sLORETA intracortical lagged coherence during breath counting in meditation-naïve participants

Patricia Milz, Pascal L Faber, Dietrich Lehmann, Kieko Kochi, Roberto D Pascual-Marqui, Patricia Milz, Pascal L Faber, Dietrich Lehmann, Kieko Kochi, Roberto D Pascual-Marqui

Abstract

We investigated brain functional connectivity comparing no-task resting to breath counting (a meditation exercise but given as task without referring to meditation). Functional connectivity computed as EEG coherence between head-surface data suffers from localization ambiguity, reference dependence, and overestimation due to volume conduction. Lagged coherence between intracortical model sources addresses these criticisms. With this analysis approach, experienced meditators reportedly showed reduced coherence during meditation, meditation-naïve participants have not yet been investigated. 58-channel EEG from 23 healthy, right-handed, meditation-naïve males during resting [3 runs] and breath counting [2 runs] was computed into sLORETA time series of intracortical electrical activity in 19 regions of interest (ROI) corresponding to the cortex underlying 19 scalp electrode sites, for each of the eight independent EEG frequency bands covering 1.5-44 Hz. Intracortical lagged coherences and head-surface conventional coherences were computed between the 19 regions/sites. During breath counting compared to resting, paired t-tests corrected for multiple testing revealed four significantly lower intracortical lagged coherences, but four significantly higher head-surface conventional coherences. Lowered intracortical lagged coherences involved left BA 10 and right BAs 3, 10, 17, 40. In conclusion, intracortical lagged coherence can yield results that are inverted to those of head-surface conventional coherence. The lowered functional connectivity between cognitive control areas and sensory perception areas during meditation-type breath counting compared to resting conceivably reflects the attention to a bodily percept without cognitive reasoning. The reductions in functional connectivity were similar but not as widespread as the reductions reported during meditation in experienced meditators.

Keywords: EEG; breath counting; functional connectivity; intracortical coherence; lagged coherence; meditation; sLORETA.

Figures

Figure 1
Figure 1
(A) sLORETA-based intracortical lagged coherences that differed during breath counting compared to resting at p(corrected) < 0.05. All four connectivities were lower during breath counting. (B) Head-surface conventional coherences that differed during breath counting compared to resting at p(corrected) < 0.05. All four connectivities were higher during breath counting. Glass brain axial, sagittal, and coronal views, left ear left; ROI locations are indicated by dots. For ease of visualization, the intracortical ROIs are represented by the corresponding head-surface locations of the standard 19 electrode positions of the international 10–20 system.

References

    1. Aftanas L., Golosheykin S. (2005). Impact of regular meditation practice on EEG activity at rest and during evoked negative emotions. Int. J. Neurosci. 115, 893–909 10.1080/00207450590897969
    1. Aftanas L. I., Golocheikine S. A. (2001). Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation. Neurosci. Lett. 310, 57–60 10.1016/S0304-3940(01)02094-8
    1. Becker D., Creutzfeldt O. D., Schwibbe M., Wuttke W. (1980). Electrophysiological and psychological changes induced by steroid hormones in men and women. Acta Psychiatr. Belg. 80, 674–697
    1. Becker D., Creutzfeldt O. D., Schwibbe M., Wuttke W. (1982). Changes in physiological, EEG and psychological parameters in women during the spontaneous menstrual cycle and following oral contraceptives. Psychoneuroendocrinology 7, 75–90 10.1016/0306-4530(82)90057-9
    1. Berka C., Levendowski D. J., Lumicao M. N., Yau A., Davis G., Zivkovic V. T., et al. (2007). EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviat. Space Environ. Med. 78, B231–B244
    1. Blanke O., Ortigue S., Landis T., Seeck M. (2002). Stimulating illusory own-body perceptions. Nature 419, 269–270 10.1038/419269a
    1. Borkenau P., Ostendorf F. (1993). NEO-Fünf-Faktoren Inventar nach Costa und McCrae. Göttingen: Hogrefe
    1. Braboszcz C., Delorme A. (2011). Lost in thoughts: neural markers of low alertness during mind wandering. Neuroimage 54, 3040–3047 10.1016/j.neuroimage.2010.10.008
    1. Bundick T., Jr., Spinella M. (2000). Subjective experience, involuntary movement, and posterior alien hand syndrome. J. Neurol. Neurosurg. Psychiatr. 68, 83–85 10.1136/jnnp.68.1.83
    1. Burgess A. P., Ali L. (2002). Functional connectivity of gamma EEG activity is modulated at low frequency during conscious recollection. Int. J. Psychophysiol. 46, 91–100 10.1016/S0167-8760(02)00108-3
    1. Cahn B. R., Polich J. (2006). Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychol. Bull. 132, 180–211 10.1037/0033-2909.132.2.180
    1. Chatrian G. E., Lettich E., Nelson P. L. (1985). Ten percent electrode system for topographic studies of spontaneous and evoked EEG activity. Am. J. EEG Technol. 25, 83–92
    1. Creutzfeldt O. D., Arnold P. M., Becker D., Langenstein S., Tirsch W., Wilhelm H., et al. (1976). EEG changes during spontaneous and controlled menstrual cycles and their correlation with psychological performance. Electroencephalogr. Clin. Neurophysiol. 40, 113–131 10.1016/0013-4694(76)90157-7
    1. David O., Friston K. J. (2003). A neural mass model for MEG/EEG: coupling and neuronal dynamics. Neuroimage 20, 1743–1755 10.1016/j.neuroimage.2003.07.015
    1. Davidson R. J., Kabat-Zinn J., Schumacher J., Rosenkranz M., Muller D., Santorelli S. F., et al. (2003). Alterations in brain and immune function produced by mindfulness meditation. Psychosom. Med. 65, 564–570 10.1097/01.PSY.0000077505.67574.E3
    1. Dickenson J., Berkman E. T., Arch J., Lieberman M. D. (2013). Neural correlates of focused attention during a brief mindfulness induction. Soc. Cogn. Affect. Neurosci. 8, 40–47 10.1093/scan/nss030
    1. Dillbeck M. C., Bronson E. C. (1981). Short-term longitudinal effects of the transcendental meditation technique on EEG power and coherence. Int. J. Neurosci. 14, 147–151 10.3109/00207458108985827
    1. Farrer C., Frith C. D. (2002). Experiencing oneself vs another person as being the cause of an action: the neural correlates of the experience of agency. Neuroimage 15, 596–603 10.1006/nimg.2001.1009
    1. Friston K. J., Frith C. D., Liddle P. F., Dolan R. J., Lammertsma A. A., Frackowiak R. S. (1990). The relationship between global and local changes in PET scans. J. Cereb. Blood Flow Metab. 10, 458–466 10.1038/jcbfm.1990.88
    1. Friston K. J., Frith C. D., Liddle P. F., Frackowiak R. S. (1991). Comparing functional (PET) images: the assessment of significant change. J. Cereb. Blood Flow Metab. 11, 690–699 10.1038/jcbfm.1991.122
    1. Fuster J. M. (2006). The cognit: a network model of cortical representation. Int. J. Psychophysiol. 60, 125–132 10.1016/j.ijpsycho.2005.12.015
    1. Jack A., Roepstorff A. (2003). Why trust the subject? J. Cons. Stud. 10, v–xx
    1. Jasper H. H. (1958). The ten-twenty electrode system of the International Federation. Electroencephal. Clin. Neurophysiol. 10, 371–375
    1. Jurcak V., Tsuzuki D., Dan I. (2007). 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34, 1600–1611 10.1016/j.neuroimage.2006.09.024
    1. Kelly S. P., Docktree P., Reilly R. B., Robertson I. H. (2003). EEG Alpha power and coherence time courses in a sustained attention task. Proc. 1st Int. IEEE EMBS Conf. Neural Eng. 20–22, 83–86 10.1109/CNE.2003.1196761
    1. Kosslyn S. M., Alpert N. M., Thompson W. L., Maljkovic V., Weise S. B., Chabris C. F., et al. (1993). Visual mental imagery activates topographically organized visual cortex: PET investigations. J. Cogn. Neurosci. 5, 263–287 10.1162/jocn.1993.5.3.263
    1. Kosslyn S. M., Thompson W. L., Alpert N. M. (1997). Neural systems shared by visual imagery and visual perception: a positron emission tomography study. Neuroimage 6, 320–334 10.1006/nimg.1997.0295
    1. Krug R., Moelle M., Fehm H. L., Born J. (1999). Variations across the menstrual cycle in EEG activity during thinking and mental relaxation. J. Psychophysiol. 13, 163–172 10.1027//0269-8803.13.3.163
    1. Kubicki S., Herrmann W. M., Fichte K., Freund G. (1979). Reflections on the topics: EEG frequency bands and regulation of vigilance. Pharmakopsychiatr. Neuropsychopharmakol. 12, 237–245 10.1055/s-0028-1094615
    1. Kubose S. K. (1976). An experimental investigation of psychological aspects of meditation. Int. J. Psychol. Orient. 19, 1–10
    1. Kubota Y., Sato W., Toichi M., Murai T., Okada T., Hayashi A., et al. (2001). Frontal midline theta rhythm is correlated with cardiac autonomic activities during the performance of an attention demanding meditation procedure. Brain Res. Cogn. Brain Res. 11, 281–287 10.1016/S0926-6410(00)00086-0
    1. Lazar S. W., Kerr C. E., Wasserman R. H., Gray J. R., Greve D. N., Treadway M. T., et al. (2005). Meditation experience is associated with increased cortical thickness. Neuroreport 16, 1893–1897 10.1097/01.wnr.0000186598.66243.19
    1. Lehmann D., Faber P. L., Gianotti L. R., Kochi K., Pascual-Marqui R. D. (2006). Coherence and phase locking in the scalp EEG and between LORETA model sources, and microstates as putative mechanisms of brain temporo-spatial functional organization. J. Physiol. Paris 99, 29–36 10.1016/j.jphysparis.2005.06.005
    1. Lehmann D., Faber P. L., Tei S., Pascual-Marqui R. D., Milz P., Kochi K. (2012). Reduced functional connectivity between cortical sources in five meditation traditions detected with lagged coherence using EEG tomography. Neuroimage 60, 1574–1586 10.1016/j.neuroimage.2012.01.042
    1. Levine P. (1976). The coherence spectral array (COSPAR) and its application to the study of spatial ordering in the EEG. Proc San Diego Biomed. Symposium 15, 237–247
    1. Lutz A., Greischar L. L., Rawlings N. B., Ricard M., Davidson R. J. (2004). Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. Proc. Natl. Acad. Sci. U.S.A. 101, 16369–16373 10.1073/pnas.0407401101
    1. Lutz A., Lachaux J. P., Martinerie J., Varela F. J. (2002). Guiding the study of brain dynamics by using first-person data: synchrony patterns correlate with ongoing conscious states during a simple visual task. Proc. Natl. Acad. Sci. U.S.A. 99, 1586–1591 10.1073/pnas.032658199
    1. Lutz A., Slagter H. A., Rawlings N. B., Francis A. D., Greischar L. L., Davidson R. J. (2009). Mental training enhances attentional stability: neural and behavioral evidence. J. Neurosci. 29, 13418–13427 10.1523/JNEUROSCI.1614-09.2009
    1. Makeig S., Jung T. P. (1995). Changes in alertness are a principal component of variance in the EEG spectrum. Neuroreport 7, 213–216 10.1097/00001756-199512000-00051
    1. Mesulam M. M. (1990). Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann. Neurol. 28, 597–613 10.1002/ana.410280502
    1. Mizuhara H., Wang L. Q., Kobayashi K., Yamaguchi Y. (2005). Long-range EEG phase synchronization during an arithmetic task indexes a coherent cortical network simultaneously measured by fMRI. Neuroimage 27, 553–563 10.1016/j.neuroimage.2005.04.030
    1. Mölle M., Marshall L., Pietrowsky R., Lutzenberger W., Fehm H. L., Born J. (1995). Dimensional complexity of the EEG indicates a right fronto-cortical locus of attentional control. J. Psychophysiol. 9, 45–55
    1. Murata T., Takahashi T., Hamada T., Omori M., Kosaka H., Yoshida H., et al. (2004). Individual trait anxiety levels characterizing the properties of zen meditation. Neuropsychobiology 50, 189–194 10.1159/000079113
    1. Newberg A., Alavi A., Baime M., Pourdehnad M., Santanna J., D'Aquili E. (2001). The measurement of regional cerebral blood flow during the complex cognitive task of meditation: a preliminary SPECT study. Psychiatry Res. 106, 113–122 10.1016/S0925-4927(01)00074-9
    1. Nichols T. E., Holmes A. P. (2002). Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 15, 1–25 10.1002/hbm.1058
    1. Niedermeyer E., Lopes Da Silva F. (2005). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Philadelphia, PA: Lippincott Williams Wilkins
    1. Nolte G., Bai O., Wheaton L., Mari Z., Vorbach S., Hallett M. (2004). Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. 115, 2292–2307 10.1016/j.clinph.2004.04.029
    1. Nuwer M. R. (1987). Recording electrode site nomenclature. J. Clin. Neurophysiol. 4, 121–133 10.1097/00004691-198704000-00002
    1. Overgaard M., Gallagher S., Ramsøy T. Z. (2008). An integration of first-person methodologies in cognitive science. J. Cons. Stud. 15, 100–120
    1. O'Gorman R. L., Poil S. S., Brandeis D., Klaver P., Bollmann S., Ghisleni C., et al. (2013). Coupling between resting cerebral perfusion and EEG. Brain Topogr. 26, 442–457 10.1007/s10548-012-0265-7
    1. Pascual-Marqui R. D. (1993). The spherical spline Laplacian does not produce artifactually high coherences: comments on two articles by Biggins et al. Electroencephalogr. Clin. Neurophysiol. 87, 62–66 10.1016/0013-4694(93)90176-V
    1. Pascual-Marqui R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24(Suppl. D), 5–12
    1. Pascual-Marqui R. D. (2007). Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: frequency decomposition. arXiv:0711.1455 []. Available online at: (Accessed November 09, 2007)
    1. Pascual-Marqui R. D., Lehmann D., Koukkou M., Kochi K., Anderer P., Saletu B., et al. (2011). Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos. Trans. A Math. Phys. Eng. Sci. 369, 3768–3784 10.1098/rsta.2011.0081
    1. Qin J., Perdoni C., He B. (2011). Dissociation of subjectively reported and behaviorally indexed mind wandering by EEG rhythmic activity. PLoS ONE 6:e23124 10.1371/journal.pone.0023124
    1. Ruchkin D. (2005). EEG coherence. Int. J. Psychophysiol. 57, 83–85 10.1016/j.ijpsycho.2005.04.001
    1. Saggar M., King B. G., Zanesco A. P., Maclean K. A., Aichele S. R., Jacobs T. L., et al. (2012). Intensive training induces longitudinal changes in meditation state-related EEG oscillatory activity. Front. Hum. Neurosci. 6:256 10.3389/fnhum.2012.00256
    1. Shapiro D. H. (1980). Meditation: Self-Regulation Strategy and Altered State of Consciousness. New York, NY: Aldine
    1. Slagter H. A., Lutz A., Greischar L. L., Francis A. D., Nieuwenhuis S., Davis J. M., et al. (2007). Mental training affects distribution of limited brain resources. PLoS Biol. 5:e138 10.1371/journal.pbio.0050138
    1. Srinivasan R., Winter W. R., Ding J., Nunez P. L. (2007). EEG and MEG coherence: measures of functional connectivity at distinct spatial scales of neocortical dynamics. J. Neurosci. Methods 166, 41–52 10.1016/j.jneumeth.2007.06.026
    1. Stam C. J. (2000). Brain dynamics in theta and alpha frequency bands and working memory performance in humans. Neurosci. Lett. 286, 115–118 10.1016/S0304-3940(00)01109-5
    1. Stam C. J., Nolte G., Daffertshofer A. (2007). Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 28, 1178–1193 10.1002/hbm.20346
    1. Takahashi T., Murata T., Hamada T., Omori M., Kosaka H., Kikuchi M., et al. (2005). Changes in EEG and autonomic nervous activity during meditation and their association with personality traits. Int. J. Psychophysiol. 55, 199–207 10.1016/j.ijpsycho.2004.07.004
    1. Tebecis A. K. (1975). A controlled study of the EEG during transcendental meditation: comparison with hypnosis. Folia Psychiatr. Neurol. Jpn. 29, 305–313
    1. Tei S., Faber P. L., Lehmann D., Tsujiuchi T., Kumano H., Pascual-Marqui R. D., et al. (2009). Meditators and non-meditators: EEG source imaging during resting. Brain Topogr. 22, 158–165 10.1007/s10548-009-0107-4
    1. Tononi G., McIntosh A. R., Russell D. P., Edelman G. M. (1998). Functional clustering: identifying strongly interactive brain regions in neuroimaging data. Neuroimage 7, 133–149 10.1006/nimg.1997.0313
    1. Travis F. (2001). Autonomic and EEG patterns distinguish transcending from other experiences during Transcendental Meditation practice. Int. J. Psychophysiol. 42, 1–9 10.1016/S0167-8760(01)00143-X
    1. Travis F. (2011). Comparison of coherence, amplitude, and eLORETA patterns during Transcendental Meditation and TM-Sidhi practice. Int. J. Psychophysiol. 81, 198–202 10.1016/j.ijpsycho.2011.06.011
    1. Travis F. T., Orme-Johnson D. W. (1989). Field model of consciousness: EEG coherence changes as indicators of field effects. Int. J. Neurosci. 49, 203–211 10.3109/00207458909084826
    1. Travis F., Wallace R. K. (1999). Autonomic and EEG patterns during eyes-closed rest and transcendental meditation (TM) practice: the basis for a neural model of TM practice. Cons. Cogn. 8, 302–318 10.1006/ccog.1999.0403
    1. Uleman J. S., Bargh J. A. (1989). Unintended Thought. New York, NY: Guilford
    1. Vaitl D., Birbaumer N., Gruzelier J., Jamieson G. A., Kotchoubey B., Kubler A., et al. (2005). Psychobiology of altered states of consciousness. Psychol. Bull. 131, 98–127 10.1037/0033-2909.131.1.98
    1. Van Den Hurk P. A., Janssen B. H., Giommi F., Barendregt H. P., Gielen S. C. (2010). Mindfulness meditation associated with alterations in bottom-up processing: psychophysiological evidence for reduced reactivity. Int. J. Psychophysiol. 78, 151–157 10.1016/j.ijpsycho.2010.07.002
    1. Walshe M. (1987). Thus Have I Heard: the Long Discourses of the Buddha. Translated from the Pali. London: Wisdom Publications
    1. White D., Ciorciari J., Carbis C., Liley D. (2009). EEG correlates of virtual reality hypnosis. Int. J. Clin. Exp. Hypn. 57, 94–116 10.1080/00207140802463690
    1. Williams J. H., Waiter G. D., Perra O., Perrett D. I., Whiten A. (2005). An fMRI study of joint attention experience. Neuroimage 25, 133–140 10.1016/j.neuroimage.2004.10.047

Source: PubMed

3
購読する