The Therapeutic Potential of the Essential Oil of Thymbra capitata (L.) Cav., Origanum dictamnus L. and Salvia fruticosa Mill. And a Case of Plant-Based Pharmaceutical Development

S A Pirintsos, M Bariotakis, M Kampa, G Sourvinos, C Lionis, E Castanas, S A Pirintsos, M Bariotakis, M Kampa, G Sourvinos, C Lionis, E Castanas

Abstract

This review performs a comprehensive assessment of the therapeutic potential of three native herbs of Crete (Thymbra capitata (L.) Cav., Salvia fruticosa Mill. and Origanum dictamnus L.), their phytochemical constituents, health benefits and issues relevant to their safety, within a translational context. Issues discussed comprise: 1) Ethnopharmacological uses of the three herbs, reviewed through an extensive search of the literature; 2) Systematic analysis of the major phytochemical constituents of each plant, and their medicinal properties; 3) To what extent could the existing medicinal properties be combined and produce an additive or synergistic effect; 4) Possible safety issues. We conclude with a specific example of the use of a combination of the essential oils of these plants as an effective anti-viral product and the experience gained in a case of a plant-based pharmaceutical development, by presenting the major steps and the continuum of the translational chain.

Keywords: Mediterranean; Near East; Southeastern Europe; antiviral; clinical trials; regulatory affairs; synergy; traditional medicine.

Conflict of interest statement

SP, CL, and EC are inventors of a patent (WO2010GB01836 20,100,929) on the use of the three examined plants for combating upper respiratory tract infections. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be constructed as a potential conflict of interest.

Copyright © 2020 Pirintsos, Bariotakis, Kampa, Sourvinos, Lionis and Castanas.

Figures

FIGURE 1
FIGURE 1
PRISMA flow diagram for the ethnobotanical and ethnopharmacological data.
FIGURE 2
FIGURE 2
The main phytochemical constituents contained in the essential oil of plants discussed in this review. IUPAC names: 2-methyl-5-propan-2-ylphenol (carvacrol), 1,3,3-trimethyl-2-oxabicyclo [2.2.2] octane (eucalyptol), (1R,4E,9S)-4,11,11-trimethyl-8-methylidenebicyclo [7.2.0] undec-4-ene (β-Caryophyllene), 1-methyl-4-propan-2-ylbenzene (p-Cymene), 1-methyl-4-propan-2-ylcyclohexa-1,4-diene (γ-Terpinene), (1S,2R,4R)-1,7,7-trimethylbicyclo [2.2.1] heptan-2-ol (borneol), 2-(4-methylcyclohex-3-en-1-yl)propan-2-ol (α-Terpineol).
FIGURE 3
FIGURE 3
The flow-chart of a translational chain development.

References

    1. Aburjai T., Hudaib M., Tayyem R., Yousef M., Qishawi M. (2007). Ethnopharmacological survey of medicinal herbs in Jordan, the Ajloun Heights region. J. Ethnopharmacol. 110, 294–304. 10.1016/j.jep.2006.09.031.
    1. Al-Khalil S. (1995). A survey of plants used in Jordanian traditional medicine. Int. J. Pharmacogn. 33, 317–323. 10.3109/13880209509065385.
    1. Al-Qura’n S. (2009). Ethnopharmacological survey of wild medicinal plants in Showbak, Jordan. J. Ethnopharmacol. 123, 45–50.
    1. Ali-Shtayeh M. S., Yaghmour R. M.-R., Faidi Y. R., Salem K., Al-Nuri M. A. (1998). Antimicrobial activity of 20 plants used in folkloric medicine in the Palestinian area. J. Ethnopharmacol. 60, 265–271. 10.1016/s0378-8741(97)00153-0.
    1. Ali-Shtayeh M. S., Yaniv Z., Mahajna J. (2000). Ethnobotanical survey in the Palestinian area: a classification of the healing potential of medicinal plants. J. Ethnopharmacol. 73, 221–232. 10.1016/s0378-8741(00)00316-0.
    1. Allahghadri T., Rasooli I., Owlia P., Nadooshan M. J., Ghazanfari T., Taghizadeh M., et al. (2010). Antimicrobial property, antioxidant capacity, and cytotoxicity of essential oil from cumin produced in Iran. J. Food Sci. 75, H54–H61. 10.1111/j.1750-3841.2009.01467.x.
    1. Altmann R. E., Campbell E. L., Johnston G. A. R. (2005). (+)- and (−)-borneol: efficacious positive modulators of GABA action at human recombinant α1β2γ2L GABAA receptors. Biochem. Pharmacol. 69, 1101–1111. 10.1016/j.bcp.2005.01.002.
    1. Alzweiri M., Sarhan A. A., Mansi K., Hudaib M., Aburjai T. (2011). Ethnopharmacological survey of medicinal herbs in Jordan, the Northern Badia region. J. Ethnopharmacol. 137, 27–35. 10.1016/j.jep.2011.02.007.
    1. Amirkia V., Heinrich M. (2014). Alkaloids as drug leads — a predictive structural and biodiversity-based analysis. Phytochem. Lett. 10, xlviii–liii. 10.1016/j.phytol.2014.06.015
    1. Anastasaki M., Bertsias A., Pirintsos S. A., Castanas E., Lionis C. (2017). Post-market outcome of an extract of traditional Cretan herbs on upper respiratory tract infections: a pragmatic, prospective observational study. BMC Compl. Alternative Med. 17, 466 10.1186/s12906-017-1978-7.
    1. Andrade e Silva H. G. (2012). Drug synergy-mechanisms and methods of analysis, toxicity and drug testing. Rijeka: InTech, The German University of Cairo.
    1. Araújo L. X., Novato T. P. L., Zeringota V., Maturano R., Melo D., Da Silva B. C., et al. (2016). Synergism of thymol, carvacrol and eugenol in larvae of the cattle tick, Rhipicephalus microplus, and brown dog tick, Rhipicephalus sanguineus. Med. Vet. Entomol. 30, 377–382. 10.1111/mve.12181.
    1. Ay G., Bertsias A., Symvoulakis E. K., Moschandreas J., Malliaraki N., Derdas S. P., et al. (2015). Reporting effectiveness of an extract of three traditional Cretan herbs on upper respiratory tract infection: results from a double-blind randomized controlled trial. J. Ethnopharmacol. 163, 157–166. 10.1016/j.jep.2015.01.030.
    1. Bariotakis M., Georgescu L., Laina D., Oikonomou I., Ntagounakis G., Koufaki M.-I., et al. (2019). From wild harvest towards precision agriculture: use of ecological Niche modelling to direct potential cultivation of wild medicinal plants in Crete. Sci. Total Environ. 694, 133681 10.1016/j.scitotenv.2019.133681.
    1. Ben Arfa A., Combes S., Preziosi-Belloy L., Gontard N., Chalier P. (2006). Antimicrobial activity of carvacrol related to its chemical structure. Lett. Appl. Microbiol. 43, 149–154. 10.1111/j.1472-765x.2006.01938.x.
    1. Bernardes W. A., Lucarini R., Tozatti M. G., Bocalon Flauzino L. G., Souza M. G. M., Turatti I. C. C., et al. (2010). Antibacterial activity of the essential oil from Rosmarinus officinalis and its major components against oral pathogens. Z. Naturforsch. C Biosci. 65, 588–593. 10.1515/znc-2010-9-1009.
    1. Burt S. (2004). Essential oils: their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol. 94, 223–253. 10.1016/j.ijfoodmicro.2004.03.022.
    1. Carazza J., Ribeiro M. V., Silva F., Rodrigues Machado S. M., Sousa M. (2011). The essential oils component p-cymene induces proton leak through Fo-ATP synthase and uncoupling of mitochondrial respiration. JEP (J. Environ. Psychol.) 3, 69–76. 10.2147/jep.s16387.
    1. Chebib M., Johnston G. A. R. (2000). GABA-activated ligand gated ion channels: medicinal chemistry and molecular biology. J. Med. Chem. 43, 1427–1447. 10.1021/jm9904349.
    1. Chen C., Yang F.-Q., Zhang Q., Wang F.-Q., Hu Y.-J., Xia Z.-N. (2015). Natural products for antithrombosis, Evid. base Compl. Alternative Med., 2015, 1, 10.1155/2015/876426.
    1. Coccimiglio J., Alipour M., Jiang Z. H., Gottardo C., Suntres Z. (2016). Antioxidant, antibacterial, and cytotoxic activities of the ethanolic Origanum vulgare extract and its major constituents. Oxid Med Cell Longev 2016 10.1155/2016/1404505.
    1. Corrêa P. R. C., Miranda R. R. S., Duarte L. P., Silva G. D. F., Filho S. A. V., Okuma A. A., et al. (2012). Antimicrobial activity of synthetic bornyl benzoates againstTrypanosoma cruzi. Pathog. Glob. Health 106, 107–112. 10.1179/2047773212y.0000000002.
    1. Daemon M., Verge S., Dumas M., Soulet S., Nay B., Arnaudinaud V., et al. (2002). Dietary antioxidants, peroxidation and cardiovascular risks. J. Nutr. Health Aging 6, 209–223.
    1. Dafni A., Yaniv Z., Palevitch D. (1984). Ethnobotanical survey of medicinal plants in northern Israel. J. Ethnopharmacol. 10, 295–310. 10.1016/0378-8741(84)90017-5.
    1. Dauqan E. M., Abdullah A. (2017). Medicinal and functional values of thyme (Thymus vulgaris L.) herb. J. Appl. Biol. Biotechnol. 5, 017–022.
    1. de Sousa J. P., de Azerêdo G. A., de Araújo Torres R., da Silva Vasconcelos M. A., da Conceição M. L., de Souza E. L. (2012). Synergies of carvacrol and 1,8-cineole to inhibit bacteria associated with minimally processed vegetables. Int. J. Food Microbiol. 154, 145–151. 10.1016/j.ijfoodmicro.2011.12.026.
    1. Dettling A., Grass H., Schuff A., Skopp G., Strohbeck-Kuehner P., Haffner H. T. (2004). Absinthe: attention performance and mood under the influence of thujone. J. Stud. Alcohol 65, 573–581. 10.15288/jsa.2004.65.573.
    1. Didry N., Dubreuil L., Pinkas M. (1994). Activity of thymol, carvacrol, cinnamaldehyde and eugenol on oral bacteria. Pharm. Acta Helv. 69, 25–28. 10.1016/0031-6865(94)90027-2.
    1. Dimopoulos P., Raus T., Bergmeier E., Constantinidis T., Iatrou G., Kokkini S., et al. (2013). “An annotated checklist. – Berlin Englera 31,” in Vascular plants of Greece: botanischer Garten und Botanisches Museum Berlin-Dahlem. Athens: Hellenic Botanical Society.
    1. Eissa T. A. F., Palomino O. M., Carretero M. E., Gómez-Serranillos M. P. (2014). Ethnopharmacological study of medicinal plants used in the treatment of CNS disorders in Sinai Peninsula, Egypt. J. Ethnopharmacol. 151, 317–332. 10.1016/j.jep.2013.10.041.
    1. El-Sayed E. M., Abd-Allah A. R., Mansour A. M., El-Arabey A. A. (2015). Thymol and carvacrol prevent cisplatin-induced nephrotoxicity by abrogation of oxidative stress, inflammation, and apoptosis in rats. J. Biochem. Mol. Toxicol. 29, 165–172. 10.1002/jbt.21681.
    1. EMA/HMPC (2010). Public statement on the use of herbal medicinal products containing thujone. EMA/HMPC/732886/2010 .
    1. Euro+Med (2019). Euro+Med PlantBase - the information resource for Euro-Mediterranean plant diversity. Available at: Published on the Internet (Accessed June 2017).
    1. Fabricant D. S., Farnsworth N. R. (2001). The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 109 (Suppl. 1), 69–75. 10.2307/3434847.
    1. Fielding J., Turland N. (2005). Flowers of Crete. Editor: B. Mathiew (London, England: Kev Royal Botanic Gardens).
    1. Fischer J., Dethlefsen U. (2013). Efficacy of cineole in patients suffering from acute bronchitis: a placebo-controlled double-blind trial. Cough 9, 25 10.1186/1745-9974-9-25.
    1. García-Beltrán J. M., Esteban M. A. (2016). Properties and applications of plants of Origanum sp. Genus. SM Journal of Biology 2, 1006.
    1. Gertsch J., Leonti M., Raduner S., Racz I., Chen J.-Z., Xie X.-Q., et al. (2008). Beta-caryophyllene is a dietary cannabinoid. Proc. Natl. Acad. Sci. U. S. A. 105, 9099–9104. 10.1073/pnas.0803601105.
    1. Guarda A., Rubilar J. F., Miltz J., Galotto M. J. (2011). The antimicrobial activity of microencapsulated thymol and carvacrol. Int. J. Food Microbiol. 146, 144–150. 10.1016/j.ijfoodmicro.2011.02.011.
    1. Guenther A., Zimmerman P., Wildermuth M. (1994). Natural volatile organic compound emission rate estimates for U.S. woodland landscapes. Atmos. Environ. 28, 1197–1210. 10.1016/1352-2310(94)90297-6.
    1. Guimarães A. G., Quintans J. S. S., Quintans-Júnior L. J. (2013). Monoterpenes with analgesic activity-A systematic review. Phytother Res. 27, 1–15. 10.1002/ptr.4686.
    1. Guindon J., Hohmann A. G. (2008). Cannabinoid CB2 receptors: a therapeutic target for the treatment of inflammatory and neuropathic pain. Br. J. Pharmacol. 153, 319–334. 10.1038/sj.bjp.0707531.
    1. Gürdal B., Kültür Ş. (2013). An ethnobotanical study of medicinal plants in Marmaris (Muğla, Turkey). J. Ethnopharmacol. 146, 113–126. 10.1016/j.jep.2012.12.012.
    1. Gutiérrez-Fernández J., García-Armesto M. R., Álvarez-Alonso R., Del Valle P., de Arriaga D., Rúa J. (2013). Antimicrobial activity of binary combinations of natural and synthetic phenolic antioxidants against Enterococcus faecalis . J. Dairy Sci. 96, 4912–4920. 10.3168/jds.2013-6643.
    1. Hanlidou E., Karousou R., Kleftoyanni V., Kokkini S. (2004). The herbal market of Thessaloniki (N Greece) and its relation to the ethnobotanical tradition. J. Ethnopharmacol. 91, 281–299. 10.1016/j.jep.2004.01.007.
    1. Hardy K. (2019). Paleomedicine and the use of plant secondary compounds in the Paleolithic and Early Neolithic. Evol. Anthropol. 28, 60–71. 10.1002/evan.21763.
    1. Hassan S. B., Gali-Muhtasib H., Göransson H., Larsson R. (2010). Alpha terpineol: a potential anticancer agent which acts through suppressing NF-kappaB signalling. Anticancer Res. 30, 1911–1919.
    1. Held S., Schieberle P., Somoza V. (2007). Characterization of α-terpineol as an anti-inflammatory component of orange juice by in Vitro studies using oral buccal cells. J. Agric. Food Chem. 55, 8040–8046. 10.1021/jf071691m.
    1. Hobbs M., McCarthy M. W. (2009). “Clinical trials,” in Oxford American handbook of clinical pharmacy. Editors McCarthy M. W., Kockler D. R. (New York: Oxford University Press; ), 115–126.
    1. Honda G., Yeşilada E., Tabata M., Sezik E., Fujita T., Takeda Y., et al. (1996). Traditional medicine in Turkey VI. Folk medicine in west Anatolia: Afyon, Kütahya, Denizli, Muğla, Aydin provinces. J. Ethnopharmacol. 53, 75–87. 10.1016/s0378-8741(96)01426-2.
    1. Hotta M., Nakata R., Katsukawa M., Hori K., Takahashi S., Inoue H. (2010). Carvacrol, a component of thyme oil, activates PPARα and γ and suppresses COX-2 expression. J. Lipid Res. 51, 132–139. 10.1194/jlr.m900255-jlr200.
    1. Hudaib M., Mohammad M., Bustanji Y., Tayyem R., Yousef M., Abuirjeie M., et al. (2008). Ethnopharmacological survey of medicinal plants in Jordan, Mujib Nature Reserve and surrounding area. J. Ethnopharmacol. 120, 63–71. 10.1016/j.jep.2008.07.031.
    1. Jaradat N. A., Ayesh O. I., Anderson C. (2016). Ethnopharmacological survey about medicinal plants utilized by herbalists and traditional practitioner healers for treatments of diarrhea in the West Bank/Palestine. J. Ethnopharmacol. 182, 57–66. 10.1016/j.jep.2016.02.013.
    1. Juergens U. R., Dethlefsen U., Steinkamp G., Gillissen A., Repges R., Vetter H. (2003). Anti-inflammatory activity of 1.8-cineol (eucalyptol) in bronchial asthma: a double-blind placebo-controlled trial. Respir. Med. 97, 250–256. 10.1053/rmed.2003.1432.
    1. Juergens U. R., Engelen T., Racké K., Stöber M., Gillissen A., Vetter H. (2004). Inhibitory activity of 1,8-cineol (eucalyptol) on cytokine production in cultured human lymphocytes and monocytes. Pulm. Pharmacol. Therapeut. 17, 281–287. 10.1016/j.pupt.2004.06.002.
    1. Jun Y. S., Kang P., Min S. S., Lee J.-M., Kim H.-K., Seol G. H. (2013). Effect of Eucalyptus oil inhalation on pain and inflammatory responses after total knee replacement: a randomized clinical trial, Evid. base Compl. Alternative Med., 2013, 1, 10.1155/2013/502727.
    1. Karousou R., Deirmentzoglou S. (2011). The herbal market of Cyprus: traditional links and cultural exchanges. J. Ethnopharmacol. 133, 191–203. 10.1016/j.jep.2010.09.034.
    1. Karousou R., Hanlidou E., Kokkini S. (2000). “The Sage plants of Greece: distribution and infraspecific variation,” inThe Sage. Editor Kintzios S. E. (Singapore: Harwood Academic Publishers; ), 27–46.
    1. Karousou R., Koureas D. N., Kokkini S. (2005). Essential oil composition is related to the natural habitats: Coridothymus capitatus and Satureja thymbra in NATURA 2000 sites of Crete. Phytochemistry 66, 2668–2673. 10.1016/j.phytochem.2005.09.020.
    1. Karousou R., Vokou D., Kokkini S. (1998). Variation ofSalvia fruticosaEssential oils on the island of Crete (Greece). Plant Biol. 111, 250–254. 10.1111/j.1438-8677.1998.tb00705.x.
    1. Kehrl W., Sonnemann U., Dethlefsen U. (2004). Therapy for acute nonpurulent rhinosinusitis with cineole: results of a double-blind, randomized, placebo-controlled trial. Laryngoscope 114, 738–742. 10.1097/00005537-200404000-00027.
    1. Kim J. M., Marshall M., Cornell J. A., Iii J. F. P., III, Wei C. I. (1995). Antibacterial activity of carvacrol, citral, and geraniol against Salmonella typhimurium in culture medium and on fish cubes. J. Food Sci. 60, 1364–1368. 10.1111/j.1365-2621.1995.tb04592.x.
    1. Kim K.-Y., Chung H.-J. (2000). Flavor compounds of pine sprout tea and pine needle tea. J. Agric. Food Chem. 48, 1269–1272. 10.1021/jf9900229.
    1. Kim K. Y., Seo H. J., Min S. S., Park M., Seol G. H. (2014). A randomized clinical trial. The effect of 1.8-cineole inhalation on preoperative anxiety. Evidence-Based Complementary Altern. Med. 2014 10.1155/2014/820126
    1. Kinsey S. G., Long J. Z., Cravatt B. F., Lichtman A. H. (2010). Fatty acid amide hydrolase and monoacylglycerol lipase inhibitors produce anti-allodynic effects in mice through distinct cannabinoid receptor mechanisms. J. Pain 11, 1420–1428. 10.1016/j.jpain.2010.04.001.
    1. Kirimer N., Başer K. H. C., Tümen G. (1995). Carvacrol-rich plants in Turkey. Chem. Nat. Compd. 31, 37–41. 10.1007/bf01167568.
    1. Kiskó G., Roller S. (2005). Carvacrol and p-cymene inactivate Escherichia coli O157: H7 in apple juice. BMC Microbiol. 5, 36 10.1186/1471-2180-5-36.
    1. Kissels W., Wu X., Santos R. R. (2017). Short communication: interaction of the isomers carvacrol and thymol with the antibiotics doxycycline and tilmicosin: in vitro effects against pathogenic bacteria commonly found in the respiratory tract of calves. J. Dairy Sci. 100, 970–974. 10.3168/jds.2016-11536.
    1. Klauke A.-L., Racz I., Pradier B., Markert A., Zimmer A. M., Gertsch J., et al. (2014). The cannabinoid CB2 receptor-selective phytocannabinoid beta-caryophyllene exerts analgesic effects in mouse models of inflammatory and neuropathic pain. Eur. Neuropsychopharmacol 24, 608–620. 10.1016/j.euroneuro.2013.10.008.
    1. Kokkini S., Vokou D. (1989). Carvacrol-rich plants in Greece. Flavour Fragrance J. 4, 1–7. 10.1002/ffj.2730040102.
    1. Kotan R., Kordali S., Cakir A. (2007). Screening of antibacterial activities of twenty-one oxygenated monoterpenes. Z. Naturforsch. C Biosci. 62, 507–513. 10.1515/znc-2007-7-808.
    1. Lachenmeier D. W., Uebelacker M. (2010). Risk assessment of thujone in foods and medicines containing sage and wormwood – evidence for a need of regulatory changes? Regul. Toxicol. Pharmacol. 58, 437–443. 10.1016/j.yrtph.2010.08.012.
    1. Landa P., Kokoska L., Pribylova M., Vanek T., Marsik P. (2009). In vitro anti-inflammatory activity of carvacrol: inhibitory effect on COX-2 catalyzed prostaglandin E2 biosynthesisb. Arch Pharm. Res. (Seoul) 32, 75–78. 10.1007/s12272-009-1120-6.
    1. Lardos A., Heinrich M. (2013). Continuity and change in medicinal plant use: the example of monasteries on Cyprus and historical iatrosophia texts. J. Ethnopharmacol. 150, 202–214. 10.1016/j.jep.2013.08.026.
    1. Lardos A. (2006). The botanical materia medica of the Iatrosophikon-A collection of prescriptions from a monastery in Cyprus. J. Ethnopharmacol. 104, 387–406. 10.1016/j.jep.2005.12.035.
    1. Lev E., Amar Z. (2000). Ethnopharmacological survey of traditional drugs sold in Israel at the end of the 20th century. J. Ethnopharmacol. 72, 191–205. 10.1016/s0378-8741(00)00230-0.
    1. Lev E., Amar Z. (2002). Ethnopharmacological survey of traditional drugs sold in the Kingdom of Jordan. J. Ethnopharmacol. 82, 131–145. 10.1016/s0378-8741(02)00182-4.
    1. Lev E. (2002). Reconstructed materia medica of the Medieval and Ottoman al-Sham. J. Ethnopharmacol. 80, 167–179. 10.1016/s0378-8741(02)00029-6.
    1. Li Y.-H., Sun X.-P., Zhang Y.-Q., Wang N.-S. (2008). The antithrombotic effect of borneol related to its anticoagulant property. Am. J. Chin. Med. 36, 719–727. 10.1142/s0192415x08006181.
    1. Lima M. d. S., Quintans-Júnior L. J., de Santana W. A., Martins Kaneto C., Pereira Soares M. B., Villarreal C. F. (2013). Anti-inflammatory effects of carvacrol: evidence for a key role of interleukin-10. Eur. J. Pharmacol. 699, 112–117. 10.1016/j.ejphar.2012.11.040.
    1. Lima‐Accioly P. M., Lavor‐Porto P. R., Cavalcante F. S., Magalhães P. J. C., Lahlou S., Morais S. M. et al. (2006). Essential oil of Croton nepetaefolius and its main constituent, 1,8‐cineole, block excitability of rat sciatic nerve in vitro. Clin. Exp. Pharmacol. Physiol. 33, 1158--1163. 10.1111/j.1440-1681.2006.04494.x
    1. Lionis C., Faresjö Å., Skoula M., Kapsokefalou M., Faresjö T. (1998). Antioxidant effects of herbs in Crete. Lancet 352, 1987–1988. 10.1016/s0140-6736(05)61333-5.
    1. Lücker J., El Tamer M. K., Schwab W., Verstappen F. W. A., van der Plas L. H. W., Bouwmeester H. J., et al. (2002). Monoterpene biosynthesis in lemon (Citrus limon). FEBS J. 269, 3160–3171. 10.1046/j.1432-1033.2002.02985.x.
    1. Ma W.-B., Feng J.-T., Jiang Z.-L., Wu H., Ma Z.-Q., Zhang X. (2014). Fumigant activity of eleven essential oil compounds and their selected binary mixtures against Culex pipiens pallens (Diptera: Culicidae). Parasitol. Res. 113, 3631–3637. 10.1007/s00436-014-4028-0.
    1. Maele L. V., Heyndrickx M., De Pauw N., Verlinden M., Haesebrouck F., Martel A., et al. (2016). In vitro susceptibility of Brachyspira hyodysenteriae to organic acids and essential oil components. J. Vet. Med. Sci. 78, 325–328.
    1. Manayi A., Nabavi S. M., Daglia M., Jafari S. (2016). Natural terpenoids as a promising source for modulation of GABAergic system and treatment of neurological diseases. Pharmacol. Rep. 68, 671–679. 10.1016/j.pharep.2016.03.014.
    1. Martínez-Francés V., Rivera D., Heinrich M., Obón C., Ríos S. (2015). An ethnopharmacological and historical analysis of “Dictamnus”, a European traditional herbal medicine. J. Ethnopharmacol. 175, 390–406. 10.1016/j.jep.2015.09.011.
    1. Mastelic J., Jerkovic I., Blazevic I., Poljak-Blaži M., Borović S., Ivančić-Baće I., et al. (2008). Comparative study on the antioxidant and biological activities of carvacrol, thymol, and eugenol derivatives. J. Agric. Food Chem. 56, 3989–3996.
    1. Milos M., Makota D. (2012). Investigation of antioxidant synergisms and antagonisms among thymol, carvacrol, thymoquinone and p-cymene in a model system using the Briggs-Rauscher oscillating reaction. Food Chem. 131, 296–299. 10.1016/j.foodchem.2011.08.042.
    1. Naghibi F., Mosaddegh M., Mohammadi Motamed M., Ghorbani A. (2005). Labiatae family in folk medicine in Iran: from ethnobotany to pharmacology. Iran. J. Pharm. Res. (IJPR) 4, 63–79.
    1. Novato T. P. L., Araújo L. X., de Monteiro C. M. O., Maturano R., Senra T. d. O. S., da Silva Matos R., et al. (2015). Evaluation of the combined effect of thymol, carvacrol and ( E )-cinnamaldehyde on Amblyomma sculptum (Acari: ixodidae) and Dermacentor nitens (Acari: ixodidae) larvae. Vet. Parasitol. 212, 331–335. 10.1016/j.vetpar.2015.08.021.
    1. Oliveira M. G., Marques R. B., Santana M. F., Santos A. B., Brito F. A., Barreto E. O. et al. (2012). α‐Terpineol reduces mechanical hypernociception and inflammatory response. Basic & Clin. Pharm. & Toxicol. 111, 120--125. 10.1111/j.1742-7843.2012.00875.x
    1. Palevitch D., Yaniv Z., Dafni A., Simon J. E. (1986). “Medicinal plants of Israel: an ethnobotanical survey,” in Herbs, spices and medicinal plants. Editor Craker L. A. (Phoenix, AZ: Oryx Press; ), 281–345.
    1. Pavela R. (2015). Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitol. Res. 114, 3835–3853. 10.1007/s00436-015-4614-9.
    1. Pei R. S., Zhou F., Ji B. P., Xu J. (2009). Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method. J. Food Sci. 74, 379–383. 10.1111/j.1750-3841.2009.01287.x.
    1. Pelkonen O., Abass K., Wiesner J. (2013). Thujone and thujone-containing herbal medicinal and botanical products: toxicological assessment. Regul. Toxicol. Pharmacol. 65, 100–107. 10.1016/j.yrtph.2012.11.002.
    1. Periago P. M., Delgado B., Fernández P. S., Palop A. (2004). Use of carvacrol and cymene to control growth and viability of Listeria monocytogenes cells and predictions of survivors using frequency distribution functions. J. Food Protect. 67, 1408–1416. 10.4315/0362-028x-67.7.1408.
    1. Proudfoot C. J., Garry E. M., Cottrell D. F., Rosie R., Anderson H., Robertson D. C., et al. (2006). Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. Curr. Biol. 16, 1591–1605. 10.1016/j.cub.2006.07.061.
    1. Quintans‐Júnior L. J., Oliveira M. G. B., Santana M. F., Santana M. T., Guimarães A. G., Siqueira J. S. et al. (2011) α‐Terpineol reduces nociceptive behavior in mice. Pharm. Biol. 49, 583--586. 10.3109/13880209.2010.529616
    1. Rattanachaikunsopon P., Phumkhachorn P. (2010b). Assessment of synergistic efficacy of carvacrol and cymene against Edwardsiella tarda in vitro and in Tilapia (Oreochromis niloticus). Afr. J. Microbiol. Res. 4, 420–425.
    1. Rattanachaikunsopon P., Phumkhachorn P. (2010a). Assessment of factors influencing antimicrobial activity of carvacrol and cymene against Vibrio cholerae in food. J. Biosci. Bioeng. 110, 614–619. 10.1016/j.jbiosc.2010.06.010.
    1. Ravishankar S., Zhu L., Reyna-Granados J., Law B., Joens L., Friedman M. (2010). Carvacrol and cinnamaldehyde inactivate antibiotic-resistant Salmonella enterica in buffer and on celery and oysters. J. Food Protect. 73, 234–240. 10.4315/0362-028x-73.2.234.
    1. Renaud S. (1995). Le régime santé. Paris, France: Editions: Odile Jacob.
    1. Ribeiro T. P., Porto D. L., Menezes C. P., Antunes A. A., Silva D. F., De Sousa D. P., et al. (2010). Unravelling the cardiovascular effects induced by alpha-terpineol: a role for the nitric oxide-cGMP pathway. Clin. Exp. Pharmacol. Physiol. 37, 811–816. 10.1111/j.1440-1681.2010.05383.x.
    1. Rivera D., Obon C., Cano F. (1994). The botany, history and traditional uses of three-lobed sage (Salvia fruticosa miller) (Labiatae). Econ. Bot. 48, 190–195. 10.1007/bf02908216.
    1. Said O., Khalil K., Fulder S., Azaizeh H. (2002). Ethnopharmacological survey of medicinal herbs in Israel, the Golan heights and the west bank region. J. Ethnopharmacol. 83, 251–265. 10.1016/s0378-8741(02)00253-2.
    1. Santos F. A., Rao V. S. N. (2000). Antiinflammatory and antinociceptive effects of 1,8-cineole a terpenoid oxide present in many plant essential oils. Phytother Res. 14, 240–244. 10.1002/1099-1573(200006)14:4<240::aid-ptr573>;2-x.
    1. Sargin S. A. (2015). Ethnobotanical survey of medicinal plants in Bozyazı district of Mersin, Turkey. J. Ethnopharmacol. 173, 105–126.
    1. Sato K., Krist S., Buchbauer G. (2007). Antimicrobial effect of vapours of geraniol, (R)-(-)-linalool, terpineol,γ-terpinene and 1,8-cineole on airborne microbes using an airwasher. Flavour Fragrance J. 22, 435–437. 10.1002/ffj.1818.
    1. Savelev S., Okello E., Perry N. S. L., Wilkins R. M., Perry E. K. (2003). Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil. Pharmacol. Biochem. Behav. 75, 661–668. 10.1016/s0091-3057(03)00125-4.
    1. Sivropoulou A., Papanikolaou E., Nikolaou C., Kokkini S., Lanaras T., Arsenakis M. (1996). Antimicrobial and cytotoxic activities ofOriganumEssential oils. J. Agric. Food Chem. 44, 1202–1205. 10.1021/jf950540t.
    1. Song H., Schacher C., Dethlefsen U. (2009). Concomitant therapy with Cineole (Eucalyptole) reduces exacerbations in COPD: a placebo-controlled double-blind trial. Respir. Res. 10, 69 10.1186/1465-9921-10-69.
    1. Sotiropoulou Ν.-S., Kokkini M., P.Megremi S.-F., Daferera D., Skotti E., Kimbaris A., et al. (2016). Determination of Α- and Β-thujone in wormwood and sage infusions of Greek flora and estimation of their average toxicity. Curr. Res. Nutr. Food Sci. 4, 152–160. 10.12944/crnfsj.4.special-issue-october.21.
    1. Souma H., Sağdiç O., Özkan G., Karadoğan T. (2004). Antibacterial activity and composition of essential oils from Origanum, Thymbra and Satureja species with commercial importance in Turkey. Food Contr. 15, 169–172. 10.1016/s0956-7135(03)00028-8.
    1. Stavrou A., Challoumas D., Dimitrakakis G. (2013). Archibald Cochrane (1909-1988): the father of evidence-based medicine. Interact. Cardiovasc. Thorac. Surg. 18, 121–124. 10.1093/icvts/ivt451.
    1. Stefanaki A., Cook C. M., Lanaras T., Kokkini S. (2016). The Oregano plants of Chios Island (Greece): essential oils of Origanum onites L. growing wild in different habitats. Ind. Crop. Prod. 82, 107–113. 10.1016/j.indcrop.2015.11.086.
    1. Suntres Z. E., Coccimiglio J., Alipour M. (2015). The bioactivity and toxicological actions of carvacrol. Crit. Rev. Food Sci. Nutr. 55, 304–318. 10.1080/10408398.2011.653458.
    1. Tak J.-H., Jovel E., Isman M. B. (2016). Comparative and synergistic activity of Rosmarinus officinalis L. essential oil constituents against the larvae and an ovarian cell line of the cabbage looper, Trichoplusia ni (Lepidoptera: noctuidae). Pest Manag. Sci. 72, 474–480. 10.1002/ps.4010.
    1. Tak J. H., Isman M. B. (2017). Penetration-enhancement underlies synergy of plant essential oil terpenoids as insecticides in the cabbage looper, Trichoplusia ni. Sci. Rep. 7, 42432 10.1038/srep42432.
    1. Takaishi V. G., Bezerra J., Souza G. T., Carvalho R. J., Gomes-Neto N. J., Figueiredo R. C., et al. (2015). Inhibition of Staphylococcus aureus cocktail using the synergies of oregano and rosemary essential oils or carvacrol and 1, 8-cineole. Front. Microbiol. 6, 1223 10.3389/fmicb.2015.01223.
    1. Tang Y., Garg H., Geng Y.-J., Bryan N. S. (2009). Nitric oxide bioactivity of traditional Chinese medicines used for cardiovascular indications. Free Radic. Biol. Med. 47, 835–840. 10.1016/j.freeradbiomed.2009.06.024.
    1. Tarantilis R. H. L., Cardoso M. S. P., Menezes C. T., Silva J. P., De Sousa D. P., Batista J. S. (2011) .Gastroprotective activity of α-terpineol in two experimental models of gastric ulcer in rats. Daru: J. Faculty Phar. 19, 277.
    1. Tesche S., Metternich F., Sonnemann U., Engelke J.-C., Dethlefsen U. (2008). The value of herbal medicines in the treatment of acute non-purulent rhinosinusitis. Eur. Arch. Oto-Rhino-Laryngol. 265, 1355 10.1007/s00405-008-0683-z.
    1. Tseliou M., Pirintsos S. A., Lionis C., Castanas E., Sourvinos G. (2019). Antiviral effect of an essential oil combination derived from three aromatic plants (Coridothymus capitatus (L.) Rchb. f., Origanum dictamnus L. and Salvia fruticosa Mill.) against viruses causing infections of the upper respiratory tract. J. Herb. Med. 17-18, 100288 10.1016/j.hermed.2019.100288.
    1. Ultee A., Bennik M. H. J., Moezelaar R. (2002). The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus . AEM 68, 1561–1568. 10.1128/aem.68.4.1561-1568.2002.
    1. Ultee A., Kets E. P. W., Smid E. J. (1999). Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus . Appl. Environ. Microbiol. 65, 4606–4610. 10.1128/aem.65.10.4606-4610.1999.
    1. Ultee A., Slump R. A., Steging G., Smid E. J. (2000). Antimicrobial activity of carvacrol toward Bacillus cereus on rice. J. Food Protect. 63, 620–624. 10.4315/0362-028x-63.5.620.
    1. Vardar-Ünlü G., Candan F., Sökmen A., Daferera D., Polissiou M., Sökmen M., et al. (2003). Antimicrobial and Antioxidant Activity of the Essential Oil and Methanol Extracts ofThymus pectinatusFisch. et Mey. Var.pectinatus(Lamiaceae). J. Agric. Food Chem. 51, 63–67. 10.1021/jf025753e.
    1. Vartiainen O. (1950). The anthelmintic effects of thymol and p-cymene; a pharmacological and clinical study, with special consideration of the fish tapeworm disease. Ann. Med. Intern. Fenn. 39, 1--87.
    1. Vázquez F. M., Suarez M. A., Pérez A. (1997). Medicinal plants used in the Barros area, Badajoz province (Spain). J. Ethnopharmacol. 55, 81–85. 10.1016/s0378-8741(96)01491-2.
    1. Vrachnakis T. (2003). Trichomes of Origanum dictamnus L. (Labiatae). Phyton 43, 109–133.
    1. Wagner H., Wierer R. (1986). In vitro-Hemmung der Prostaglandin-Biosynthese durch etherische Öle und phenolische Verbindungen. Planta Med. 52, 184–187. 10.1055/s-2007-969117.
    1. Wang S., Zhang D., Hu J., Jia Q., Xu W., Su D., et al. (2017). A clinical and mechanistic study of topical borneol‐induced analgesia. EMBO Mol. Med. 9, 802–815. 10.15252/emmm.201607300.
    1. Worth H., Dethlefsen U. (2012). Patients with asthma benefit from concomitant therapy with cineole: a placebo-controlled, double-blind trial. J. Asthma 49, 849–853. 10.3109/02770903.2012.717657.
    1. Xu H., Delling M., Jun J. C., Clapham D. E. (2006). Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat. Neurosci. 9, 628–635. 10.1038/nn1692.
    1. Yang Y., Zhang Z., Li S., Ye X., Li X., He K. (2014). Synergy effects of herb extracts: pharmacokinetics and pharmacodynamic basis. Fitoterapia 92, 133–147. 10.1016/j.fitote.2013.10.010.
    1. Yu D., Wang J., Shao X., Xu F., Wang H. (2015). Antifungal modes of action of tea tree oil and its two characteristic components againstBotrytis cinerea. J. Appl. Microbiol. 119, 1253–1262. 10.1111/jam.12939.
    1. Yuan G., Wahlqvist M., He G., Yang M., Li D. (2006). Natural products and anti-inflammatory activity. Asia Pac. J. Clin. Nutr. 15, 143.
    1. Zhou X., Seto S. W., Chang D., Kiat H., Razmovski-Naumovski V., Chan K., et al. (2016). Synergistic effects of Chinese herbal medicine: a comprehensive review of methodology and current research. Front. Pharmacol. 7, 201 10.3389/fphar.2016.00201.

Source: PubMed

3
購読する