Differential effects of cyclophosphamide and mycophenolate mofetil on cellular and serological parameters in patients with systemic lupus erythematosus

Till Fassbinder, Ute Saunders, Eva Mickholz, Elisabeth Jung, Heidemarie Becker, Bernhard Schlüter, Annett Marita Jacobi, Till Fassbinder, Ute Saunders, Eva Mickholz, Elisabeth Jung, Heidemarie Becker, Bernhard Schlüter, Annett Marita Jacobi

Abstract

Introduction: Disease activity and therapy show an impact on cellular and serological parameters in patients with systemic lupus erythematosus (SLE). This study was performed to compare the influence of mycophenolate mofetil (MMF) and cyclophosphamide (CYC) therapy on these parameters in patients with flaring, organ-threatening disease.

Methods: SLE patients currently receiving CYC (n = 20), MMF (n = 25) or no immunosuppressive drugs (n = 22) were compared using a cross-sectional design. Median disease activity and daily corticosteroid dose were similar in these treatment groups. Concurrent medication, organ manifestations, and disease activity were recorded, and cellular and serological parameters were determined by routine diagnostic tests or flow cytometric analysis. In addition follow-up data were obtained from different sets of patients (CYC n = 24; MMF n = 23).

Results: Although both drugs showed a significant effect on disease activity and circulating B cell subsets, only MMF reduced circulating plasmablasts and plasma cells as well as circulating free light chains within three months of induction therapy. Neither MMF nor CYC were able to reduce circulating memory B cells. MMF lowered IgA levels more markedly than CYC. We did not observe a significant difference in the reduction of IgG levels or anti-dsDNA antibodies comparing patients receiving MMF or CYC. In contrast to MMF, induction therapy with CYC was associated with a significant increase of circulating CD8+ effector T cells and plasmacytoid dendritic cells (PDCs) after three months.

Conclusions: The results indicate differences between MMF and CYC with regard to the mechanism of action. MMF, but not CYC, treatment leads to a fast and enduring reduction of surrogate markers of B cell activation, such as circulating plasmablasts, plasma cells and free light chains but a comparable rate of hypogammaglobulinemia.

Figures

Figure 1
Figure 1
Influence of an induction therapy with mycophenolate mofetil (MMF) or cyclophosphamide (CYC) on plasmablast and plasma cell counts. CD27++CD38++HLADRhigh plasmablast (A) and CD27++CD38++HLADRlow plasma cell counts (C) prior to and approximately 16 and 31 weeks after start of induction therapy with MMF. CD27++CD38++HLADRhigh plasmablast (B) and CD27++CD38++HLADRlow plasma cell counts (D) prior to and approximately 15 weeks after start of induction therapy with CYC. Statistical analyses were performed using the Wilcoxon’s matched pairs signed rank test and P-values <0.05 were considered significant.
Figure 2
Figure 2
Influence of induction therapy with mycophenolate mofetil (MMF) and cyclophosphamide (CYC) on free light chain (FLC) levels. Levels of free kappa light chains (FLCkappa) (A) and free lambda light chains (FLClambda) (C) prior to and approximately 16 and 31 weeks after start of induction therapy with MMF. Levels of free kappa light chains (FLCkappa) (B) and free lambda light chains (FLClambda) (D) prior to and approximately 15 weeks after start of induction therapy with CYC. Statistical analyses were performed using the Wilcoxon’s matched pairs signed rank test and P-values <0.05 were considered significant.

References

    1. Klippel JH. ebrary Inc: Primer on the rheumatic diseases. 13th ed. New York, NY: Springer; 2008
    1. Liu Z, Davidson A. Taming lupus-a new understanding of pathogenesis is leading to clinical advances. Nat Med. 2012;18:871–882. doi: 10.1038/nm.2752.
    1. Bertsias GK, Tektonidou M, Amoura Z, Aringer M, Bajema I, Berden JH, et al. Joint European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of adult and paediatric lupus nephritis. Ann Rheum Dis. 2012;71:1771–1782. doi: 10.1136/annrheumdis-2012-201940.
    1. Hahn BH, McMahon MA, Wilkinson A, Wallace WD, Daikh DI, Fitzgerald JD, et al. American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res. 2012;64:797–808. doi: 10.1002/acr.21664.
    1. Aringer M, Burkhardt H, Burmester GR, Fischer-Betz R, Fleck M, Graninger W, et al. Current state of evidence on ‘off-label’ therapeutic options for systemic lupus erythematosus, including biological immunosuppressive agents, in Germany, Austria and Switzerland–a consensus report. Lupus. 2012;21:386–401. doi: 10.1177/0961203311426569.
    1. Salinas-Carmona MC, Perez LI, Galan K, Vazquez AV. Immunosuppressive drugs have different effect on B lymphocyte subsets and IgM antibody production in immunized BALB/c mice. Autoimmunity. 2009;42:537–544. doi: 10.1080/08916930903019119.
    1. Wahren-Herlenius M, Dorner T. Immunopathogenic mechanisms of systemic autoimmune disease. Lancet. 2013;382:819–831. doi: 10.1016/S0140-6736(13)60954-X.
    1. Dorner T, Jacobi AM, Lipsky PE. B cells in autoimmunity. Arthritis Res Ther. 2009;11:247. doi: 10.1186/ar2780.
    1. Odendahl M, Jacobi A, Hansen A, Feist E, Hiepe F, Burmester GR, et al. Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J Immunol. 2000;165:5970–5979. doi: 10.4049/jimmunol.165.10.5970.
    1. Sims GP, Ettinger R, Shirota Y, Yarboro CH, Illei GG, Lipsky PE. Identification and characterization of circulating human transitional B cells. Blood. 2005;105:4390–4398. doi: 10.1182/blood-2004-11-4284.
    1. Wehr C, Eibel H, Masilamani M, Illges H, Schlesier M, Peter HH, et al. A new CD21low B cell population in the peripheral blood of patients with SLE. Clin Immunol. 2004;113:161–171. doi: 10.1016/j.clim.2004.05.010.
    1. Rodriguez-Bayona B, Ramos-Amaya A, Perez-Venegas JJ, Rodriguez C, Brieva JA. Decreased frequency and activated phenotype of blood CD27 IgD IgM B lymphocytes is a permanent abnormality in systemic lupus erythematosus patients. Arthritis Res Ther. 2010;12:R108. doi: 10.1186/ar3042.
    1. Alvarado-Sanchez B, Hernandez-Castro B, Portales-Perez D, Baranda L, Layseca-Espinosa E, Abud-Mendoza C, et al. Regulatory T cells in patients with systemic lupus erythematosus. J Autoimmun. 2006;27:110–118. doi: 10.1016/j.jaut.2006.06.005.
    1. Gomez-Martin D, Diaz-Zamudio M, Vanoye G, Crispin JC, Alcocer-Varela J. Quantitative and functional profiles of CD4+ lymphocyte subsets in systemic lupus erythematosus patients with lymphopenia. Clin Exp Immunol. 2011;164:17–25. doi: 10.1111/j.1365-2249.2010.04309.x.
    1. Cederblad B, Blomberg S, Vallin H, Perers A, Alm GV, Ronnblom L. Patients with systemic lupus erythematosus have reduced numbers of circulating natural interferon-alpha- producing cells. J Autoimmun. 1998;11:465–470. doi: 10.1006/jaut.1998.0215.
    1. Eickenberg S, Mickholz E, Jung E, Nofer JR, Pavenstadt HJ, Jacobi AM. Mycophenolic acid counteracts B cell proliferation and plasmablast formation in patients with systemic lupus erythematosus. Arthritis Res Ther. 2012;14:R110. doi: 10.1186/ar3835.
    1. Karnell JL, Karnell FG, 3rd, Stephens GL, Rajan B, Morehouse C, Li Y, et al. Mycophenolic acid differentially impacts B cell function depending on the stage of differentiation. J Immunol. 2011;187:3603–3612. doi: 10.4049/jimmunol.1003319.
    1. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982;25:1271–1277. doi: 10.1002/art.1780251101.
    1. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40:1725. doi: 10.1002/art.1780400928.
    1. Houssiau FA, Vasconcelos C, D'Cruz D, Sebastiani GD, Garrido Ed Ede R, Danieli MG, et al. Immunosuppressive therapy in lupus nephritis: the Euro-Lupus Nephritis Trial, a randomized trial of low-dose versus high-dose intravenous cyclophosphamide. Arthritis Rheum. 2002;46:2121–2131. doi: 10.1002/art.10461.
    1. Mumtaz IM, Hoyer BF, Panne D, Moser K, Winter O, Cheng QY, et al. Bone marrow of NZB/W mice is the major site for plasma cells resistant to dexamethasone and cyclophosphamide: implications for the treatment of autoimmunity. J Autoimmun. 2012;39:180–188. doi: 10.1016/j.jaut.2012.05.010.
    1. Chiche L, Cournac JM, Mancini J, Bardin N, Thomas G, Jean R, et al. Normalization of serum-free light chains in patients with systemic lupus erythematosus upon rituximab treatment and correlation with biological disease activity. Clin Rheumatol. 2011;30:685–689. doi: 10.1007/s10067-010-1674-1.
    1. Bradwell AR, Carr-Smith HD, Mead GP, Tang LX, Showell PJ, Drayson MT, et al. Highly sensitive, automated immunoassay for immunoglobulin free light chains in serum and urine. Clin Chem. 2001;47:673–680.
    1. Schütt C, Bröker B. Grundwissen Immunologie. 3. Heidelberg: Spektrum Akademischer Verlag; 2011.
    1. Mead GP, Carr-Smith HD, Drayson MT, Morgan GJ, Child JA, Bradwell AR. Serum free light chains for monitoring multiple myeloma. Br J Haematol. 2004;126:348–354. doi: 10.1111/j.1365-2141.2004.05045.x.
    1. Gottenberg JE, Aucouturier F, Goetz J, Sordet C, Jahn I, Busson M, et al. Serum immunoglobulin free light chain assessment in rheumatoid arthritis and primary Sjogren's syndrome. Ann Rheum Dis. 2007;66:23–27. doi: 10.1136/ard.2006.052159.
    1. Hopper JE, Sequeira W, Martellotto J, Papagiannes E, Perna L, Skosey JL. Clinical relapse in systemic lupus erythematosus: correlation with antecedent elevation of urinary free light-chain immunoglobulin. J Clin Immunol. 1989;9:338–350. doi: 10.1007/BF00918666.
    1. Aggarwal R, Sequeira W, Kokebie R, Mikolaitis RA, Fogg L, Finnegan A, et al. Serum free light chains as biomarkers for systemic lupus erythematosus disease activity. Arthritis Care Res. 2011;63:891–898. doi: 10.1002/acr.20446.
    1. Mehrani T, Petri M. Association of IgA anti-beta2 glycoprotein I with clinical and laboratory manifestations of systemic lupus erythematosus. J Rheumatol. 2011;38:64–68. doi: 10.3899/jrheum.100568.
    1. Miltenburg AM, Roos A, Slegtenhorst L, Daha MR, Breedveld FC. IgA anti-dsDNA antibodies in systemic lupus erythematosus: occurrence, incidence and association with clinical and laboratory variables of disease activity. J Rheumatol. 1993;20:53–58.
    1. Witte T, Hartung K, Matthias T, Sachse C, Fricke M, Deicher H, et al. Association of IgA anti-dsDNA antibodies with vasculitis and disease activity in systemic lupus erythematosus. SLE Study Group. Rheumatol Int. 1998;18:63–69. doi: 10.1007/s002960050059.
    1. Villalta D, Bizzaro N, Bassi N, Zen M, Gatto M, Ghirardello A, et al. Anti-dsDNA antibody isotypes in systemic lupus erythematosus: IgA in addition to IgG anti-dsDNA help to identify glomerulonephritis and active disease. PLoS One. 2013;8 doi: 10.1371/journal.pone.0071458.
    1. Jacobi AM, Odendahl M, Reiter K, Bruns A, Burmester GR, Radbruch A, et al. Correlation between circulating CD27high plasma cells and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 2003;48:1332–1342. doi: 10.1002/art.10949.
    1. Vossenkamper A, Blair PA, Safinia N, Fraser LD, Das L, Sanders TJ, et al. A role for gut-associated lymphoid tissue in shaping the human B cell repertoire. J Exp Med. 2013;210:1665–1674. doi: 10.1084/jem.20122465.
    1. Ashman RF, White RH, Wiesenhutter C, Cantor Y, Lasarow E, Liebling M, et al. Panhypogammaglobulinemia in systemic lupus erythematosus: in vitro demonstration of multiple cellular defects. J Allergy Clin Immunol. 1982;70:465–473. doi: 10.1016/0091-6749(82)90010-0.
    1. Yap D, Yung S, Ma M, Mok M, Kwan L, Chan G, et al. Serum immunoglobulin G level in patients with lupus nephritis and the effect of treatment with corticosteroids and mycophenolate mofetil. Lupus. 2014; [Epub ahead of print].
    1. Lee AH, Levinson AI, Schumacher HR., Jr Hypogammaglobulinemia and rheumatic disease. Semin Arthritis Rheum. 1993;22:252–264. doi: 10.1016/0049-0172(93)80073-O.
    1. Venhoff N, Effelsberg NM, Salzer U, Warnatz K, Peter HH, Lebrecht D, et al. Impact of rituximab on immunoglobulin concentrations and B cell numbers after cyclophosphamide treatment in patients with ANCA-associated vasculitides. PLoS One. 2012;7 doi: 10.1371/journal.pone.0037626.
    1. Ogi M, Yokoyama H, Tomosugi N, Hisada Y, Ohta S, Takaeda M, et al. Risk factors for infection and immunoglobulin replacement therapy in adult nephrotic syndrome. Am J Kidney Dis. 1994;24:427–436. doi: 10.1016/S0272-6386(12)80899-7.
    1. McMillan R, Longmire R, Yelenosky R. The effect of corticosteroids on human IgG synthesis. J Immunol. 1976;116:1592–1595.
    1. Ginzler EM, Wax S, Rajeswaran A, Copt S, Hillson J, Ramos E, et al. Atacicept in combination with MMF and corticosteroids in lupus nephritis: results of a prematurely terminated trial. Arthritis Res Ther. 2012;14:R33. doi: 10.1186/ar3738.
    1. Mysler EF, Spindler AJ, Guzman R, Bijl M, Jayne D, Furie RA, et al. Efficacy and safety of ocrelizumab in active proliferative lupus nephritis: results from a randomized, double-blind, phase III study. Arthritis Rheum. 2013;65:2368–2379. doi: 10.1002/art.38037.
    1. Dorner T, Odendahl M. Radbruch A. [Cytometric analyses in systemic autoimmune diseases]. Z Rheumatol. 2002;61:389–95. German.
    1. Thiel J, Salzer U, Hassler F, Effelsberg NM, Hentze C, Sic H, et al. B cell homeostasis is disturbed by immunosuppressive therapies in patients with ANCA-associated vasculitides. Autoimmunity. 2013;46:429–438. doi: 10.3109/08916934.2013.798652.
    1. Dorner T, Jacobi AM, Lee J, Lipsky PE. Abnormalities of B cell subsets in patients with systemic lupus erythematosus. J Immunol Methods. 2011;363:187–197. doi: 10.1016/j.jim.2010.06.009.
    1. Tsumiyama K, Hashiramoto A, Takimoto M, Tsuji-Kawahara S, Miyazawa M, Shiozawa S. IFN-gamma-producing effector CD8 T lymphocytes cause immune glomerular injury by recognizing antigen presented as immune complex on target tissue. J Immunol. 2013;191:91–96. doi: 10.4049/jimmunol.1203217.
    1. Couzi L, Merville P, Deminiere C, Moreau JF, Combe C, Pellegrin JL, et al. Predominance of CD8+ T lymphocytes among periglomerular infiltrating cells and link to the prognosis of class III and class IV lupus nephritis. Arthritis Rheum. 2007;56:2362–2370. doi: 10.1002/art.22654.
    1. Fiore N, Castellano G, Blasi A, Capobianco C, Loverre A, Montinaro V, et al. Immature myeloid and plasmacytoid dendritic cells infiltrate renal tubulointerstitium in patients with lupus nephritis. Mol Immunol. 2008;45:259–265. doi: 10.1016/j.molimm.2007.04.029.
    1. Tucci M, Quatraro C, Lombardi L, Pellegrino C, Dammacco F, Silvestris F. Glomerular accumulation of plasmacytoid dendritic cells in active lupus nephritis: role of interleukin-18. Arthritis Rheum. 2008;58:251–262. doi: 10.1002/art.23186.
    1. Farkas L, Beiske K, Lund-Johansen F, Brandtzaeg P, Jahnsen FL. Plasmacytoid dendritic cells (natural interferon- alpha/beta-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am J Pathol. 2001;159:237–243. doi: 10.1016/S0002-9440(10)61689-6.
    1. Blomberg S, Eloranta ML, Cederblad B, Nordlin K, Alm GV, Ronnblom L. Presence of cutaneous interferon-alpha producing cells in patients with systemic lupus erythematosus. Lupus. 2001;10:484–490. doi: 10.1191/096120301678416042.
    1. Shodell M, Shah K, Siegal FP. Circulating human plasmacytoid dendritic cells are highly sensitive to corticosteroid administration. Lupus. 2003;12:222–230. doi: 10.1191/0961203303lu362xx.

Source: PubMed

3
購読する