The down syndrome biomarker initiative (DSBI) pilot: proof of concept for deep phenotyping of Alzheimer's disease biomarkers in down syndrome

Michael S Rafii, Hannah Wishnek, James B Brewer, Michael C Donohue, Seth Ness, William C Mobley, Paul S Aisen, Robert A Rissman, Michael S Rafii, Hannah Wishnek, James B Brewer, Michael C Donohue, Seth Ness, William C Mobley, Paul S Aisen, Robert A Rissman

Abstract

To gain further knowledge on the preclinical phase of Alzheimer's disease (AD), we sought to characterize cognitive performance, neuroimaging and plasma-based AD biomarkers in a cohort of non-demented adults with down syndrome (DS). The goal of the down syndrome biomarker Initiative (DSBI) pilot is to test feasibility of this approach for future multicenter studies. We enrolled 12 non-demented participants with DS between the ages of 30-60 years old. Participants underwent extensive cognitive testing, volumetric MRI, amyloid positron emission tomography (PET; 18F-florbetapir), fluorodeoxyglucose (FDG) PET (18F-fluorodeoxyglucose) and retinal amyloid imaging. In addition, plasma beta-amyloid (Aβ) species were measured and Apolipoprotein E (ApoE) genotyping was performed. Results from our multimodal analysis suggest greater hippocampal atrophy with amyloid load. Additionally, we identified an inverse relationship between amyloid load and regional glucose metabolism. Cognitive and functional measures did not correlate with amyloid load in DS but did correlate with regional FDG PET measures. Biomarkers of AD can be readily studied in adults with DS as in other preclinical AD populations. Importantly, all subjects in this feasibility study were able to complete all test procedures. The data indicate that a large, multicenter longitudinal study is feasible to better understand the trajectories of AD biomarkers in this enriched population. This trial is registered with ClinicalTrials.gov, number NCT02141971.

Keywords: Alzheimer’s disease; MRI; PET; amyloid; biomarkers; down syndrome; plasma; retinal.

Figures

Figure 1
Figure 1
Left: multimodal comparisons can be made in native space within individual subjects longitudinally. Right: Amyloid PET, FDG PET, and volumetric MRI were successfully performed in adults with down syndrome (DS) to capture important structure-function relationships.
Figure 2
Figure 2
Correlations between cognitive and neuroimaging measures. The bold text indicates Spearman rank correlations (r) that are significant at the 0.05 level after false discovery rate adjustment. AV45 = 18F-florbetapir.
Figure 3
Figure 3
Correlations between cognitive measures, retinal amyloid and plasma biomarkers. None of the Spearman rank correlations (r) are significant at the 0.05 level after false discovery rate adjustment.
Figure 4
Figure 4
Correlations between PET and hippocampal occupancy (HOC). None of the Spearman rank correlations (r) are significant at the 0.05 level after false discovery rate adjustment. AV45 = 18F-florbetapir.
Figure 5
Figure 5
Representative retinal images from an adult with DS demonstrating positive amyloid plaques in DS. Note the orange-colored puncta. The distribution in the vicinity of blood vessels is striking, pointing to a retinal manifestation of congophilic angiopathy.

References

    1. Beacher F., Daly E., Simmons A., Prasher V., Morris R., Robinson C., et al. . (2010). Brain anatomy and ageing in non-demented adults with down’s syndrome: an in vivo MRI study. Psychol. Med. 40, 611–619. 10.1017/s0033291709990985
    1. Benjamini Y., Hochberg Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B 57, 289–300.
    1. Blessed G., Black S. E., Butler T., Kay D. W. (1991). The diagnosis of dementia in the elderly. A comparison of CAMCOG (the cognitive section of CAMDEX), the AGECAT program, DSM-III, the Mini-Mental State Examination and some short rating scales. Br. J. Psychiatry 159, 193–198. 10.1192/bjp.159.2.193
    1. Brewer J. B., Magda S., Airriess C., Smith M. E. (2009). Fully-automated quantification of regional brain volumes for improved detection of focal atrophy in Alzheimer disease. AJNR Am. J. Neuroradiol. 30, 578–580. 10.3174/ajnr.a1402
    1. Coppus A. M., Evenhuis H. M., Verberne G. J., Visser F. E., Arias-Vasquez A., Sayed-Tabatabaei F. A., et al. . (2008). The impact of apolipoprotein E on dementia in persons with down’s syndrome. Neurobiol. Aging 29, 828–835. 10.1016/j.neurobiolaging.2006.12.013
    1. Dalton A. J. (1992). Dementia in down syndrome: methods of evaluation. Prog. Clin. Biol. Res. 379, 51–76.
    1. Deb S., Braganza J., Norton N., Williams H., Kehoe P. G., Williams J., et al. . (2000). APOE epsilon 4 influences the manifestation of Alzheimer’s disease in adults with down’s syndrome. Br. J. Psychiatry 176, 468–472. 10.1192/bjp.176.5.468
    1. Donohue M. C., Moghadam S. H., Roe A. D., Sun C. K., Edland S. D., Thomas R. G., et al. . (2014). Longitudinal plasma amyloid beta in Alzheimer’s disease clinical trials. Alzheimers. Dement. [Epub ahead of print]. 10.1016/j.jalz.2014.07.156
    1. Esbensen A. J., Rojahn J., Aman M. G., Ruedrich S. (2003). Reliability and validity of an assessment instrument for anxiety, depression and mood among individuals with mental retardation. J. Autism Dev. Disord. 33, 617–629. 10.1023/b:jadd.0000005999.27178.55
    1. Fischl B., Salat D. H., Busa E., Albert M., Dieterich M., Haselgrove C., et al. . (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355. 10.1016/S0896-6273(02)00569-X
    1. Gonzalez L. M., Anderson V. A., Wood S. J., Mitchell L. A., Heinrich L., Harvey A. S. (2008). The observer memory questionnaire-parent form: introducing a new measure of everyday memory for children. J. Int. Neuropsychol. Soc. 14, 337–342. 10.1017/s135561770808020x
    1. Goodenough F. L., Harris D. (1950). Studies in the psychology of children’s drawings. II. 1928–1949. Psychol. Bull. 47, 369–433. 10.1037/h0058368
    1. Handen B. L., Cohen A. D., Channamalappa U., Bulova P., Cannon S. A., Cohen W. I., et al. . (2012). Imaging brain amyloid in nondemented young adults with down syndrome using pittsburgh compound B. Alzheimers. Dement. 8, 496–501. 10.1016/j.jalz.2011.09.229
    1. Hartley S. L., Handen B. L., Devenny D. A., Hardison R., Mihaila I, Price J. C., et al. . (2014). Cognitive functioning in relation to brain amyloid-ß in healthy adults with Down syndrome. Brain 137(Pt. 9), 2556–2563. 10.1093/brain/awu173
    1. Heister D., Brewer J. B., Magda S., Blennow K., McEvoy L. K., Alzheimer’s Disease Neuroimaging I. (2011). Predicting MCI outcome with clinically available MRI and CSF biomarkers. Neurology 77, 1619–1628. 10.1212/wnl.0b013e3182343314
    1. Hof P. R., Bouras C., Perl D. P., Sparks D. L., Mehta N., Morrison J. H. (1995). Age-related distribution of neuropathologic changes in the cerebral cortex of patients with down’s syndrome. Quantitative regional analysis and comparison with Alzheimer’s disease. Arch. Neurol. 52, 379–391. 10.1001/archneur.1995.00540280065020
    1. Hon J., Huppert F. A., Holland A. J., Watson P. (1999). Neuropsychological assessment of older adults with down’s syndrome: an epidemiological study using the Cambridge Cognitive Examination (CAMCOG). Br. J. Clin. Psychol. 38, 155–165. 10.1348/014466599162719
    1. Hyman B. T., West H. L., Rebeck G. W., Lai F., Mann D. M. (1995). Neuropathological changes in down’s syndrome hippocampal formation. Effect of age and apolipoprotein E genotype. Arch. Neurol. 52, 373–378. 10.1001/archneur.1995.00540280059019
    1. Jovicich J., Czanner S., Greve D., Haley E., van der Kouwe A., Gollub R., et al. . (2006). Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. Neuroimage 30, 436–443. 10.1016/j.neuroimage.2005.09.046
    1. Kovacevic S., Rafii M. S., Brewer J. B., Alzheimer’s Disease Neuroimaging I. (2009). High-throughput, fully automated volumetry for prediction of MMSE and CDR decline in mild cognitive impairment. Alzheimer Dis. Assoc. Disord. 23, 139–145. 10.1097/wad.0b013e318192e745
    1. Krasuski J. S., Alexander G. E., Horwitz B., Rapoport S. I., Schapiro M. B. (2002). Relation of medial temporal lobe volumes to age and memory function in nondemented adults with down’s syndrome: implications for the prodromal phase of Alzheimer’s disease. Am. J. Psychiatry 159, 74–81. 10.1176/appi.ajp.159.1.74
    1. Lemere C. A., Blusztajn J. K., Yamaguchi H., Wisniewski T., Saido T. C., Selkoe D. J. (1996). Sequence of deposition of heterogeneous amyloid beta-peptides and APO E in down syndrome: implications for initial events in amyloid plaque formation. Neurobiol. Dis. 3, 16–32. 10.1006/nbdi.1996.0003
    1. Luciana M. (2003). Practitioner review: computerized assessment of neuropsychological function in children: clinical and research applications of the Cambridge Neuropsychological Testing Automated Battery (CANTAB). J. Child. Psychol. Psychiatry 44, 649–663. 10.1111/1469-7610.00152
    1. Moran J. A., Rafii M. S., Keller S. M., Singh B. K., Janicki M. P., American Academy of Developmental M., et al. . (2013). The national task group on intellectual disabilities and dementia practices consensus recommendations for the evaluation and management of dementia in adults with intellectual disabilities. Mayo Clin. Proc. 88, 831–840. 10.1016/j.mayocp.2013.04.024
    1. Mullins D., Daly E., Simmons A., Beacher F., Foy C. M., Lovestone S., et al. . (2013). Dementia in down’s syndrome: an MRI comparison with Alzheimer’s disease in the general population. J. Neurodev. Disord. 5:19. 10.1186/1866-1955-5-19
    1. Ness S., Rafii M., Aisen P., Krams M., Silverman W., Manji H. (2012). Down’s syndrome and Alzheimer’s disease: towards secondary prevention. Nat. Rev. Drug Discov. 11, 655–656. 10.1038/nrd3822
    1. Parker S. E., Mai C. T., Canfield M. A., Rickard R., Wang Y., Meyer R. E., et al. . (2010). Updated national birth prevalence estimates for selected birth defects in the united states, 2004–2006. Birth Defects Res. A Clin. Mol. Teratol. 88, 1008–1016. 10.1002/bdra.20735
    1. Pietrini P., Dani A., Furey M. L., Alexander G. E., Freo U., Grady C. L., et al. . (1997). Low glucose metabolism during brain stimulation in older down’s syndrome subjects at risk for Alzheimer’s disease prior to dementia. Am. J. Psychiatry 154, 1063–1069. 10.1176/ajp.154.8.1063
    1. Prasher V. P., Sajith S. G., Rees S. D., Patel A., Tewari S., Schupf N., et al. . (2008). Significant effect of APOE epsilon 4 genotype on the risk of dementia in Alzheimer’s disease and mortality in persons with down syndrome. Int. J. Geriatr. Psychiatry 23, 1134–1140. 10.1002/gps.2039
    1. Randolph C., Tierney M. C., Mohr E., Chase T. N. (1998). The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): preliminary clinical validity. J. Clin. Exp. Neuropsychol. 20, 310–319. 10.1076/jcen.20.3.310.823
    1. Sabbagh M. N., Chen K., Rogers J., Fleisher A. S., Liebsack C., Bandy D., et al. . (2015). Florbetapir PET, FDG PET and MRI in down syndrome individuals with and without Alzheimer’s dementia. Alzheimers Dement. 11, 994–1004. 10.1016/j.jalz.2015.01.006
    1. Sabbagh M. N., Fleisher A., Chen K., Rogers J., Berk C., Reiman E., et al. . (2011). Positron emission tomography and neuropathologic estimates of fibrillar amyloid-beta in a patient with down syndrome and Alzheimer disease. Arch. Neurol. 68, 1461–1466. 10.1001/archneurol.2011.535
    1. Schapiro M. B., Azari N. P., Grady C. L., Haxby J. V., Horwitz B. (1992b). Down syndrome: differentiating mental retardation and dementia with brain imaging techniques. Prog. Clin. Biol. Res. 379, 103–122.
    1. Schapiro M. B., Haxby J. V., Grady C. L. (1992a). Nature of mental retardation and dementia in down syndrome: study with PET, CT and neuropsychology. Neurobiol. Aging 13, 723–734. 10.1016/0197-4580(92)90096-g
    1. Schupf N., Kapell D., Lee J. H., Zigman W., Canto B., Tycko B., et al. . (1996). Onset of dementia is associated with apolipoprotein E epsilon4 in down’s syndrome. Ann. Neurol. 40, 799–801. 10.1002/ana.410400518
    1. Schupf N., Patel B., Pang D., Zigman W. B., Silverman W., Mehta P. D., et al. . (2007). Elevated plasma beta-amyloid peptide Abeta(42). levels, incident dementia and mortality in down syndrome. Arch. Neurol. 64, 1007–1013. 10.1001/archneur.64.7.1007
    1. Schupf N., Patel B., Silverman W., Zigman W. B., Zhong N., Tycko B., et al. . (2001). Elevated plasma amyloid beta-peptide 1–42 and onset of dementia in adults with down syndrome. Neurosci. Lett. 301, 199–203. 10.1016/s0304-3940(01)01657-3
    1. Schupf N., Zigman W. B., Tang M. X., Pang D., Mayeux R., Mehta P., et al. . (2010). Change in plasma Ass peptides and onset of dementia in adults with down syndrome. Neurology 75, 1639–1644. 10.1212/wnl.0b013e3181fb448b
    1. Sheehan R., Sinai A., Bass N., Blatchford P., Bohnen I., Bonell S., et al. . (2015). Dementia diagnostic criteria in down syndrome. Int. J. Geriatr. Psychiatry 30, 857–863. 10.1002/gps.4228
    1. Sled J. G., Zijdenbos A. P., Evans A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging. 17, 87–97. 10.1109/42.668698
    1. Smith P. J., Need A. C., Cirulli E. T., Chiba-Falek O., Attix D. K. (2013). A comparison of the Cambridge Automated Neuropsychological Test Battery (CANTAB) with “traditional” neuropsychological testing instruments. J. Clin. Exp. Neuropsychol. 35, 319–328. 10.1080/13803395.2013.771618
    1. Sparrow S., Havis Y. (2005). Social care. Shared issues. Interview by stuart shepherd. Health Serv. J. 115, 32–33.
    1. Sperling R. A., Jack C. R., Jr., Aisen P. S. (2011). Testing the right target and right drug at the right stage. Sci. Transl. Med. 3:111cm133. 10.1126/scitranslmed.3002609
    1. Teipel S. J., Alexander G. E., Schapiro M. B., Möller H. J., Rapoport S. I., Hampel H. (2004). Age-related cortical grey matter reductions in non-demented down’s syndrome adults determined by MRI with voxel-based morphometry. Brain 127, 811–824. 10.1093/brain/awh101

Source: PubMed

3
購読する