Wearable Sensors for Remote Health Monitoring

Sumit Majumder, Tapas Mondal, M Jamal Deen, Sumit Majumder, Tapas Mondal, M Jamal Deen

Abstract

Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.

Keywords: ambulatory monitoring; body sensor network; remote health monitoring; smart textile; vital sign monitoring; wearable sensors.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
General overview of the remote health monitoring system.
Figure 2
Figure 2
Cardiovascular monitoring: (a) One cycle of a typical ECG signal (not scaled); (b) Electrode placement in a standard 12 lead ECG system; (c) General architecture of ECG monitoring system.
Figure 3
Figure 3
A typical human gait cycle.
Figure 4
Figure 4
Schematic representation of activity monitoring systems.
Figure 5
Figure 5
Typical galvanic skin response (GSR) signal (not to scale).
Figure 6
Figure 6
Schematic diagram of the GSR monitoring system.
Figure 7
Figure 7
Arterial blood flow and corresponding PPG signal (not scaled).
Figure 8
Figure 8
Photoplethysmography (PPG): (a) Different approaches for measuring PPG; (b) Schematic diagram of the SpO2 monitoring system.
Figure 9
Figure 9
(a) Pulse transit time (PTT); (b) Four sensor health monitoring system.
Figure 10
Figure 10
Different textile/fabric manufacturing technologies. (a) Embroidery; (b) Stitching; (c) Weaving; (d) Knitting; (e) Spinning; (f) Printing. Image source: https://pixabay.com under Creative Commons CC0.

References

    1. Centers for Disease Control and Prevention . The State of Aging and Health in America 2013. Centers for Disease Control and Prevention, US Department of Health and Human Services; Atlanta, GA, USA: 2013.
    1. Global Age Watch Index 2015. [(accessed on 20 June 2016)]. Available online:
    1. World Health Organization Family Planning/Contraception. 2015. [(accessed on 20 June 2016)]. Available online:
    1. World Health Organization Are You Ready? What You Need to Know about Ageing. World Health Day. 2012. [(accessed on 20 June 2016)]. Available online:
    1. U.S. Health Care Costs Rise Faster Than Inflation. [(accessed on 20 June 2016)]. Available online: .
    1. Deen M.J. Information and communications technologies for elderly ubiquitous healthcare in a smart home. Pers. Ubiquitous Comput. 2015;19:573–599. doi: 10.1007/s00779-015-0856-x.
    1. Agoulmine N., Deen M., Lee J.-S., Meyyappan M. U-Health Smart Home. IEEE Nanotechnol. Mag. 2011;5:6–11. doi: 10.1109/MNANO.2011.941951.
    1. Wang H., Choi H.-S., Agoulmine N., Deen M.J., Hong J.W.-K. Information-based sensor tasking wireless body area networks in U-health systems; Proceedings of the 2010 International Conference on Network and Service Management; Niagara Falls, ON, Canada. 25–29 October 2010; pp. 517–522.
    1. Pantelopoulos A., Bourbakis N. A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis. IEEE Trans. Syst. Man Cybern. C. 2010;40:1–12. doi: 10.1109/TSMCC.2009.2032660.
    1. Nemati E., Deen M., Mondal T. A wireless wearable ECG sensor for long-term applications. IEEE Commun. Mag. 2012;50:36–43. doi: 10.1109/MCOM.2012.6122530.
    1. Hong Y., Kim I., Ahn S., Kim H. Mobile health monitoring system based on activity recognition using accelerometer. Simul. Model. Pract. Theory. 2010;18:446–455. doi: 10.1016/j.simpat.2009.09.002.
    1. Ullah S., Higgins H., Braem B., Latre B., Blondia C., Moerman I., Saleem S., Rahman Z., Kwak K. A Comprehensive Survey of Wireless Body Area Networks. J. Med. Syst. 2012;36:1065–1094. doi: 10.1007/s10916-010-9571-3.
    1. Al Ameen M., Liu J., Kwak K. Security and Privacy Issues in Wireless Sensor Networks for Healthcare Applications. J. Med. Syst. 2012;36:93–101. doi: 10.1007/s10916-010-9449-4.
    1. Castillejo P., Martinez J., Rodriguez-Molina J., Cuerva A. Integration of wearable devices in a wireless sensor network for an E-health application. IEEE Wirel. Commun. 2013;20:38–49. doi: 10.1109/MWC.2013.6590049.
    1. Dementyev A., Hodges S., Taylor S., Smith J. Power consumption analysis of Bluetooth Low Energy, ZigBee and ANT sensor nodes in a cyclic sleep scenario; Proceedings of the 2013 IEEE International Wireless Symposium (IWS); Beijing, China. 14–18 April 2013; pp. 1–4.
    1. Suzuki T., Tanaka H., Minami S., Yamada H., Miyata T. Wearable wireless vital monitoring technology for smart health care; Proceedings of the 2013 7th International Symposium on Medical Information and Communication Technology (ISMICT); Tokyo, Japan. 6–8 March 2013; pp. 1–4.
    1. Malhi K., Mukhopadhyay S., Schnepper J., Haefke M., Ewald H. A Zigbee-Based Wearable Physiological Parameters Monitoring System. IEEE Sens. J. 2012;12:423–430. doi: 10.1109/JSEN.2010.2091719.
    1. Valchinov E., Antoniou A., Rotas K., Pallikarakis N. Wearable ECG System for Health and Sports Monitoring; Proceedings of the 4th International Conference on Wireless Mobile Communication and Healthcare—“Transforming Healthcare through Innovations in Mobile and Wireless Technologies”; Athens, Greece. 3–5 November 2014; pp. 63–66.
    1. Mehmood N.Q., Culmone R. An ANT Protocol Based Health Care System; Proceedings of the 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops; Guwangiu, Korea. 24–27 March 2015; pp. 193–198.
    1. Coskun V., Ozdenizci B., Ok K. A Survey on Near Field Communication (NFC) Technology. Wirel. Pers. Commun. 2013;71:2259–2294. doi: 10.1007/s11277-012-0935-5.
    1. Pang Z., Zheng L., Tian J., Kao-Walter S., Dubrova E., Chen Q. Design of a terminal solution for integration of in-home health care devices and services towards the Internet-of-Things. Enterp. Inf. Syst. 2013;9:86–116. doi: 10.1080/17517575.2013.776118.
    1. Corchado J., Bajo J., Abraham A. GerAmi: Improving Healthcare Delivery in Geriatric Residences. IEEE Intell. Syst. 2008;23:19–25. doi: 10.1109/MIS.2008.27.
    1. Stav E., Walderhaug S., Mikalsen M., Hanke S., Benc I. Development and evaluation of SOA-based AAL services in real-life environments: A case study and lessons learned. Int. J. Med. Inform. 2013;82:e269–e293. doi: 10.1016/j.ijmedinf.2011.03.007.
    1. Vaishnav S., Stevenson R., Marchant B., Lagi K., Ranjadayalan K., Timmis A.D. Relation between heart rate variability early after acute myocardial infarction and long-term mortality. Am. J. Cardiol. 1994;73:653–657. doi: 10.1016/0002-9149(94)90928-8.
    1. Bigger J.T., Fleiss J.L., Kleiger R., Miller J.P., Rolnitzky L.M. The relationships among ventricular arrhythmias, left ventricular dysfunction, and mortality in the 2 years after myocardial infarction. Circulation. 1984;69:250–258. doi: 10.1161/01.CIR.69.2.250.
    1. Kleiger R.E., Miller J., Bigger J., Moss A.J. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 1987;59:256–262. doi: 10.1016/0002-9149(87)90795-8.
    1. Hadjem M., Salem O., Nait-Abdesselam F. An ECG monitoring system for prediction of cardiac anomalies using WBAN; Proceedings of the 2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom); Natal, Brazil. 15–18 October 2014.
    1. Andreoni G., Perego P., Standoli C. Wearable monitoring of elderly in an ecologic setting: The SMARTA project. [(accessed on 5 January 2017)]. Available online: .
    1. Tseng K.C., Lin B.-S., Liao L.-D., Wang Y.-T., Wang Y.-L. Development of a Wearable Mobile Electrocardiogram Monitoring System by Using Novel Dry Foam Electrodes. IEEE Syst. J. 2014;8:900–906. doi: 10.1109/JSYST.2013.2260620.
    1. Lee J., Heo J., Lee W., Lim Y., Kim Y., Park K. Flexible Capacitive Electrodes for Minimizing Motion Artifacts in Ambulatory Electrocardiograms. Sensors. 2014;14:14732–14743. doi: 10.3390/s140814732.
    1. Komensky T., Jurcisin M., Ruman K., Kovac O., Laqua D., Husar P. Ultra-wearable capacitive coupled and common electrode-free ECG monitoring system; Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; San Diego, CA, USA. 28 August–1 September 2012; pp. 1594–1597.
    1. Park J.-H., Jang D.-G., Park J., Youm S.-K. Wearable Sensing of In-Ear Pressure for Heart Rate Monitoring with a Piezoelectric Sensor. Sensors. 2015;15:23402–23417. doi: 10.3390/s150923402.
    1. Shu Y., Li C., Wang Z., Mi W., Li Y., Ren T.-L. A Pressure sensing system for heart rate monitoring with polymer-based pressure sensors and an anti-interference post processing circuit. Sensors. 2015;15:3224–3235. doi: 10.3390/s150203224.
    1. Yoon S., Cho Y.-H. A Skin-attachable Flexible Piezoelectric Pulse Wave Energy Harvester. J. Phys. Conf. Ser. 2014;557:012026. doi: 10.1088/1742-6596/557/1/012026.
    1. Tajitsu Y. Piezoelectret sensor made from an electro-spun fluoropolymer and its use in a wristband for detecting heart-beat signals. IEEE Trans. Dielect. Electr. Insul. 2015;22:1355–1359. doi: 10.1109/TDEI.2015.7116322.
    1. Izumi S., Yamashita K., Nakano M., Kawaguchi H., Kimura H., Marumoto K., Fuchikami T., Fujimori Y., Nakajima H., Shiga T., et al. A Wearable Healthcare System With a 13.7 µA Noise Tolerant ECG Processor. IEEE Trans. Biomed. Circuits Syst. 2015;9:733–742. doi: 10.1109/TBCAS.2014.2362307.
    1. He D.D., Sodini C.G. A 58 nW ECG ASIC With Motion-Tolerant Heartbeat Timing Extraction for Wearable Cardiovascular Monitoring. IEEE Trans. Biomed. Circuits Syst. 2015;9:370–376. doi: 10.1109/TBCAS.2014.2346761.
    1. Helleputte N.V., Kim S., Kim H., Kim J.P., Hoof C.V., Yazicioglu R.F. A 160 μA biopotential acquisition ASIC with fully integrated IA and motion-artifact suppression; Proceedings of the 2012 IEEE International Solid-State Circuits Conference; San Francisco, CA, USA. 19–23 February 2012; pp. 552–561.
    1. Mulroy S., Gronley J., Weiss W., Newsam C., Perry J. Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke. Gait Posture. 2003;18:114–125. doi: 10.1016/S0966-6362(02)00165-0.
    1. Snijders A.H., Warrenburg B.P.V.D., Giladi N., Bloem B.R. Neurological gait disorders in elderly people: Clinical approach and classification. Lancet Neurol. 2007;6:63–74. doi: 10.1016/S1474-4422(06)70678-0.
    1. Coutinho E.S.F., Bloch K.V., Coeli C.M. One-year mortality among elderly people after hospitalization due to fall-related fractures: Comparison with a control group of matched elderly. Cadernos de Saúde Pública. 2012;28:801–805. doi: 10.1590/S0102-311X2012000400019.
    1. Zhou Z., Dai W., Eggert J., Giger J., Keller J., Rantz M., He Z. A real-time system for in-home activity monitoring of elders; Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Minneapolis, MN, USA. 3–6 September 2009; pp. 6115–6118.
    1. Ni B., Wang G., Moulin P. Consumer Depth Cameras for Computer Vision. Springer; London, UK: 2013. RGBD-HuDaAct: A Color-Depth Video Database for Human Daily Activity Recognition; pp. 193–208.
    1. Derawi M., Bours P. Gait and activity recognition using commercial phones. Comput. Secur. 2013;39:137–144. doi: 10.1016/j.cose.2013.07.004.
    1. De D., Bharti P., Das S.K., Chellappan S. Multimodal Wearable Sensing for Fine-Grained Activity Recognition in Healthcare. IEEE Internet Comput. 2015;19:26–35. doi: 10.1109/MIC.2015.72.
    1. Bertolotti G.M., Cristiani A.M., Colagiorgio P., Romano F., Bassani E., Caramia N., Ramat S. A Wearable and Modular Inertial Unit for Measuring Limb Movements and Balance Control Abilities. IEEE Sens. J. 2016;16:790–797. doi: 10.1109/JSEN.2015.2489381.
    1. Panahandeh G., Mohammadiha N., Leijon A., Handel P. Continuous Hidden Markov Model for Pedestrian Activity Classification and Gait Analysis. IEEE Trans. Instrum. Meas. 2013;62:1073–1083. doi: 10.1109/TIM.2012.2236792.
    1. Bejarano N.C., Ambrosini E., Pedrocchi A., Ferrigno G., Monticone M., Ferrante S. A Novel Adaptive, Real-Time Algorithm to Detect Gait Events from Wearable Sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 2015;23:413–422. doi: 10.1109/TNSRE.2014.2337914.
    1. Ngo T.T., Makihara Y., Nagahara H., Mukaigawa Y., Yagi Y. Similar gait action recognition using an inertial sensor. Pattern Recognit. 2015;48:1289–1301. doi: 10.1016/j.patcog.2014.10.012.
    1. Alshurafa N., Xu W., Liu J.J., Huang M.-C., Mortazavi B., Roberts C.K., Sarrafzadeh M. Designing a Robust Activity Recognition Framework for Health and Exergaming Using Wearable Sensors. IEEE J. Biomed. Health Inform. 2014;18:1636–1646. doi: 10.1109/JBHI.2013.2287504.
    1. Ghasemzadeh H., Amini N., Saeedi R., Sarrafzadeh M. Power-Aware Computing in Wearable Sensor Networks: An Optimal Feature Selection. IEEE Trans. Mob. Comput. 2015;14:800–812. doi: 10.1109/TMC.2014.2331969.
    1. Chen B., Zheng E., Wang Q., Wang L. A new strategy for parameter optimization to improve phase-dependent locomotion mode recognition. Neurocomputing. 2015;149:585–593. doi: 10.1016/j.neucom.2014.08.016.
    1. Cristiani A.M., Bertolotti G.M., Marenzi E., Ramat S. An Instrumented Insole for Long Term Monitoring Movement, Comfort, and Ergonomics. IEEE Sens. J. 2014;14:1564–1572. doi: 10.1109/JSEN.2014.2299063.
    1. Tang W., Sazonov E.S. Highly Accurate Recognition of Human Postures and Activities through Classification with Rejection. IEEE J. Biomed. Health Inform. 2014;18:309–315. doi: 10.1109/JBHI.2013.2287400.
    1. Friedman N., Rowe J.B., Reinkensmeyer D.J., Bachman M. The Manumeter: A Wearable Device for Monitoring Daily Use of the Wrist and Fingers. IEEE J. Biomed. Health Inform. 2014;18:1804–1812. doi: 10.1109/JBHI.2014.2329841.
    1. El-Gohary M., Mcnames J. Human Joint Angle Estimation with Inertial Sensors and Validation with a Robot Arm. IEEE Trans. Biomed. Eng. 2015;62:1759–1767. doi: 10.1109/TBME.2015.2403368.
    1. Wan E., Merwe R.V.D. The unscented Kalman filter for nonlinear estimation; Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No. 00EX373); Lake Louise, AB, Canada. 1–4 October 2000; pp. 153–158.
    1. Hsu Y.-L., Chung P.-C., Wang W.-H., Pai M.-C., Wang C.-Y., Lin C.-W., Wu H.-L., Wang J.-S. Gait and Balance Analysis for Patients with Alzheimer’s Disease Using an Inertial-Sensor-Based Wearable Instrument. IEEE J. Biomed. Health Inform. 2014;18:1822–1830. doi: 10.1109/JBHI.2014.2325413.
    1. Pierleoni P., Belli A., Palma L., Pellegrini M., Pernini L., Valenti S. A High Reliability Wearable Device for Elderly Fall Detection. IEEE Sens. J. 2015;15:4544–4553. doi: 10.1109/JSEN.2015.2423562.
    1. Lack L.C., Gradisar M., Someren E.J.V., Wright H.R., Lushington K. The relationship between insomnia and body temperatures. Sleep Med. Rev. 2008;12:307–317. doi: 10.1016/j.smrv.2008.02.003.
    1. Kräuchi K., Konieczka K., Roescheisen-Weich C., Gompper B., Hauenstein D., Schoetzau A., Fraenkl S., Flammer J. Diurnal and menstrual cycles in body temperature are regulated differently: A 28-day ambulatory study in healthy women with thermal discomfort of cold extremities and controls. Chronobiol. Int. 2013;31:102–113.
    1. Coyne M.D., Kesick C.M., Doherty T.J., Kolka M.A., Stephenson L.A. Circadian rhythm changes in core temperature over the menstrual cycle: Method for noninvasive monitoring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000;279:R1316–R1320.
    1. Reith J., Jorgensen H.S., Pedersen P.M., Nakamaya H., Jeppesen L.L., Olsen T.S., Raaschou H.O. Body temperature in acute stroke: Relation to stroke severity, infarct size, mortality, and outcome. Lancet. 1996;347:422–425. doi: 10.1016/S0140-6736(96)90008-2.
    1. Wright K.P., Hull J.T., Czeisler C.A. Relationship between alertness, performance, and body temperature in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002;283:R1370–R1377. doi: 10.1152/ajpregu.00205.2002.
    1. Shibasaki K., Suzuki M., Mizuno A., Tominaga M. Effects of Body Temperature on Neural Activity in the Hippocampus: Regulation of Resting Membrane Potentials by Transient Receptor Potential Vanilloid 4. J. Neurosci. 2007;27:1566–1575. doi: 10.1523/JNEUROSCI.4284-06.2007.
    1. Buller M.J., Tharion W.J., Cheuvront S.N., Montain S.J., Kenefick R.W., Castellani J., Latzka W.A., Roberts W.S., Richter M., Jenkins O.C., et al. Estimation of human core temperature from sequential heart rate observations. Physiol. Meas. 2013;34:781–798. doi: 10.1088/0967-3334/34/7/781.
    1. Buller M.J., Tharion W.J., Hoyt R.W., Jenkins O.C. Estimation of human internal temperature from wearable physiological sensors; Proceedings of the 22nd Conference on Innovative Applications of Artificial Intelligence (IAAI); Atlanta, GA, USA. 11–15 July 2010; pp. 1763–1768.
    1. Oguz P., Ertas G. Wireless dual channel human body temperature measurement device; Proceedings of the 2013 International Conference on Electronics, Computer and Computation (ICECCO); Ankara, Turkey. 7–9 November 2013; pp. 52–55.
    1. Boano C.A., Lasagni M., Romer K., Lange T. Accurate Temperature Measurements for Medical Research Using Body Sensor Networks; Proceedings of the 2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops; Newport Beach, CA, USA. 28–31 March 2011; pp. 189–198.
    1. Boano C.A., Lasagni M., Romer K. Non-invasive measurement of core body temperature in Marathon runners; Proceedings of the 2013 IEEE International Conference on Body Sensor Networks; Cambridge, MA, USA. 6–9 May 2013; pp. 1–6.
    1. Chen W., Dols S., Oetomo S.B., Feijs L. Monitoring body temperature of newborn infants at neonatal intensive care units using wearable sensors; Proceedings of the Fifth International Conference on Body Area Networks—BodyNets ′10; Corfu, Greece. 10–12 September 2010; pp. 188–194.
    1. Mansor H., Shukor M.H.A., Meskam S.S., Rusli N.Q.A.M., Zamery N.S. Body temperature measurement for remote health monitoring system; Proceedings of the 2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA); Kuala Lumpur, Malaysia. 25–27 November 2013; pp. 1–5.
    1. Rahman M.A., Barai A., Islam M.A., Hashem M.A. Development of a device for remote monitoring of heart rate and body temperature; Proceedings of the 2012 15th International Conference on Computer and Information Technology (ICCIT); Chittagong, Bangladesh. 22–24 December 2012; pp. 411–416.
    1. Miah M.A., Kabir M.H., Tanveer M.S.R., Akhand M.A.H. Continuous heart rate and body temperature monitoring system using Arduino UNO and Android device; Proceedings of the 2015 2nd International Conference on Electrical Information and Communication Technologies (EICT); Khulna, Bangladesh. 10–12 December 2015; pp. 183–188.
    1. Vaz A., Ubarretxena A., Zalbide I., Pardo D., Solar H., Garcia-Alonso A., Berenguer R. Full Passive UHF Tag With a Temperature Sensor Suitable for Human Body Temperature Monitoring. IEEE Trans. Circuits Syst. II. 2010;57:95–99. doi: 10.1109/TCSII.2010.2040314.
    1. Milici S., Amendola S., Bianco A., Marrocco G. Epidermal RFID passive sensor for body temperature measurements; Proceedings of the 2014 IEEE RFID Technology and Applications Conference (RFID-TA); Tampere, Finland. 8–9 September 2014; pp. 140–144.
    1. Sim S.Y., Lee W.K., Baek H.J., Park K.S. A nonintrusive temperature measuring system for estimating deep body temperature in bed; Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; San Diego, CA, USA. 28 August–1 September 2012; pp. 3460–3463.
    1. Kimberger O., Thell R., Schuh M., Koch J., Sessler D.I., Kurz A. Accuracy and precision of a novel non-invasive core thermometer. Br. J. Anaesth. 2009;103:226–231. doi: 10.1093/bja/aep134.
    1. Kitamura K.-I., Zhu X., Chen W., Nemoto T. Development of a new method for the noninvasive measurement of deep body temperature without a heater. Med. Eng. Phys. 2010;32:1–6. doi: 10.1016/j.medengphy.2009.09.004.
    1. Jänig W. Integrative Action of the Autonomic Nervous System: Neurobiology of Homeostasis. Cambridge University Press; Cambridge, UK: 2008.
    1. Critchley H.D. Book Review: Electrodermal Responses: What Happens in the Brain? Neuroscientist. 2002;8:132–142. doi: 10.1177/107385840200800209.
    1. Bakker J., Pechenizkiy M., Sidorova N. What's your current stress level? Detection of stress patterns from GSR sensor data; 2011 IEEE 11th International Conference on Data Mining Workshops; Vancouver, BC, Canada. 11–14 December 2011; pp. 573–580.
    1. Bonato P. Wearable sensors/systems and their impact on biomedical engineering. IEEE Eng. Med. Biol. Mag. 2003;22:18–20. doi: 10.1109/MEMB.2003.1213622.
    1. Sano A., Picard R.W. Stress Recognition Using Wearable Sensors and Mobile Phones; Proceedings of the 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction; Geneva, Switzerland. 2–5 September 2013; pp. 671–676.
    1. Poh M.-Z., Swenson N.C., Picard R.W. A Wearable Sensor for Unobtrusive, Long-Term Assessment of Electrodermal Activity. IEEE Trans. Biomed. Eng. 2010;57:1243–1252.
    1. Sugathan A., Roy G.G., Kirthyvijay G.J., Thomson J. Application of arduino based platform for wearable health monitoring system; Proceedings of the 2013 IEEE 1st International Conference on Condition Assessment Techniques in Electrical Systems (CATCON); Kolkata, India. 6–8 December 2013; pp. 1–5.
    1. Kim J., Kwon S., Seo S., Park K. Highly wearable galvanic skin response sensor using flexible and conductive polymer foam; Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Chicago, IL, USA. 26–30 August 2014; pp. 6631–6634.
    1. Garbarino M., Lai M., Tognetti S., Picard R., Bender D. Empatica E3—A wearable wireless multi-sensor device for real-time computerized biofeedback and data acquisition; Proceedings of the 4th International Conference on Wireless Mobile Communication and Healthcare—Transforming healthcare through innovations in mobile and wireless technologies; Athens, Greece. 3–5 November 2014; pp. 39–42.
    1. Guo R., Li S., He L., Gao W., Qi H., Owens G. Pervasive and Unobtrusive Emotion Sensing for Human Mental Health; Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare; Venice, Italy. 5–8 May 2013; pp. 436–439.
    1. Setz C., Arnrich B., Schumm J., Marca R.L., Troster G., Ehlert U. Discriminating Stress From Cognitive Load Using a Wearable EDA Device. IEEE Trans. Inform. Technol. Biomed. 2010;14:410–417. doi: 10.1109/TITB.2009.2036164.
    1. Crifaci G., Billeci L., Tartarisco G., Balocchi R., Pioggia G., Brunori E., Maestro S., Morales M.A. ECG and GSR measure and analysis using wearable systems: Application in anorexia nervosa adolescents; Proceedings of the 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA); Trieste, Italy. 4–6 September 2013; pp. 499–504.
    1. Subramanya K., Bhat V.V., Kamath S. A wearable device for monitoring galvanic skin response to accurately predict changes in blood pressure indexes and cardiovascular dynamics; Proceedings of the 2013 Annual IEEE India Conference (INDICON); Mumbai, India. 13–15 December 2013; pp. 1–4.
    1. Yoon Y., Cho J.H., Yoon G. Non-constrained Blood Pressure Monitoring Using ECG and PPG for Personal Healthcare. J. Med. Syst. 2008;33:261–266. doi: 10.1007/s10916-008-9186-0.
    1. Blacher J., Staessen J.A., Girerd X., Gasowski J., Thijs L., Liu L., Wang J.G., Fagard R.H., Safar M.E. Pulse Pressure Not Mean Pressure Determines Cardiovascular Risk in Older Hypertensive Patients. Arch. Intern. Med. 2000;160:1085–1089. doi: 10.1001/archinte.160.8.1085.
    1. Baker C. Method and System for Controlled Maintenance of Hypoxia for Therapeutic or Diagnostic Purposes. No. US 11/241,062. U.S. Patent. 2005 Sep 30;
    1. O’driscoll B.R., Howard L.S., Davison A.G. BTS guideline for emergency oxygen use in adult patients. Thorax. 2008;63:vi1–vi68. doi: 10.1136/thx.2008.102947.
    1. Duun S.B., Haahr R.G., Birkelund K., Thomsen E.V. A Ring-Shaped Photodiode Designed for Use in a Reflectance Pulse Oximetry Sensor in Wireless Health Monitoring Applications. IEEE Sens. J. 2010;10:261–268. doi: 10.1109/JSEN.2009.2032925.
    1. Chen W., Ayoola I., Oetomo S.B., Feijs L. Non-invasive blood oxygen saturation monitoring for neonates using reflectance pulse oximeter; Proceedings of the 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010); Dresden, Germany. 8–12 March 2010; pp. 1530–1535.
    1. Li K., Warren S. A Wireless Reflectance Pulse Oximeter with Digital Baseline Control for Unfiltered Photoplethysmograms. IEEE Trans. Biomed. Circuits Syst. 2012;6:269–278. doi: 10.1109/TBCAS.2011.2167717.
    1. Guo D., Tay F.E., Xu L., Yu L., Nyan M., Chong F., Yap K., Xu B. A Long-term Wearable Vital Signs Monitoring System using BSN; Proceedings of the 2008 11th EUROMICRO Conference on Digital System Design Architectures, Methods and Tools; Parma, Italy. 3–5 September 2008; pp. 825–830.
    1. Petersen C., Chen T., Ansermino J., Dumont G. Design and Evaluation of a Low-Cost Smartphone Pulse Oximeter. Sensors. 2013;13:16882–16893. doi: 10.3390/s131216882.
    1. Sola J., Castoldi S., Chetelat O., Correvon M., Dasen S., Droz S., Jacob N., Kormann R., Neumann V., Perrenoud A., et al. SpO2 Sensor Embedded in a Finger Ring: Design and implementation; Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society; New York, NY, USA. 31 August–3 September 2006; pp. 4295–4298.
    1. Cai Q., Sun J., Xia L., Zhao X. Implementation of a wireless pulse oximeter based on wrist band sensor; Proceedings of the 2010 3rd International Conference on Biomedical Engineering and Informatics; Yantai, China. 16–18 October 2010; pp. 1897–1900.
    1. Huang C.-Y., Chan M.-C., Chen C.-Y., Lin B.-S. Novel Wearable and Wireless Ring-Type Pulse Oximeter with Multi-Detectors. Sensors. 2014;14:17586–17599. doi: 10.3390/s140917586.
    1. Deen M.J., Basu P.K. Silicon Photonics—Fundamentals and Devices. John Wiley and Sons; Chichester, UK: 2012.
    1. Palubiak D., El-Desouki M.M., Marinov O., Deen M.J., Fang Q. High-speed, single-photon avalanche-photodiode imager for biomedical applications. IEEE Sens. J. 2011;11:2401–2412. doi: 10.1109/JSEN.2011.2123090.
    1. Tavakoli M., Turicchia L., Sarpeshkar R. An Ultra-Low-Power Pulse Oximeter Implemented With an Energy-Efficient Transimpedance Amplifier. IEEE Trans. Biomed. Circuits Syst. 2010;4:27–38. doi: 10.1109/TBCAS.2009.2033035.
    1. Mendelson Y., Duckworth R.J., Comtois G. A Wearable Reflectance Pulse Oximeter for Remote Physiological Monitoring; Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society; New York, NY, USA. 31 August–3 September 2006; pp. 912–915.
    1. Haahr R.G., Duun S.B., Toft M.H., Belhage B., Larsen J., Birkelund K., Thomsen E.V. An Electronic Patch for Wearable Health Monitoring by Reflectance Pulse Oximetry. IEEE Trans. Biomed. Circuits Syst. 2012;6:45–53. doi: 10.1109/TBCAS.2011.2164247.
    1. Scully C.G., Lee J., Meyer J., Gorbach A.M., Granquist-Fraser D., Mendelson Y., Chon K.H. Physiological Parameter Monitoring from Optical Recordings With a Mobile Phone. IEEE Trans. Biomed. Eng. 2012;59:303–306. doi: 10.1109/TBME.2011.2163157.
    1. Buxi D., Redouté J.M., Yuce M.R. A survey on signals and systems in ambulatory blood pressure monitoring using pulse transit time. Physiol. Meas. 2015;36:R1–R26. doi: 10.1088/0967-3334/36/3/R1.
    1. Mccombie D.B., Reisner A.T., Asada H.H. Adaptive blood pressure estimation from wearable PPG sensors using peripheral artery pulse wave velocity measurements and multi-channel blind identification of local arterial dynamics; Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society; New York, NY, USA. 31 August–3 September 2006; pp. 3521–3524.
    1. Puke S., Suzuki T., Nakayama K., Tanaka H., Minami S. Blood pressure estimation from pulse wave velocity measured on the chest; Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Osaka, Japan. 3–7 July 2013; pp. 6107–6110.
    1. Zheng Y.-L., Yan B.P., Zhang Y.-T., Poon C.C.Y. An Armband Wearable Device for Overnight and Cuff-Less Blood Pressure Measurement. IEEE Trans. Biomed. Eng. 2014;61:2179–2186. doi: 10.1109/TBME.2014.2318779.
    1. Lin H., Xu W., Guan N., Ji D., Wei Y., Yi W. Noninvasive and Continuous Blood Pressure Monitoring Using Wearable Body Sensor Networks. IEEE Intell. Syst. 2015;30:38–48. doi: 10.1109/MIS.2015.72.
    1. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007;28:R1–R39. doi: 10.1088/0967-3334/28/3/R01.
    1. Madhav K.V., Ram M.R., Krishna E.H., Komalla N.R., Reddy K.A. Estimation of respiration rate from ECG, BP and PPG signals using empirical mode decomposition; Proceedings of the 2011 IEEE International Instrumentation and Measurement Technology Conference; Hangzhou, China. 10–12 May 2011; pp. 1–4.
    1. Prathyusha B., Rao T.S., Asha D. Extraction of Respiratory Rate from Ppg Signals Using Pca and Emd. Int. J. Res. Eng. Technol. 2012;1:164–184.
    1. Madhav K.V., Raghuram M., Krishna E.H., Komalla N.R., Reddy K.A. Use of multi scale PCA for extraction of respiratory activity from photoplethysmographic signals; Proceedings of the 2012 IEEE International Instrumentation and Measurement Technology Conference; Graz, Austria. 13–16 May 2012; pp. 1784–1787.
    1. Leonard P.A., Douglas J.G., Grubb N.R., Clifton D., Addison P.S., Watson J.N. A Fully Automated Algorithm for the Determination of Respiratory Rate from the Photoplethysmogram. J. Clin. Monit. Comput. 2006;20:33–36. doi: 10.1007/s10877-005-9007-7.
    1. Clifton D., Douglas J.G., Addison P.S., Watson J.N. Measurement of Respiratory Rate from the Photoplethysmogram in Chest Clinic Patients. J. Clin. Monit. Comput. 2006;21:55–61. doi: 10.1007/s10877-006-9059-3.
    1. Cherenack K., Pieterson L.V. Smart textiles: Challenges and opportunities. J. Appl. Phys. 2012;112:091301. doi: 10.1063/1.4742728.
    1. Chan M., Estève D., Fourniols J.-Y., Escriba C., Campo E. Smart wearable systems: Current status and future challenges. Artif. Intell. Med. 2012;56:137–156. doi: 10.1016/j.artmed.2012.09.003.
    1. Sibinski M., Jakubowska M., Sloma M. Flexible Temperature Sensors on Fibers. Sensors. 2010;10:7934–7946. doi: 10.3390/s100907934.
    1. Zeng W., Shu L., Li Q., Chen S., Wang F., Tao X.-M. Fiber-based wearable electronics: A review of materials, fabrication, devices, applications. Adv. Mater. 2014;26:5310–5336. doi: 10.1002/adma.201400633.
    1. Park S., Vosguerichian M., Bao Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale. 2013;5:1727–1752. doi: 10.1039/c3nr33560g.
    1. Rai P., Kumar P.S., Oh S., Kwon H., Mathur G.N., Varadan V.K., Agarwal M.P. Smart healthcare textile sensor system for unhindered-pervasive health monitoring. Nanosens. Biosens. Info-Tech Sens. Syst. 2012;8344E
    1. Rai P., Oh S., Shyamkumar P., Ramasamy M., Harbaugh R.E., Varadan V.K. Nano-Bio-Textile Sensors with Mobile Wireless Platform for Wearable Health Monitoring of Neurological and Cardiovascular Disorders. J. Electrochem. Soc. 2014;161:B3116–B3150. doi: 10.1149/2.012402jes.
    1. Fuhrhop S., Lamparth S., Heuer S. A textile integrated long-term ECG monitor with capacitively coupled electrodes; Proceedings of the 2009 IEEE Biomedical Circuits and Systems Conference; Beijing, China. 26–28 Novemeber 2009; pp. 21–24.
    1. Ouwerkerk M., Pasveer F., Langereis G. Probing Experience. Springer; Dordrecht, The Netherlands: 2008. Unobtrusive Sensing of Psychophysiological Parameters; pp. 163–193.
    1. Merritt C., Nagle H., Grant E. Fabric-Based Active Electrode Design and Fabrication for Health Monitoring Clothing. IEEE Trans. Inform. Technol. Biomed. 2009;13:274–280. doi: 10.1109/TITB.2009.2012408.
    1. Fonseca C., Cunha J.P.S., Martins R.E., Ferreira V.M., Sa J.P.M.D., Barbosa M.A., Silva A.M.D. A Novel Dry Active Electrode for EEG Recording. IEEE Trans. Biomed. Eng. 2007;54:162–165. doi: 10.1109/TBME.2006.884649.
    1. Keller T., Kuhn A. Electrodes for transcutaneous (surface) electrical stimulation. J. Autom. Control. 2008;18:35–45. doi: 10.2298/JAC0802035K.
    1. Li L., Au W.M., Li Y., Wan K.M., Wan S.H., Wong K.S. Design of Intelligent Garment with Transcutaneous Electrical Nerve Stimulation Function Based on the Intarsia Knitting Technique. Text. Res. J. 2009;80:279–286. doi: 10.1177/0040517509105276.
    1. Malešević N.M., Maneski L.Z., Ilić V., Jorgovanović N., Bijelić G., Keller T., Popović D.B. A multi-pad electrode based functional electrical stimulation system for restoration of grasp. J. Neuroeng. Rehabil. 2012;9:66. doi: 10.1186/1743-0003-9-66.
    1. Paul G., Torah R., Beeby S., Tudor J. Novel active electrodes for ECG monitoring on woven textiles fabricated by screen and stencil printing. Sens. Actuators A Phys. 2015;221:60–66. doi: 10.1016/j.sna.2014.10.030.
    1. Lim Z., Chia Z., Kevin M., Wong A., Ho G. A facile approach towards ZnO nanorods conductive textile for room temperature multifunctional sensors. Sens. Actuators B Chem. 2010;151:121–126. doi: 10.1016/j.snb.2010.09.037.
    1. Inoh T., Yoon S., Kim T.E., Wi H., Kim K.J., Woo E.J., Sadleir R.J. Nanofiber Web Textile Dry Electrodes for Long-Term Biopotential Recording. IEEE Trans. Biomed. Circuits Syst. 2013;7:204–211. doi: 10.1109/TBCAS.2012.2201154.
    1. Shaikh T.N., Chaudhari S., Patel B.H., Patel M. Study of conductivity behavior of nano copper loaded nonwoven polypropylene based textile electrode for ECG. Int. J. Emerg. Sci. Eng. 2015;3:11–14.
    1. Rattfält L., Björefors F., Nilsson D., Wang X., Norberg P., Ask P. Properties of screen printed electrocardiography smartware electrodes investigated in an electro-chemical cell. Biomed. Eng. Online. 2013;12:64. doi: 10.1186/1475-925X-12-64.
    1. Cho G., Jeong K., Paik M.J., Kwun Y., Sung M. Performance Evaluation of Textile-Based Electrodes and Motion Sensors for Smart Clothing. IEEE Sens. J. 2011;11:3183–3193. doi: 10.1109/JSEN.2011.2167508.
    1. Mestrovic M.A., Helmer R.J.N., Kyratzis L., Kumar D. Preliminary study of dry knitted fabric electrodes for physiological monitoring; Proceedings of the 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information; Melbourne, Australia. 3–6 December 2007; pp. 601–606.
    1. Cho H., Lim H., Cho S., Lee J.-W. Development of textile electrode for electrocardiogram measurement based on conductive electrode configuration. Fibers Polym. 2015;16:2148–2157. doi: 10.1007/s12221-015-5317-7.
    1. Weder M., Hegemann D., Amberg M., Hess M., Boesel L., Abächerli R., Meyer V., Rossi R. Embroidered Electrode with Silver/Titanium Coating for Long-Term ECG Monitoring. Sensors. 2015;15:1750–1759. doi: 10.3390/s150101750.
    1. Jiang S.Q., Newton E., Yuen C.W.M., Kan C.W. Chemical silver plating on polyester/cotton blended fabric. J. Appl. Polym. Sci. 2006;100:4383–4387. doi: 10.1002/app.23895.
    1. Xue P., Tao X.M. Morphological and electromechanical studies of fibers coated with electrically conductive polymer. J. Appl. Polym. Sci. 2005;98:1844–1854. doi: 10.1002/app.22318.
    1. Brevnov D.A. Electrodeposition of Porous Silver Films on Blanket and Patterned Aluminum—Copper Films. J. Electrochem. Soc. 2006;153:C249–C253. doi: 10.1149/1.2172550.
    1. Doezema D., Lunt M., Tandberg D. Cerumen Occlusion Lowers Infrared Tympanic Membrane Temperature Measurement. Acad. Emerg. Med. 1995;2:17–19. doi: 10.1111/j.1553-2712.1995.tb03072.x.
    1. Sund-Levander M., Grodzinsky E. Time for a change to assess and evaluate body temperature in clinical practice. Int. J. Nurs. Pract. 2009;15:241–249. doi: 10.1111/j.1440-172X.2009.01756.x.
    1. Togawa T. Body temperature measurement. Clin. Phys. Physiol. Meas. 1985;6:83–108. doi: 10.1088/0143-0815/6/2/001.
    1. Niedermann R., Wyss E., Annaheim S., Psikuta A., Davey S., Rossi R.M. Prediction of human core body temperature using non-invasive measurement methods. Int. J. Biometeorol. 2014;58:7–15. doi: 10.1007/s00484-013-0687-2.
    1. Imran M., Bhattacharyya A. Thermal response of an on-chip assembly of RTD heaters, sputtered sample and microthermocouples. Sens. Actuators A Phys. 2005;121:306–320. doi: 10.1016/j.sna.2005.02.019.
    1. Jeon J., Lee H.-B.-R., Bao Z. Flexible Wireless Temperature Sensors Based on Ni Microparticle-Filled Binary Polymer Composites. Adv. Mater. 2012;25:850–855. doi: 10.1002/adma.201204082.
    1. Ziegler S., Frydrysiak M. Initial research into the structure and working conditions of textile thermocouples. Fibres Text. East. Eur. 2009;17:84–88.
    1. Houdas Y., Ring E.F.J. Human Body Temperature: Its Measurement and Regulation. Springer Science & Business Media; New York, NY, USA: 1982.
    1. Cooper K., Veale W., Malkinson T. Measurements of Body Temperature. Methods Psychobiol. Adv. Lab. Tech. Neuropsychol. 1977;3:149–187.
    1. Husain M.D., Kennon R., Dias T. Design and fabrication of Temperature Sensing Fabric. J. Ind. Text. 2014;44:398–417. doi: 10.1177/1528083713495249.
    1. Kinkeldei T., Zysset C., Cherenack K., Troester G. Development and evaluation of temperature sensors for textile integration; Proceedings of IEEE Sensors 2009 Conference; Christchurch, New Zealand. 25–28 October 2009; pp. 1580–1583.
    1. Soukup R., Hamacek A., Mracek L., Reboun J. Textile based temperature and humidity sensor elements for healthcare applications; Proceedings of the 2014 37th International Spring Seminar on Electronics Technology; Dresden, Germany. 7–11 May 2014; pp. 407–411.
    1. Bielska S., Sibinski M., Lukasik A. Polymer temperature sensor for textronic applications. Mater. Sci. Eng. B. 2009;165:50–52. doi: 10.1016/j.mseb.2009.07.014.
    1. Dankoco M., Tesfay G., Benevent E., Bendahan M. Temperature sensor realized by inkjet printing process on flexible substrate. Mater. Sci. Eng. B. 2016;205:1–5. doi: 10.1016/j.mseb.2015.11.003.
    1. Honda W., Harada S., Arie T., Akita S., Takei K. Printed wearable temperature sensor for health monitoring; Proceedings of the 2014 IEEE Sensors; Valencia, Spain. 2–5 November 2014; pp. 2227–2229.
    1. Yang J., Wei D., Tang L., Song X., Luo W., Chu J., Gao T., Shi H., Du C. Wearable temperature sensor based on graphene nanowalls. RSC Adv. 2015;5:25609–25615. doi: 10.1039/C5RA00871A.
    1. Courbat J., Kim Y., Briand D., Rooij N.D. Inkjet printing on paper for the realization of humidity and temperature sensors; Proceedings of the 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference; Beijing, China. 5–9 June 2011; pp. 1356–1359.
    1. Aliane A., Fischer V., Galliari M., Tournon L., Gwoziecki R., Serbutoviez C., Chartier I., Coppard R. Enhanced printed temperature sensors on flexible substrate. Microelectron. J. 2014;45:1621–1626. doi: 10.1016/j.mejo.2014.08.011.
    1. Li H., Yang H., Li E., Liu Z., Wei K. Wearable sensors in intelligent clothing for measuring human body temperature based on optical fiber Bragg grating. Opt. Express. 2012;20:11740–11752. doi: 10.1364/OE.20.011740.
    1. Rajdi N.N.Z.M., Bakira A.A., Saleh S.M., Wicaksono D.H. Textile-based Micro Electro Mechanical System (MEMS) Accelerometer for Pelvic Tilt Mesurement. Procedia Eng. 2012;41:532–537. doi: 10.1016/j.proeng.2012.07.208.
    1. Amjadi M., Pichitpajongkit A., Lee S., Ryu S., Park I. Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire–Elastomer Nanocomposite. ACS Nano. 2014;8:5154–5163. doi: 10.1021/nn501204t.
    1. Lee J., Kim S., Lee J., Yang D., Park B.C., Ryu S., Park I. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale. 2014;6:11932–11939. doi: 10.1039/C4NR03295K.
    1. Shyr T.-W., Shie J.-W., Jiang C.-H., Li J.-J. A Textile-Based Wearable Sensing Device Designed for Monitoring the Flexion Angle of Elbow and Knee Movements. Sensors. 2014;14:4050–4059. doi: 10.3390/s140304050.
    1. Zhang H. Flexible textile-based strain sensor induced by contacts. Meas. Sci. Technol. 2015;26:105102. doi: 10.1088/0957-0233/26/10/105102.
    1. Atalay O., Kennon W., Husain M. Textile-Based Weft Knitted Strain Sensors: Effect of Fabric Parameters on Sensor Properties. Sensors. 2013;13:11114–11127. doi: 10.3390/s130811114.
    1. Atalay O., Kennon W. Knitted Strain Sensors: Impact of Design Parameters on Sensing Properties. Sensors. 2014;14:4712–4730. doi: 10.3390/s140304712.
    1. Seyedin S., Razal J.M., Innis P.C., Jeiranikhameneh A., Beirne S., Wallace G.G. Knitted Strain Sensor Textiles of Highly Conductive All-Polymeric Fibers. ACS Appl. Mater. Interfaces. 2015;7:21150–21158. doi: 10.1021/acsami.5b04892.
    1. Silva A.F.D., Pedro R., Paulo J., Higino J. Current Trends in Short- and Long-Period Fiber Gratings. InTech; Rijeka, Croatia: 2013. Photonic Sensors Based on Flexible Materials with FBGs for Use on Biomedical Applications; pp. 105–132.
    1. Krehel M., Rossi R., Bona G.-L., Scherer L. Characterization of Flexible Copolymer Optical Fibers for Force Sensing Applications. Sensors. 2013;13:11956–11968. doi: 10.3390/s130911956.
    1. Halonen T., Romero J., Melero J. GSM, GPRS and EDGE Performance: Evolution towards 3G/UMTS. John Wiley & Sons; Hoboken, NJ, USA: 2002.
    1. Salkintzis K. Mobile Internet: Enabling Technologies and Services. CRC Press; Boca Raton, FL, USA: 2004.
    1. Dahlman E., Parkvall S., Skold J., Beming P. 3G Evolution: HSPA and LTE for Mobile Broadband. Academic Press; Cambridge, MA, USA: 2010.
    1. Ren Y., Werner R., Pazzi N., Boukerche A. Monitoring patients via a secure and mobile healthcare system. IEEE Wirel. Commun. 2010;17:59–65. doi: 10.1109/MWC.2010.5416351.
    1. Jang C.S., Lee D.G., Han J.-W., Park J.H. Hybrid security protocol for wireless body area networks. Wirel. Commun. Mob. Comput. 2011;11:277–288. doi: 10.1002/wcm.884.
    1. Agrawal V. Security and Privacy Issues in Wireless Sensor Networks for Healthcare. Internet Things User-Centric IoT. 2015;36:223–228.
    1. Shoshani B., David R.B. Vertical Conductive Textile Traces and Methods of Knitting Thereof. No. US 14/646,971. U.S. Patent. 2013 Nov 23;
    1. Matsuhisa N., Kaltenbrunner M., Yokota T., Jinno H., Kuribara K., Sekitani T., Someya T. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 2015;6:7461. doi: 10.1038/ncomms8461.
    1. Parkova I., Vališevskis A., Ziemele I., Briedis U., Vilumsone A. Improvements of Smart Garment Electronic Contact System. Adv. Sci. Technol. 2013;80:90–95. doi: 10.4028/.
    1. Laine T.H., Lee C., Suk H. Mobile Gateway for Ubiquitous Health Care System Using ZigBee and Bluetooth; Proceedings of the 2014 Eighth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing; Birmingham, UK. 2–4 July 2014; pp. 139–145.
    1. Touati F., Tabish R. U-Healthcare System: State-of-the-Art Review and Challenges. J. Med. Syst. 2013;37:1–20. doi: 10.1007/s10916-013-9949-0.
    1. Johansson A., Shen W., Xu Y. An ANT Based Wireless Body Sensor Biofeedback Network for Medical E-Health Care; Proceedings of the 2011 7th International Conference on Wireless Communications, Networking and Mobile Computing; Wuhan, China. 23–25 September 2011; pp. 1–5.
    1. Savci H., Sula A., Wang Z., Dogan N., Arvas E. IEEE SoutheastCon Proceedings. IEEE; Piscataway, NJ, USA: 2005. MICS Transceivers: Regulatory Standards and Applications; pp. 179–182.
    1. Fang Q., Lee S.Y., Permana H., Ghorbani K., Cosic I. Developing a Wireless Implantable Body Sensor Network in MICS Band. IEEE Trans. Inform. Technol. Biomed. 2011;15:567–576. doi: 10.1109/TITB.2011.2153865.
    1. Zhen B., Li H.B., Kohno R. Networking issues in medical implant communications. Int. J. Multimed. Ubiquitous Eng. 2009;4:23–38.
    1. Lazaro A., Girbau D., Villarino R. Analysis of Vital Signs Monitoring Using an Ir-Uwb Radar. Prog. Electromagn. Res. 2010;100:265–284. doi: 10.2528/PIER09120302.
    1. Chu Y., Ganz A. A UWB-based 3D location system for indoor environments; Proceedings of the 2nd International Conference on Broadband Networks; Boston, MA, USA. 3–7 October 2005; pp. 1147–1155.
    1. Yoo H.-J., Cho N. Body channel communication for low energy BSN/BAN; Proceedings of the APCCAS 2008—2008 IEEE Asia Pacific Conference on Circuits and Systems; Macao, China. 30 November–3 December 2008; pp. 7–11.
    1. Sole M., Musu C., Boi F., Giusto D., Popescu V. RFID sensor network for workplace safety management; Proceedings of the 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA); Cagliari, Italy. 10–13 September 2013; pp. 1–4.
    1. Liu Y. Master’s Thesis. Rose-Hulman Institute of Technology; Terre Haute, IN, USA: 2015. A Heart Rate Finger Ring and Its Smartphone APP through Customized NFC.
    1. Fontecha J., Hervas R., Bravo J., Villarreal V. An NFC Approach for Nursing Care Training; Proceedings of the 2011 Third International Workshop on Near Field Communication; Hagenberg, Austria. 22–23 February 2011; pp. 38–43.

Source: PubMed

3
購読する