Renoprotective effect of the antioxidant curcumin: Recent findings

Joyce Trujillo, Yolanda Irasema Chirino, Eduardo Molina-Jijón, Ana Cristina Andérica-Romero, Edilia Tapia, José Pedraza-Chaverrí, Joyce Trujillo, Yolanda Irasema Chirino, Eduardo Molina-Jijón, Ana Cristina Andérica-Romero, Edilia Tapia, José Pedraza-Chaverrí

Abstract

For years, there have been studies based on the use of natural compounds plant-derived as potential therapeutic agents for various diseases in humans. Curcumin is a phenolic compound extracted from Curcuma longa rhizome commonly used in Asia as a spice, pigment and additive. In traditional medicine of India and China, curcumin is considered as a therapeutic agent used in several foods. Numerous studies have shown that curcumin has broad biological functions particularly antioxidant and antiinflammatory. In fact, it has been established that curcumin is a bifunctional antioxidant; it exerts antioxidant activity in a direct and an indirect way by scavenging reactive oxygen species and inducing an antioxidant response, respectively. The renoprotective effect of curcumin has been evaluated in several experimental models including diabetic nephropathy, chronic renal failure, ischemia and reperfusion and nephrotoxicity induced by compounds such as gentamicin, adriamycin, chloroquine, iron nitrilotriacetate, sodium fluoride, hexavalent chromium and cisplatin. It has been shown recently in a model of chronic renal failure that curcumin exerts a therapeutic effect; in fact it reverts not only systemic alterations but also glomerular hemodynamic changes. Another recent finding shows that the renoprotective effect of curcumin is associated to preservation of function and redox balance of mitochondria. Taking together, these studies attribute the protective effect of curcumin in the kidney to the induction of the master regulator of antioxidant response nuclear factor erythroid-derived 2 (Nrf2), inhibition of mitochondrial dysfunction, attenuation of inflammatory response, preservation of antioxidant enzymes and prevention of oxidative stress. The information presented in this paper identifies curcumin as a promising renoprotective molecule against renal injury.

Keywords: Bifunctional antioxidant; Mitochondrial dysfunction; Nephrotoxicity; Nrf2; Oxidative stress; Renal hemodynamics.

Figures

Fig. 1
Fig. 1
Chemical structures and abundance of curcuminoids in turmeric that have terapeutic effects.
Fig. 2
Fig. 2
Curcumin prevents renal hemodynamic alterations. Curcumin ameliorates 5/6NX-induced alterations in mean arterial pressure (MAP), proteinuria and glomerular filtration rate (GFR) and in the following parameters of renal hemodynamics: single-nephron glomerular filtration rate (SNGFR), single-nephron plasma flow (Qa), glomerular capillary pressure (PGc), afferent resistance (AR) and efferent resistance (ER).
Fig. 3
Fig. 3
Curcumin is able to prevent mitochondrial dysfunction associated to renal injury. Curcumin is able to prevent lipid peroxidation and the decrease in the following mitochondrial determinations: oxygen consumption, activity of complexes I, II, II-III and V, activity of aconitase and antioxidant enzymes, GSH content, membrane potential, calcium retention and ATP content . GSH (Glutathione), SOD (superoxide dismutase), CAT (catalase), GPx (glutathione peroxidase), GST (glutathione-S-transferase), GR (glutathione reductase), NAD+ (nicotinamide adenine dinucleotide), NADH (nicotinamide adenine dinucleotide, reduced form), FAD+ (flavin adenine dinucleotide), FADH2 (flavin adenine dinucleotide, reduced form), ATP (adenosine triphosphate), ADP (adenosine diphosphate).
Fig. 4
Fig. 4
Curcumin is able to prevent several mechanisms leading to renal injury. Curcumin renoprotective effects have been associated with the prevention of three main factors, first the reduction of oxidative stress by (a) preventing the generation of O2−∙ and scavenging different reactive oxygen species, and (b) by preventing the Nrf2 degradation by ubiquitin proteosoma pathway, thus an increase of many antioxidant enzymes. Curcumin has been shown also to be able to reduce inflammatory process by reducing the inflammatory transcription factors such as NF- κB and TNF-α. On the other hand the reduction of cytokines such as TGF-β or CTGF eventually prevents a fibrotic process. ROS (reactive oxygen species), O2-∙ (superoxide),∙OH (hydroxyl radical), H2O2 (hydrogen peroxide), ONOO− (Peroxynitrite), 1O2 (Singlet oxygen), NO∙ (Nitric oxide), ROO (peroxyl radical), Nrf2 (translocation of nuclear factor erythroid-derived 2), ARE (Antioxidant responsive elements), Keap1 (Kelch-like ECH-associated protein 1), Cul3 (cullin 3), Nedd8 (Neural precursor cell expressed developmentally down-regulated 8), u (ubiquitin), SOD (superoxide dismutase), CAT (catalase), GPx (glutathione peroxidase), GST (glutathione-S-transferase), GCL (glutathione-cystein-ligase), TrX (thioredoxin), TGF-β (factor transforming growth beta), CTGF (connective tissue growth factor), NF- κB (nuclear factor kappa-light-chain-enhancer of activated B cells), TNF-α (tumor necrosis factor), PKC (protein kinase C), PI3K (phosphoinositol 3-kinase), PERK (protein kinase RNA-like endoplasmic reticulum kinase) MAPK (mitogen-activated protein kinase), CK2 (Casein kinase2).

References

    1. Agarwal R., Goel S.K., Behari J.R. Detoxification and antioxidant effects of curcumin in rats experimentally exposed to mercury. Journal of Applied Toxicology. 2010;30:457–468.
    1. Aggarwal B.B., Harikumar K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. The International Journal of Biochemistry & Cell Biology. 2009;41:40–59.
    1. Aggarwal B.B., Sung B. Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets. Trends in Pharmacological Sciences. 2009;30:85–94.
    1. Aggarwal B.B., Kumar A., Bharti A.C. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Research. 2003;23:363–398.
    1. Aggarwal B.B., Sundaram C., Malani N., Ichikawa H. Curcumin: the Indian solid gold. Advances in Experimental Medicine and Biology. 2007;595:1–75.
    1. Ak T., Gülçin I. Antioxidant and radical scavenging properties of curcumin. Chemico-Biological Interactions. 2008;174:27–37.
    1. Ali B.H., Al-Wabel N., Mahmoud O., Mousa H.M., Hashad M. Curcumin has a palliative action on gentamicin-induced nephrotoxicity in rats. Fundamental & Clinical Pharmacology. 2005;19:473–477.
    1. Anand P., Thomas S.G., Kunnumakkara A.B., Sundaram C., Harikumar K.B., Sung B., Tharakan S.T., Misra K., Priyadarsini I.K., Rajasekharan K.N., Aggarwal B.B. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochemical Pharmacology. 2008;76:1590–15611.
    1. Antunes L.M., Darin J.D., Bianchi Nde L. Effects of the antioxidants curcumin or selenium on cisplatin-induced nephrotoxicity and lipid peroxidation in rats. Pharmacological Research. 2001;43:145–150.
    1. Araújo C.C., Leon L.L. Biological activities of Curcuma longa L. Memorias do Instituto Oswaldo Cruz. 2001;96:723–728.
    1. Augustyniak A., Bartosz G., Cipak A., Duburs G., Horáková L., Luczaj W., Majekova M., Odysseos A.D., Rackova L., Skrzydlewska E., Stefek M., Strosová M., Tirzitis G., Venskutonis P.R., Viskupicova J., Vraka P.S., Zarković N. Natural and synthetic antioxidants: an updated overview. Free Radical Research. 2010;44:1216–1262.
    1. Bachmeier B.E., Killian P., Pfeffer U., Nerlich A.G. Novel aspects for the application of curcumin in chemoprevention of various cancers. Frontiers in Bioscience (Scholar edition) 2010;S2:697–717.
    1. Barzegar A., Moosavi-Movahedi A.A. Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin. PLoS One. 2011;6:e26012.
    1. Bas M., Tugcu V., Kemahli E., Ozbek E., Uhri M., Altug T., Tasci A.I. Curcumin prevents shock-wave lithotripsy-induced renal injury through inhibition of nuclear factor kappa-B and inducible nitric oxide synthase activity in rats. Urological Research. 2009;37:159–164.
    1. Bayrak O., Uz E., Bayrak R., Turgut F., Atmaca A.F., Sahin S., Yildirim M.E., Kaya A., Cimentepe E., Akcay A. Curcumin protects against ischemia/reperfusion injury in rat kidneys. World Journal of Urology. 2008;26:285–291.
    1. Benzie IFF, Wachtel-Galor S, editors. HerbalMedicine: Biomolecular and Clinical Aspects. second ed. CRC Press; Boca Raton (FL): 2011. (Available from)
    1. Calabrese V., Bates T.E., Mancuso C., Cornelius C., Ventimiglia B., Cambria M.T., Di Renzo L., De Lorenzo A., Dinkova-Kostova A.T. Curcumin and the cellular stress response in free radical-related diseases. Molecular Nutrition & Food Research. 2008;52:1062–1073.
    1. Carmona-Ramírez I., Santamaría A., Tobón-Velasco J.C., Orozco-Ibarra M., González-Herrera I.G., Pedraza-Chaverrí J., Maldonado P.D. Curcumin restores Nrf2 levels and prevents quinolinic acid-induced neurotoxicity. The Journal of Nutritional Biochemistry. 2013;24:14–24.
    1. Chirino Y.I., Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Experimental and Toxicologic Pathology. 2009;61:223–242.
    1. Chiu J., Khan Z.A., Farhangkhoee H., Chakrabarti S. Curcumin prevents diabetes-associated abnormalities in the kidneys by inhibiting p300 and nuclear factor-kappaB. Nutrition. 2009;25:964–972.
    1. Coca S.G., Singanamala S., Parikh C.R. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney International. 2012;81:442–448.
    1. Cohly H.H.P., Taylor A., Angel M.F., Salahudeen A.K. Effect of turmeric, turmerin and curcumin on H2O2-induced renal epithelial (LLC-PKI) cell injury. Free Radical Biology and Medicine. 1998;24:49–54.
    1. Correa F., Buelna-Chontal M., Hernández-Reséndiz S., García-Niño W.R., Roldán J.F., Soto V., Silva-Palacios A., Amador A., Pedraza-Chaverrí J., Tapia E., Zazueta C. Curcumin maintains cardiac and mitochondrial function in chronic kidney disease. Free Radical Biology & Medicine. 2013;61C:119–129.
    1. Cuadrado A., Moreno-Murciano P., Pedraza-Chaverri J. The transcription factor Nrf2 as a new therapeutic target in Parkinson's disease. Expert Opinion on Therapeutic Targets. 2009;13:319–329.
    1. Das K.C., Das C.K. Curcumin (diferuloylmethane), a singlet oxygen (1O2) quencher. Biochemical and Biophysical Research Communications. 2002;295:62–66.
    1. Dinkova-Kostova A.T., Talalay P. Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Molecular Nutrition & Food Research. 2008;52:S128–S138.
    1. Dinkova-Kostova A.T., Fahey J.W., Talalay P. Chemical structures of inducers of nicotinamide quinone oxidoreductase 1 (NQO1) Methods in Enzymology. 2004;382:423–448.
    1. Eggler A.L., Gay K.A., Mesecar A.D. Molecular mechanisms of natural products in chemoprevention: induction of cytoprotective enzymes by Nrf2. Molecular Nutrition and Food Research. 2008;52(2008):584–594.
    1. Esatbeyoglu T., Huebbe P., Ernst I.M., Chin D., Wagner A.E., Rimbach G. Curcumin—from molecule to biological function. Angewandte Chemie International Edition (in English) 2012;51:5308–5332.
    1. Eybl V., Kotyzová D., Bludovská M. The effect of curcumin on cadmium-induced oxidative damage and trace elements level in the liver of rats and mice. Toxicology Letters. 2004;151:79–85.
    1. Fujisawa S., Atsumi T., Ishihara M., Kadoma Y. Cytotoxicity, ROS-generation activity and radical-scavenging activity of curcumin and related compounds. Anticancer Research. 2004;24:563–569.
    1. W.R., García-Niño, E., Tapia, C., Zazueta, Z.L., Zatarain-Barrón, R., Hernández-Pando, C.C., Vega-García, J., Pedraza-Chaverri Curcumin Pretreatment Prevents Potassium Dichromate-induced Hepatotoxicity, Oxidative Stress, Decreased Respiratory Complex I Activity and Membrane Permeability Transition Pore Opening. Evidence-based Complementary and Alternative Medicine 2013; 2013: Article ID 424692, 1-19, 19 pages
    1. Ghosh S.S., Massey H.D., Krieg R., Fazelbhoy Z.A., Ghosh S., Sica D.A., Fakhry I., Gehr T.W. Curcumin ameliorates renal failure in 5/6 nephrectomized rats: role of inflammation. Renal Physiology—American Journal of Physiology. 2009;296:F1146–F1157.
    1. Ghosh S.S., Krieg R., Massey H.D., Sica D.A., Fakhry I., Ghosh S., Gehr T.W. Curcumin and enalapril ameliorate renal failure by antagonizing inflammation in 5/6 nephrectomized rats: role of phospholipase and cyclooxygenase. Renal Physiology—American Journal of Physiology. 2012;302:F439–F454.
    1. Goel A., Kunnumakkara A.B., Aggarwal B.B. Curcumin as Curecumin: from kitchen to clinic. Biochemical Pharmacology. 2008;75:787–809.
    1. Goel A., Aggarwal B.B. Curcumin, the golden spice from Indian saffron, is a chemosensitizer and radiosensitizer for tumors and chemoprotector and radioprotector for normal organs. Nutrition and Cancer. 2010;62:919–930.
    1. González-Salazar A., Molina-Jijón E., Correa F., Zarco-Márquez G., Calderón-Oliver M., Tapia E., Zazueta C., Pedraza-Chaverri J. Curcumin protects from cardiac reperfusion damage by attenuation of oxidant stress and mitochondrial dysfunction. Cardiovascular Toxicology. 2011;11:357–364.
    1. Guyton A.C., Hall J.E. Elsevier; Philadelphia: Saunders: 2011. Textbook of Medical Physiology; pp. 305–306.
    1. Hall J.E., Brands M.W., Shek E.W. Central role of the kidney and abnormal fluid volume control in hypertension. Journal of Human Hypertension. 1996;10:633–639.
    1. Himesh S., Sharan P.S., Mishra K., Govind N., Singhai A. Qualitative and quantitative profile of curcumin from ethanolic extract of curcuma longa. International Research Journal of Pharmacy. 2011;2:180–184.
    1. Jacob A., Chaves L., Eadon M.T., Chang A., Quigg R.J., Alexander J.J. Curcumin alleviates immune-complex mediated glomerulonephritis in factor H deficient mice. Immunology. 2013;139:328–337.
    1. Jeong G.S., Oh G.S., Pae H.O., Jeong S.O., Kim Y.C., Shin M.K., Seo B.Y., Han S.Y., Lee H.S., Jeong J.G., Koh J.S., Chung H.T. Comparative effects of curcuminoids on endothelial heme oxygenase-1 expression: ortho-methoxy groups are essential to enhance heme oxygenase activity and protection. Experimental and Molecular Medicine. 2006;38:393–400.
    1. Jha V., Garcia-Garcia G., Iseki K., Li Z., Naicker S., Plattner B., Saran R., Wang A.Y., Yang C.W. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382:260–272.
    1. Kim J.E., Kim A.R., Chung H.Y., Han S.Y., Kim B.S., Choi J.S. In vitro peroxynitrite scavenging activity of diarylheptanoids from Curcuma longa. Phytotherapy Research. 2003;17:481–484.
    1. Kuhad A., Pilkhwal S., Sharma S., Tirkey N., Chopra K. Effect of curcumin on inflammation and oxidative stress in cisplatin-induced experimental nephrotoxicity. Journal of Agricultural and Food Chemistry. 2007;55:10150–10155.
    1. Lakshmanan A.P., Watanabe K., Thandavarayan R.A., Sari F.R., Meilei H., Soetikno V., Arumugam S., Giridharan V.V., Suzuki K., Kodama M. Curcumin attenuates hyperglycaemia-mediated AMPK activation and oxidative stress in cerebrum of streptozotocin-induced diabetic rat. Free Radical Research. 2011;45:788–795.
    1. Lavoie S., Chen Y., Dalton T.P., Gysin R., Cuénod M., Steullet P., D.O. K.Q. Curcumin, quercetin, and tBHQ modulate glutathione levels in astrocytes and neurons: importance of the glutamate cysteine ligase modifier subunit. Journal of Neurochemistry. 2009;108:1410–1422.
    1. Lozano R., Naghavi M., Foreman K., Lim S., Shibuya K., Aboyans V. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–2128.
    1. Maheshwari R.K., Singh A.K., Gaddipati J., Srimal R.C. Multiple biological activities of curcumin: a short review. Life Sciences. 2006;78:2081–2087.
    1. Manikandan R., Beulaja M., Thiagarajan R., Priyadarsini A., Saravanan R., Arumugam M. Ameliorative effects of curcumin against renal injuries mediated by inducible nitric oxide synthase and nuclear factor kappa B during gentamicin-induced toxicity in Wistar rats. European Journal of Pharmacology. 2011;670:578–585.
    1. Molina-Jijón E., Tapia E., Zazueta C., El Hafidi M., Zatarain-Barrón Z.L., Hernández-Pando R., Medina-Campos O.N., Zarco-Márquez G., Torres I., Pedraza-Chaverri J. Curcumin prevents Cr(VI)-induced renal oxidant damage by a mitochondrial pathway. Free Radical Biology & Medicine. 2011;51:1543–1557.
    1. Mun S.H., Joung D.K., Kim Y.S., Kang O.H., Kim S.B., Seo Y.S., Kim Y.C., Lee D.S., Shin D.W., Kweon K.T., Kwon D.Y. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine. 2013;20:714–718.
    1. Murugan P., Pari L. Influence of tetrahydrocurcumin on hepatic and renal functional markers and protein levels in experimental type 2 diabetic rats. Basic & Clinical Pharmacology & Toxicology. 2007;101:241–245.
    1. Nabavi S.F., Moghaddam A.H., Eslami S., Nabavi S.M. Protective effects of curcumin against sodium fluoride-induced toxicity in rat kidneys. Biological Trace Element Research. 2012;145:369–374.
    1. Okada K., Wangpoengtrakul C., Tanaka T., Toyokuni S., Uchida K., Osawa T. Biochemical and molecular action of nutrients curcumin and especially tetrahydrocurcumin ameliorate oxidative stress-induced renal injury in mice. The Journal of Nutrition. 2001;131:2090–2095.
    1. Osawa T. Nephroprotective and hepatoprotective effects of curcuminoids. Advances in Experimental Medicine and Biology. 2007;595:407–423.
    1. Pan Y., Zhu G., Wang Y., Cai L., Cai Y., Hu J., Li Y., Yan Y., Wang Z., Li X., Wei T., Liang G. Attenuation of high-glucose-induced inflammatory response by a novel curcumin derivative B06 contributes to its protection from diabetic pathogenic changes in rat kidney and heart. The Journal of Nutritional Biochemistry. 2013;24:146–155.
    1. Pan Y., Zhu G., Wang Y., Cai L., Cai Y., Hu J., Li Y., Yan Y., Wang Z., Li X., Wei T., Liang G. Inhibition of high glucose-induced inflammatory response and macrophage infiltration by a novel curcumin derivative prevents renal injury in diabetic rats. British Journal of Pharmacology. 2012;166:1169–1182.
    1. Panchal H.D., Vranizan K., Lee C.Y., Ho J., Ngai J., Timiras P.S. Early anti-oxidative and anti-proliferative curcumin effects on neuroglioma cells suggest therapeutic targets. Neurochemical Research. 2008;33:1701–1710.
    1. Pari L., Murugan P. Tetrahydrocurcumin: effect on chloroquine-mediated oxidative damage in rat kidney. Basic & Clinical Pharmacology & Toxicology. 2006;99:329–334.
    1. Rahman I., Biswas S.K., Kirkham P.A. Regulation of inflammation and redox signaling by dietary polyphenols. Biochemical Pharmacology. 2006;72:1439–1452.
    1. Reddy S., Aggarwal B.B. Curcumin is a non-competitive and selective inhibitor of phosphorylase kinase. FEBS Letters. 1994;341:19–22.
    1. Reyes-Fermín L.M., González-Reyes S., Tarco-Álvarez N.G., Hernández-Nava M., Orozco-Ibarra M., Pedraza-Chaverri J. Neuroprotective effect of α-mangostin and curcumin against iodoacetate-induced cell death. Nutritional Neuroscience. 2012;15:34–41.
    1. Rojo A.I., Medina-Campos O.N., Rada P., Zúñiga-Toalá A., López-Gazcón A., Espada S., Pedraza-Chaverri J., Cuadrado A. Signaling pathways activated by the phytochemical nordihydroguaiaretic acid contribute to a Keap1-independent regulation of Nrf2 stability: role of glycogen synthase kinase-3. Free Radical Biology & Medicine. 2012;52:473–487.
    1. Rushworth S.A., Ogborne R.M., Charalambos C.A., O'Connell M.A. Role of protein kinase C delta in curcumin-induced antioxidant response element-mediated gene expression in human monocytes. Biochemical and Biophysical Research Communications. 2006;341:1007–1016.
    1. Samanta L., Panigrahi J., Bhanja S., Chainy G.B. Effect of turmeric and its active principle curcumin on T3-induced oxidative stress and hyperplasia in rat kidney: a comparison. Indian Journal of Clinical Biochemistry : IJCB. 2010;25:393–397.
    1. Sandur S.K., Pandey M.K., Sung B., Ahn K.S., Murakami A., Sethi G., Limtrakul P., Badmaev V., Aggarwal B.B. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis. 2007;28:1765–1773.
    1. Shankar S., Srivastava R.K. Bax and Bak genes are essential for maximum apoptotic response by curcumin, a polyphenolic compound and cancer chemopreventive agent derived from turmeric, Curcuma longa. Carcinogenesis. 2007;28:1277–1286.
    1. Sharma S, Kulkarni S.K., Curcumin Chopra K. the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats. Clinical and Experimental Pharmacology & Physiology. 2006;33:940–945.
    1. Soetikno V., Sari F.R., Lakshmanan A.P., Arumugam S., Harima M., Suzuki K., Kawachi H., Watanabe K. Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant kidney through the Nrf2-keap1 pathway. Molecular Nutrition & Food Research. 2013;57:1649–1659.
    1. Soetikno V., Sari F.R., Veeraveedu P.T., Thandavarayan R.A., Harima M., Sukumaran V., Lakshmanan A.P., Suzuki K., Kawachi H., Watanabe K. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy. Nutrition & Metabolism. 2011;8:35.
    1. Soetikno V., Watanabe K., Sari F.R., Harima M., Thandavarayan R.A., Veeraveedu P.T., Arozal W., Sukumaran V., Lakshmanan A.P., Arumugam S., Suzuki K. Curcumin attenuates diabetic nephropathy by inhibiting PKC- α and PKC-β1 activity in streptozotocin-induced type I diabetic rats. Molecular Nutrition & Food Research. 2011;55:1655–1665.
    1. Soetikno V., Sari F.R., Sukumaran V., Lakshmanan A.P., Mito S., Harima M., Thandavarayan R.A., Suzuki K., Nagata M., Takagi R., Watanabe K. Curcumin prevents diabetic cardiomyopathy in streptozotocin-induced diabetic rats: possible involvement of PKC-MAPK signaling pathway. European Journal of Pharmaceutical Sciences. 2012;47:604–614.
    1. Soetikno V., Sari F.R., Sukumaran V., Lakshmanan A.P., Harima M., Suzuki K., Kawachi H., Watanabe K. Curcumin decreases renal triglyceride accumulation through AMPK-SREBP signaling pathway in streptozotocin-induced type 1 diabetic rats. Journal of Nutritional Biochemistry. 2013;24:796–802.
    1. Soetikno V., Suzuki K., Veeraveedu P.T., Arumugam S., Lakshmanan A.P., Sone H., Watanabe K. Molecular understanding of curcumin in diabetic nephropathy. Drug Discovery Today. 2013;18:756–763.
    1. Sreejayan N., Rao M.N. Free radical scavenging activity of curcuminoids. Arzneimittelforschung. 1996;46:169–171.
    1. Sreejayan R.M. Nitric oxide scavenging by curcuminoids. The Journal of Pharmacy and Pharmacology. 1997;49:105–107.
    1. Sumanont Y., Murakami Y., Tohda M., Vajragupta O., Matsumoto K., Watanabe H. Evaluation of the nitric oxide radical scavenging activity of manganese complexes of curcumin and its derivative. Biological & Pharmaceutical Bulletin. 2004;27:170–173.
    1. Tapia E., Soto V., Ortiz-Vega K.M., Zarco-Márquez G., Molina-Jijón E., Cristóbal-García M., Santamaría J., García-Niño W.R., Correa F., Zazueta C., Pedraza-Chaverri J. Curcumin induces Nrf2 nuclear translocation and prevents glomerular hypertension, hyperfiltration, oxidant stress, and the decrease in antioxidant enzymes in 5/6 nephrectomized rats. Oxidative Medicine and Cellular Longevity. 2012:269039.
    1. Tapia E., Zatarain-Barrón Z.L., Hernández-Pando R., Zarco-Márquez G., Molina-Jijón E., Cristóbal-García M., Santamaría J., Pedraza-Chaverri J. Curcumin reverses glomerular hemodynamic alterations and oxidant stress in 5 / 6 nephrectomized rats. Phytomedicine. 2013;20:359–366.
    1. Tirkey N., Kaur G., Vij G., Chopra K. Curcumin, a diferuloylmethane, attenuates cyclosporine-induced renal dysfunction and oxidative stress in rat kidneys. BMC Pharmacology. 2005;5:15.
    1. Ueki M., Ueno M., Morishita J., Maekawa N. Curcumin ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in mice. Journal of Bioscience and Bioengineering. 2013;115:547–551.
    1. Venkatesan N., Punithavathi D., Arumugam V. Curcumin prevents adriamycin nephrotoxicity in rats. British Journal of Pharmacology. 2000;129:231–234.
    1. Waly M.I., Al Moundhri M.S., Ali B.H. Effect of curcumin on cisplatin- and oxaliplatin-induced oxidative stress in human embryonic kidney (HEK) 293 cells. Renal Failure. 2011;33:518–523.
    1. Wang H.M., Zhao Y.X., Zhang S., Liu G.D., Kang W.Y., Tang H.D., Ding J.Q., Chen S.D. PPARgamma agonist curcumin reduces the amyloid-beta-stimulated inflammatory responses in primary astrocytes. Journal of Alzheimer's Disease. 2010;20:1189–1199.
    1. Wang M.E., Chen Y.C., Chen I.S., Hsieh S.C., Chen S.S., Chiu C.H. Curcumin protects against thioacetamide-induced hepatic fibrosis by attenuating the inflammatory response and inducing apoptosis of damaged hepatocytes. The Journal of Nutritional Biochemistry. 2012;23:1352–1366.
    1. Yarru L.P., Settivari R.S., Gowda N.K., Antoniou E., Ledoux D.R., Rottinghaus G.E. Effects of turmeric (Curcuma longa) on the expression of hepatic genes associated with biotransformation, antioxidant, and immune systems in broiler chicks fed aflatoxin. Poultry Science. 2009;88:2620–2627.
    1. Ye S.F., Hou Z.Q., Zhong L.M., Zhang Q.Q. Effect of curcumin on the induction of glutathione S-transferases and NADP(H):quinone oxidoreductase and its possible mechanism of action. Yao Xue Xue Bao. 2007;42:376–380.

Source: PubMed

3
購読する