea: an update. Arch. Toxicol. 2015;89(8):1175–1191.
    1. Lambert J.D. Hepatotoxicity of high oral dose (-)-epigallocatechin-3-gallate in mice. Food Chem. Toxicol. 2010;48(1):409–416.
    1. Health Canada . Dear Healthcare Professional Letter. 2017. Green tea extract-containing natural health products - rare risk of serious liver injury. Available at.
    1. Norwegian Institute of Public Health, Safety assessment on levels of (-)-Epigallocatechin-3-gallate (EGCG) in green tea extracts used in food supplements. Nowrwegian Institute of Public Health, Oslo. Available at . Accessed on October 8, 2019. 2015.

Source: PubMed

3
購読する