Electrical stimulation counteracts muscle decline in seniors

Helmut Kern, Laura Barberi, Stefan Löfler, Simona Sbardella, Samantha Burggraf, Hannah Fruhmann, Ugo Carraro, Simone Mosole, Nejc Sarabon, Michael Vogelauer, Winfried Mayr, Matthias Krenn, Jan Cvecka, Vanina Romanello, Laura Pietrangelo, Feliciano Protasi, Marco Sandri, Sandra Zampieri, Antonio Musaro, Helmut Kern, Laura Barberi, Stefan Löfler, Simona Sbardella, Samantha Burggraf, Hannah Fruhmann, Ugo Carraro, Simone Mosole, Nejc Sarabon, Michael Vogelauer, Winfried Mayr, Matthias Krenn, Jan Cvecka, Vanina Romanello, Laura Pietrangelo, Feliciano Protasi, Marco Sandri, Sandra Zampieri, Antonio Musaro

Abstract

The loss in muscle mass coupled with a decrease in specific force and shift in fiber composition are hallmarks of aging. Training and regular exercise attenuate the signs of sarcopenia. However, pathologic conditions limit the ability to perform physical exercise. We addressed whether electrical stimulation (ES) is an alternative intervention to improve muscle recovery and defined the molecular mechanism associated with improvement in muscle structure and function. We analyzed, at functional, structural, and molecular level, the effects of ES training on healthy seniors with normal life style, without routine sport activity. ES was able to improve muscle torque and functional performances of seniors and increased the size of fast muscle fibers. At molecular level, ES induced up-regulation of IGF-1 and modulation of MuRF-1, a muscle-specific atrophy-related gene. ES also induced up-regulation of relevant markers of differentiating satellite cells and of extracellular matrix remodeling, which might guarantee shape and mechanical forces of trained skeletal muscle as well as maintenance of satellite cell function, reducing fibrosis. Our data provide evidence that ES is a safe method to counteract muscle decline associated with aging.

Keywords: IGF-1; aging; electrical stimulation; extracellular matrix; microRNA; muscle atrophy; muscle performance; satellite cells.

Figures

Figure 1
Figure 1
Muscle morphology and fiber-type distribution. All muscle biopsies present well-packed myofibers, without signs of fibrosis, and inflammatory cell infiltration before (A) or after 9 weeks of training (B). The training induced an increase of either diameter and percentage of the fast-type fibers [brown stained (C,D)]. Bar 100 μm.
Figure 2
Figure 2
Electrical stimulation induces an increase of satellite cells. (A) Representative immunofluorescence analysis for N-CAM expression (red stained, arrowed). N-CAM expressing cells are increased in post-trained muscle compared with the pre-training condition. Nuclei are counterstained in blue with Hoechst. Bar 100 μm. (B) Representative co-immunofluorescence analyses of laminin (red staining) and Pax7 (green staining) expression in skeletal muscle biopsies comparing pre- to post-training conditions. The number of Pax7 positive cells (arrowed) is increased in biopsies of post-trained subjects, compared to the pre-training ones. Bar 100 μm. Right panel: percentage of Pax7+ cells in pre-trained and post-ES-trained muscles. Data are represented as average ± SD. ***p < 0.0001. (C) Real time PCR analysis for myogenin, miR-206, and miR-1 expression in pre-trained (PRE) and post-ES-trained (POST) muscles. Data are represented as average ± SEM. n = 16. *p < 0.05; **p < 0.005.
Figure 3
Figure 3
Expression analyses of genes controlling muscle mass and metabolism. Real time PCR analysis for the expression of IGF-1 isoforms (total IGF-1pan, IGF-1Ea, IGF-1Eb, IGF-1Ec) (A) Atrogin-1, MurF-1, Beclin1, p62 (B), Myostatin (C), PGC1α (D), and Nrf2 (E). Data are represented as average ± SEM. n = 16. **p < 0.005; ***p < 0.0005.
Figure 4
Figure 4
Electrical stimulation promotes ECM remodeling. Real time PCR analysis for Collagen I, Collagen III, Collagen VI, and miR-29. Data are represented as average ± SEM. n = 16. *p < 0.05; ***p < 0.0005.

References

    1. Adamo M. L., Farrar R. P. (2006). Resistance training, and IGF involvement in the maintenance of muscle mass during the aging process. Ageing Res. Rev. 5, 310–33110.1016/j.arr.2006.05.001
    1. Alnaqeeb M. A., Goldspink G. (1987). Changes in fibre type, number and diameter in developing and ageing skeletal muscle. J. Anat. 153, 31–45
    1. Ashley Z., Salmons S., Boncompagni S., Protasi F., Russold M., Lanmuller H., et al. (2007). Effects of chronic electrical stimulation on long-term denervated muscles of the rabbit hind limb. J. Muscle Res. Cell. Motil. 28, 203–21710.1007/s10974-007-9119-4
    1. Bax L., Staes F., Verhagen A. (2005). Does neuromuscular electrical stimulation strengthen the quadriceps femoris? A systematic review of randomised controlled trials. Sports Med. 35, 191–21210.2165/00007256-200535030-00002
    1. Berg U., Bang P. (2004). Exercise and circulating insulin-like growth factor I. Horm. Res. 62, 50–5810.1159/000080759
    1. Biral D., Kern H., Adami N., Boncompagni S., Protasi F., Carraro U. (2008). Atrophy-resistant fibers in permanent peripheral denervation of human skeletal muscle. Neurol. Res. 30, 137–14410.1179/174313208X281145
    1. Bohannon R. W. (1997). Isometric strength data. Arch. Phys. Med. Rehabil. 78, 566–56710.1016/S0003-9993(97)90181-7
    1. Bohannon R. W., Williams Andrews A. (2011). Normal walking speed: a descriptive meta-analysis. Physiotherapy 97, 182–18910.1016/j.physio.2010
    1. Boncompagni S., Kern H., Rossini K., Hofer C., Mayr W., Carraro U., et al. (2007). Structural differentiation of skeletal muscle fibers in the absence of innervation in humans. Proc. Natl. Acad. Sci. U.S.A. 104, 19339–1934410.1073/pnas.0709061104
    1. Cacchiarelli D., Martone J., Girardi E., Cesana M., Incitti T., Morlando M., et al. (2010). MicroRNAs involved in molecular circuitries relevant for the Duchenne muscular dystrophy pathogenesis are controlled by the dystrophin/nNOS pathway. Cell Metab. 12, 341–35110.1016/j.cmet.2010.07.008
    1. Carosio S., Berardinelli M. G., Aucello M., Musarò A. (2011). Impact of ageing on muscle cell regeneration. Ageing Res. Rev. 10, 35–4210.1016/j.arr.2009.08.001
    1. Carraro U., Rossini K., Mayr W., Kern H. (2005). Muscle fiber regeneration in human permanent lower motoneuron denervation: relevance to safety and effectiveness of ES-training, which induces muscle recovery in SCI subjects. Artif. Organs 29, 187–19110.1111/j.1525-1594.2005.29032.x
    1. Chen J. F., Mandel E. M., Thomson J. M., Wu Q., Callis T. E., Hammond S. M., et al. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38, 228–23310.1038/ng1725
    1. Clop A., Marcq F., Takeda H., Pirottin D., Tordoir X., Bibé B., et al. (2006). A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 38, 813–81810.1038/ng1810
    1. Corrigan D., Bohannon R. W. (2001). Relationship between knee extension force and stand-up performance in community-dwelling elderly women. Arch. Phys. Med. Rehabil. 82, 1666–167210.1053/apmr.2001.26811
    1. Cruz-Jentoft A. J. (2013). Perspective: protein and exercise for frailty and sarcopenia: still learning. J. Am. Med. Dir. Assoc. 14, 69–7110.1016/j.jamda.2012.09.024
    1. de Oliveira Melo M., Aragão F. A., Vaz M. A. (2013). Neuromuscular electrical stimulation for muscle strengthening in elderly with knee osteoarthritis – a systematic review. Complement. Ther. Clin. Pract. 19, 27–3110.1016/j.ctcp.2012.09.002
    1. Elliott B., Renshaw D., Getting S., Mackenzie R. (2012). The central role of myostatin in skeletal muscle and whole body homeostasis. Acta Physiol. (Oxf.) 205, 324–34010.1111/j.1748-1716.2012.02423.x
    1. Ferraro E., Giammarioli A. M., Chiandotto S., Spoletini I., Rosano G. (2014). Exercise-induced skeletal muscle remodeling and metabolic adaptation: redox signaling and role of autophagy. Antioxid. Redox Signal. 21, 154–17610.1089/ars.2013.5773
    1. Fragala M. S., Fukuda D. H., Stout J. R., Townsend J. R., Emerson N. S., Boone C. H., et al. (2014). Muscle quality index improves with resistance exercise training in older adults. Exp. Gerontol. 53, 1–610.1016/j.exger.2014.01.027
    1. Freiberger E., Blank W. A., Salb J., Geilhof B., Hentschke C., Landendoerfer P., et al. (2013). Effects of a complex intervention on fall risk in the general practitioner setting: a cluster randomized controlled trial. Clin. Interv. Aging 8, 1079–108810.2147/CIA.S46218
    1. Giggins O., Fullen B., Coughlan G. (2012). Neuromuscular electrical stimulation in the treatment of knee osteoarthritis: a systematic review and meta-analysis. Clin. Rehabil. 26, 867–88110.1177/0269215511431902
    1. Guralnik J. M., Ferrucci L., Pieper C. F., Leveille S. G., Markides K. S., Ostir G. V., et al. (2000). Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J. Gerontol. A Biol. Sci. Med. Sci. 55, M221–M23110.1093/gerona/55.4.M221
    1. Guralnik J. M., Simonsick E. M., Ferrucci L., Glynn R. J., Berkman L. F., Blazer D. G., et al. (1994). A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 49, M85–M9410.1093/geronj/49.2.M85
    1. He Y., Huang C., Lin X., Li J. (2013). MicroRNA-29 family, a crucial therapeutic target for fibrosis diseases. Biochimie 95, 1355–135910.1016/j.biochi.2013.03.010
    1. Kadi F., Eriksson A., Holmner S., Butler-Browne G. S., Thornell L. E. (1999). Cellular adaptation of the trapezius muscle in strength-trained athletes. Histochem. Cell Biol. 111, 189–19510.1007/s004180050348
    1. Kern H. (2014). Functional electrical stimulation on paraplegic patients. Eur. J. Transl. Myol. 24, 75–15710.4081/bam.2014.2.75
    1. Kern H., Boncompagni S., Rossini K., Mayr W., Fanò G., Zanin M. E., et al. (2004). Long-term denervation in humans causes degeneration of both contractile and excitation-contraction coupling apparatus that can be reversed by functional electrical stimulation (ES). A role for myofiber regeneration? J. Neuropathol. Exp. Neurol. 63, 919–931
    1. Kern H., Carraro U., Adami N., Biral D., Hofer C., Forstner C., et al. (2010). Home-based functional electrical stimulation rescues permanently denervated muscles in paraplegic patients with complete lower motor neuron lesion. Neurorehabil. Neural Repair 24, 709–72110.1177/1545968310366129
    1. Kern H., Hofer C., Mödlin M., Mayr W., Vindigni V., Zampieri S., et al. (2008). Stable muscle atrophy in long-term paraplegics with complete upper motor neuron lesion from 3- to 20-year SCI. Spinal Cord 46, 293–30410.1038/sj.sc.3102131
    1. Kern H., Pelosi L., Coletto L., Musarò A., Sandri M., Vogelauer M., et al. (2011). Atrophy/hypertrophy cell signaling in muscles of young athletes trained with vibrational-proprioceptive stimulation. Neurol. Res. 33, 998–100910.1179/016164110X12767786356633
    1. Krenn M., Haller M., Bijak M., Unger E., Hofer C., Kern H., et al. (2011). Safe neuromuscular electrical stimulator designed for the elderly. Artif. Organs 35, 253–25610.1111/j.1525-1594.2011.01217.x
    1. Kurokawa M., Sato F., Aramaki S., Soh T., Yamauchi N., Hattori M. A. (2009). Monitor of the myostatin autocrine action during differentiation of embryonic chicken myoblasts into myotubes: effect of IGF-I. Mol. Cell. Biochem. 331, 193–19910.1007/s11010-009-0158-6
    1. Levine M., McElroy K., Stakich V., Cicco J. (2013). Comparing conventional physical therapy rehabilitation with neuromuscular electrical stimulation after TKA. Orthopedics 36, e319–e32410.3928/01477447-20130222-20
    1. Lin J., Wu H., Tarr P. T., Zhang C. Y., Wu Z., Boss O., et al. (2002). Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 418, 797–80110.1038/nature00904
    1. Lira V. A., Okutsu M., Zhang M., Greene N. P., Laker R. C., Breen D. S., et al. (2013). Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. FASEB J. 27, 4184–419310.1096/fj.13-228486
    1. Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Methods 25, 402–40810.1006/meth.2001.1262
    1. Mackey A. L., Brandstetter S., Schjerling P., Bojsen-Moller J., Qvortrup K., Pedersen M. M., et al. (2011). Sequenced response of extracellular matrix deadhesion and fibrotic regulators after muscle damage is involved in protection against future injury in human skeletal muscle. FASEB J. 25, 1943–195910.1096/fj.10-176487
    1. Maddocks M., Gao W., Higginson I. J., Wilcock A. (2013). Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease. Cochrane Database Syst. Rev. 1, 1–3010.1002/14651858.CD009419.pub2
    1. Maffiuletti N. A., Herrero A. J., Jubeau M., Impellizzeri F. M., Bizzini M. (2008). Differences in electrical stimulation thresholds between men and women. Ann. Neurol. 63, 507–51210.1002/ana.21346
    1. Matheny R. W., Jr, Nindl B. C., Adamo M. L. (2010). Minireview: mechano-growth factor: a putative product of IGF-I gene expression involved in tissue repair and regeneration. Endocrinology 151, 865–87510.1210/en.2009-1217
    1. Mosole S., Carraro U., Kern H., Loefler S., Fruhmann H., Vogelauer M., et al. (2014). Long-term high-level exercise promotes muscle reinnervation with age. J. Neuropathol. Exp. Neurol. 73, 284–29410.1097/NEN.0000000000000032
    1. Musarò A., McCullagh K., Paul A., Houghton L., Dobrowolny G., Molinaro M., et al. (2001). Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat. Genet. 27, 195–20010.1038/84839
    1. Nuhr M. J., Pette D., Berger R., Quittan M., Crevenna R., Huelsman M., et al. (2004). Beneficial effects of chronic low-frequency stimulation of thigh muscles in patients with advanced chronic heart failure. Eur. Heart J. 25, 136–14310.1016/j.ehj.2003.09.027
    1. Paffenbarger R. S., Jr, Kampert J. B., Lee I. M., Hyde R. T., Leung R. W., Wing A. L. (1994). Changes in physical activity and other lifeway patterns influencing longevity. Med. Sci. Sports Exerc. 26, 857–86510.1249/00005768-199407000-00008
    1. Podsiadlo D., Richardson S. (1991). The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 39, 142–148
    1. Quittan M., Wiesinger G. F., Sturm B., Puig S., Mayr W., Sochor A., et al. (2001). Improvement of thigh muscles by neuromuscular electrical stimulation in patients with refractory heart failure: a single-blind, randomized, controlled trial. Am. J. Phys. Med. Rehabil. 80, 206–21410.1097/00002060-200103000-00011
    1. Rao P. K., Kumar R. M., Farkhondeh M., Baskerville S., Lodish H. F. (2006). Myogenic factors that regulate expression of muscle-specific microRNAs. Proc. Natl. Acad. Sci. U.S.A. 103, 8721–872610.1073/pnas.0602831103
    1. Rejeski W. J., Ettinger W. H., Jr, Schumaker S., James P., Burns R., Elam J. T. (1995). Assessing performance-related disability in patients with knee osteoarthritis. Osteoarthr. Cartil. 3, 157–16710.1016/S1063-4584(05)80050-0
    1. Rodgers B. D., Wiedeback B. D., Hoversten K. E., Jackson M. F., Walker R. G., Thompson T. B. (2014). Myostatin stimulates, not inhibits, C2C12 myoblast proliferation. Endocrinology 155, 670–67510.1210/en.2013-2107
    1. Rosemffet M. G., Schneeberger E. E., Citera G., Sgobba M. E., Laiz C., Schmulevich H., et al. (2004). Effects of functional electrostimulation on pain, muscular strength, and functional capacity in patients with osteoarthritis of the knee. J. Clin. Rheumatol. 10, 246–24910.1097/01.rhu.0000141831.40350.91
    1. Rossini K., Zanin M. E., Podhorska-Okolow M., Carraro U. (2002). To stage and quantify regenerative myogenesis in human long-term permanent denervated muscle. Basic Appl. Myol. 12, 277–286
    1. Šarabon N., Loefler S., Cvecka J., Sedliak M., Kern H. (2013a). Strength training in elderly people improves static balance: a randomized controlled trial. Eur. J. Transl. Myol. 23, 85–8910.4081/bam.2013.3.85
    1. Šarabon N., Rošker J., Fruhmann H., Burggraf S., Loefler S., Kern H. (2013b). Reliability of maximal voluntary contraction related parameters measured by a portable isometric knee dynamometer. Phys. Med. Rehabil. Kuror. 23, 22–2710.1055/s-0032-1331190
    1. Šarabon N., Loefler S., Fruhmann H., Burggraf S., Kern H. (2010a). Reduction and technical simplification of testing protocol for walking based on repeatability analyses: an Interreg IVa pilot study. Eur. J. Transl. Myol. 1, 181–18610.4081/bam.2010.4.181
    1. Šarabon N., Rošker J., Loefler S., Kern H. (2010b). Sensitivity of body sway parameters during quiet standing to manipulation of support surface size. J. Sport Sci. Med. 9, 431–438
    1. Scicchitano B. M., Rizzuto E., Musarò A. (2009). Counteracting muscle wasting in aging and neuromuscular diseases: the critical role of IGF-1. Aging (Albany NY) 1, 451–457
    1. Shyu K. G., Ko W. H., Yang W. S., Wang B. W., Kuan P. (2005). Insulin-like growth factor-1 mediates stretch-induced upregulation of myostatin expression in neonatal rat cardiomyocytes. Cardiovasc. Res. 68, 405–41410.1016/j.cardiores.2005.06.028
    1. Snijders T., Verdijk L. B., van Loon L. J. (2009). The impact of sarcopenia and exercise training on skeletal muscle satellite cells. Ageing Res. Rev. 8, 328–33810.1016/j.arr.2009.05.003
    1. Strasser E. M., Stättner S., Karner J., Klimpfinger M., Freynhofer M., Zaller V., et al. (2009). Neuromuscular electrical stimulation reduces skeletal muscle protein degradation and stimulates insulin-like growth factors in an age- and current-dependent manner: a randomized, controlled clinical trial in major abdominal surgical patients. Ann. Surg. 249, 738–74310.1097/SLA.0b013e3181a38e71
    1. Suzuki T., Bean J. F., Fielding R. A. (2001). Muscle power of the ankle flexors predicts functional performance in community-dwelling older women. J. Am. Geriatr. Soc. 49, 1161–116710.1046/j.1532-5415.2001.49232.x
    1. Urciuolo A., Quarta M., Morbidoni V., Gattazzo F., Molon S., Grumati P., et al. (2013). Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nat. Commun. 4, 1964–198910.1038/ncomms2964
    1. Vainshtein A., Grumati P., Sandri M., Bonaldo P. (2014). Skeletal muscle, autophagy, and physical activity: the ménage à trois of metabolic regulation in health and disease. J. Mol. Med. 92, 127–13710.1007/s00109-013-1096-z
    1. Valdés J. A., Flores S., Fuentes E. N., Osorio-Fuentealba C., Jaimovich E., Molina A. (2013). IGF-1 induces IP3-dependent calcium signal involved in the regulation of myostatin gene expression mediated by NFAT during myoblast differentiation. J. Cell. Physiol. 228, 1452–146310.1002/jcp.24298
    1. van Rooij E., Liu N., Olson E. N. (2008). MicroRNAs flex their muscles. Trends Genet. 24, 159–16610.1016/j.tig.2008.01.007
    1. Viana J. U., Silva S. L., Torres J. L., Dias J. M., Pereira L. S., Dias R. C. (2013). Influence of sarcopenia and functionality indicators on the frailty profile of community-dwelling elderly subjects: a cross-sectional study. Braz. J. Phys. Ther. 17, 373–38110.1590/S1413-35552012005000102
    1. Vinciguerra M., Musaro A., Rosenthal N. (2010). Regulation of muscle atrophy in aging and disease. Adv. Exp. Med. Biol. 694, 211–23310.1007/978-1-4419-7002-2_15
    1. Walker D. K., Fry C. S., Drummond M. J., Dickinson J. M., Timmerman K. L., Gundermann D. M., et al. (2012). PAX7+ satellite cells in young and older adults following resistance exercise. Muscle Nerve 46, 51–5910.1002/mus.23266
    1. Wall B. T., Dirks M. L., Verdijk L. B., Snijders T., Hansen D., Vranckx P., et al. (2012). Neuromuscular electrical stimulation increases muscle protein synthesis in elderly type 2 diabetic men. Am. J. Physiol. Endocrinol. Metab. 303, 614–62310.1152/ajpendo.00138.2012
    1. Zampieri S., Doria A., Adami N., Biral D., Vecchiato M., Savastano S., et al. (2010). Subclinical myopathy in patients affected with newly diagnosed colorectal cancer at clinical onset of disease: evidence from skeletal muscle biopsies. Neurol. Res. 32, 20–2510.1179/016164110X12556180205997
    1. Zampieri S., Pietrangelo L., Loefler S., Fruhmann H., Vogelauer M., Burggraf S., et al. (2014). Lifelong physical exercise delays age-associated skeletal muscle decline. J. Gerontol. A Biol. Sci. Med. Sci. 10.1093/gerona/glu006

Source: PubMed

3
購読する