Novel Artificial Tears Containing Cross-Linked Hyaluronic Acid: An In Vitro Re-Epithelialization Study

Arianna Fallacara, Silvia Vertuani, Giacomo Panozzo, Alessandra Pecorelli, Giuseppe Valacchi, Stefano Manfredini, Arianna Fallacara, Silvia Vertuani, Giacomo Panozzo, Alessandra Pecorelli, Giuseppe Valacchi, Stefano Manfredini

Abstract

Dry eye syndrome is a common disease which can damage the corneal epithelium. It is treated with eye drops to stimulate tear production and hydrate the corneal surface. The most prescribed artificial tear remedies contain hyaluronic acid (HA), which enhances epithelial wound healing, improving tissue health. To the best of our knowledge, only a few recent studies have investigated cross-linked HA (HA-CL) in eye drops for human applications. This work consists in an in vitro evaluation of the re-epithelialization ability of two different preparations containing a recently synthetized HA cross-linked with urea: 0.02% (w/v) HA-CL (solution 1, S1), and 0.4% (w/v) HA-CL (solution 2, S2). The study was conducted on both 2D human corneal cells (HCEpiC) and 3D reconstructed tissues of human corneal epithelium (HCE). Viability by 3(4,5-dimethylthiazol-2)2,5-diphenyltetrazolium bromide (MTT) test, pro-inflammatory cytokine release (interleukin-8, IL-8) by ELISA, and morphology by hematoxylin and eosin (HE) staining were evaluated. In addition, to understand the molecular basis of the re-epithelialization properties, cyclin D1 levels were assessed by western blot. The results showed no cellular toxicity, a slight decrease in IL-8 release, and restoration of epithelium integrity when the wounded 3D model was treated with S1 and S2. In parallel, cyclin D1 levels increased in cells treated with both S1 and S2.

Keywords: HA; HA-CL; IL-8; anti-inflammatory; artificial tears; corneal epithelium; cyclin D1; dry eye syndrome; re-epithelialization.

Conflict of interest statement

The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Figures

Scheme 1
Scheme 1
Synthesis of HA-CL with urea.
Figure 1
Figure 1
Histological analysis (HE staining) of 3D reconstructed tissues of human corneal epithelium. After wounding, HCE cells were incubated in growth medium with or without S1 and S2 for 72 h. Representative images from each group were recorded at 48 and 72 h post-wounding.
Figure 2
Figure 2
In vitro wound healing assay of human corneal epithelial cells. After the scratch, HCEpiC cells were incubated in fresh medium with or without S1 and S2 for 36 h. Representative images from each group were recorded at 0, 12, 24 and 36 h post-scratching. The red lines indicate the wound borders.
Figure 3
Figure 3
Quantification of wound healing in human corneal epithelial cells. The relative scratch gap was calculated as the percentage of the remaining wounded area at the given time point compared with the initially wounded area at 0 h. Data were expressed as mean ± SD (n = 3). * p < 0.05 compared with control.
Figure 4
Figure 4
Effect of S1 and S2 on the proliferative marker cyclin D1 in HCEpiC cells. The graph shows the cyclin D1 protein levels in HCEpiC cells treated with S1 or S2 for 12 h. Data are means ± SD of triplicate. * indicates statistically significant difference from untreated control at 0 h; § indicates statistically significant difference from untreated control at 12 h (one-way ANOVA, p < 0.05).

References

    1. Lemp M.A., Baudouin C., Bau J., Dogru M., Foulks G.N., Kinoshita S., Laibson P., Mc Culley J., Murube J., Pflugfelder S.C., et al. DEWS definition and classification subcommittee of the international dry eye workshop. The definition and classification of dry eye disease: Report of the definition and classification subcommittee of the international dry eye workshop. Ocular Surf. 2007;5:75–92.
    1. Berriaud N., Milas M., Rinaudo M. Characterization and properties of hyaluronic acid (hyaluronan) In: Dumitriu S., Dekker M., editors. Polysaccharides: Structural Diversity and Functional Versatility. 2nd ed. CRC Press; New York, NY, USA: 2005. pp. 535–549.
    1. Lapcik L., Jr., Lapcik L., De Smedt S., Demeester J., Chabreček P. Hyaluronan: Preparation, structure, properties, and applications. Chem. Rev. 1998;98:2663–2684. doi: 10.1021/cr941199z.
    1. Stuart J.C., Linn J.G. Dilute sodium hyaluronate (Healon) in the treatment of ocular surface disorders. Ann. Ophthalmol. 1985;17:190–192.
    1. Yoshida K., Nitatori Y., Uchiyama Y. Localization of glycosaminoglycans and CD44 in the human lacrimal gland. Arch. Histol. Cytol. 1996;59:505–513. doi: 10.1679/aohc.59.505.
    1. Berry M., Pastis K.W., Ellingham R.B., Frost L., Corfield A.P., Easty D.L. Hyaluronan in dry eye and contact lens wearers. In: Sullivan D.A., Dartt D.A., Meneray M.A., editors. Lacrimal Gland, Tear Film, and Dry Eye Syndromes 2. Plenum Press; New York, NY, USA: 1998. pp. 785–790.
    1. Frescura M., Berry M., Corfield A., Carrington S., Easty D.L. Evidence of hyaluronan in human tears and secretions of conjunctival cultures. Biochem. Soc. Trans. 1994;22:228s. doi: 10.1042/bst022228s.
    1. Fukuda M., Miyamoto Y., Miyara Y., Mishima H., Otori T. Hyaluronic acid concentrations in human tear fluids. Investig. Ophthalmol. Vis. Sci. 1996;37:3916.
    1. Nakamura M., Hikida M., Nakano T., Ito S., Hamano T., Kinoshita S. Characterization of water retentive properties of hyaluronan. Cornea. 1993;12:433–436. doi: 10.1097/00003226-199309000-00010.
    1. Gomes J.A.P., Amankwah R., Powell–Richards A., Dua H.S. Sodium hyaluronate (hyaluronic acid) promotes migration of human corneal epithelial cells in vitro. Br. J. Ophthalmol. 2004;88:821–825. doi: 10.1136/bjo.2003.027573.
    1. Inoue M., Katakami C. The effect of hyaluronic acid on corneal epithelial cell proliferation. Investig. Ophthalmol. Vis. Sci. 1993;34:2313–2315.
    1. Nishida T., Nakamura M., Mishima H., Otori T. Hyaluronan stimulates corneal epithelial migration. Exp. Eye Res. 1991;53:753–758. doi: 10.1016/0014-4835(91)90110-Z.
    1. Presti D., Scott J.E. Hyaluronan–mediated protective effect against cell damage caused by enzymatically produced hydroxyl (OH.) radicals is dependent on hyaluronan molecular mass. Cell Biochem. Funct. 1994;12:281–288. doi: 10.1002/cbf.290120409.
    1. Scott J.E. Extracellular matrix, supramolecular organization and shape. J. Anat. 1995;187:259–269.
    1. Aragona P., Papa V., Micali A., Santocono M., Milazzo G. Long term treatment with sodium hyaluronate–containing artificial tears reduces ocular surface damage in patients with dry eye. Br. J. Ophthalmol. 2002;86:181–184. doi: 10.1136/bjo.86.2.181.
    1. Dumbleton K., Woods C., Fonn D. An investigation of the efficacy of a novel ocular lubricant. Eye Contact Lens. 2009;35:149–155. doi: 10.1097/ICL.0b013e3181a2c986.
    1. Hamano T., Horimoto K., Lee M., Komemushi S. Sodium hyaluronate eye drops enhance tear film stability. Jpn. J. Ophthalmol. 1996;40:62–65.
    1. Johnson M.E., Murphy P.J., Boulton M. Effectiveness of sodium hyaluronate eye drops in the treatment of dry eye. Graefes Arch. Clin. Exp. Ophthalmol. 2006;244:109–112. doi: 10.1007/s00417-005-0028-1.
    1. Prabhasawat P., Tesavibul N., Kasetsuwan N. Performance profile of sodium hyaluronate in patients with lipid tear deficiency: Randomised, double–blind, controlled, exploratory study. Br. J. Ophthalmol. 2007;91:47–50. doi: 10.1136/bjo.2006.097691.
    1. Sand B.B., Marner K., Norn M.S. Sodium hyaluronate in the treatment of keratoconjunctivitis sicca. A double masked clinical trial. Acta Ophthalmol. 1989;67:181–183. doi: 10.1111/j.1755-3768.1989.tb00750.x.
    1. Fallacara A., Manfredini S., Durini E., Vertuani S. Hyaluronic acid fillers in soft tissue regeneration. Facial Plast. Surg. 2017;33:87–96. doi: 10.1055/s-0036-1597685.
    1. Williams D.L., Mann B.K. Efficacy of a crosslinked hyaluronic acid–based hydrogel as a tear film supplement: A masked controlled study. PLoS ONE. 2014;9:e99766. doi: 10.1371/journal.pone.0099766.
    1. Williams D.L., Mann B.K. A crosslinked HA–based hydrogel ameliorates dry eye symptoms in dogs. Int. J. Biomater. 2013;2013:460437. doi: 10.1155/2013/460437.
    1. Yang G., Espandar L., Mamalis N., Prestwich G.D. A cross–linked hyaluronan gel accelerates healing of corneal epithelial abrasion and alkali burn injuries in rabbits. Vet. Ophthalmol. 2010;13:144–150. doi: 10.1111/j.1463-5224.2010.00771.x.
    1. Wirostko B., Mann K.B., Williams D.L., Prestwich G.D. Ophthalmic uses of a thiol–modified hyaluronan–based hydrogel. Adv. Wound Care (New Rochelle) 2014;3:708–716. doi: 10.1089/wound.2014.0572.
    1. Williams D.L., Wirostko B.M., Gum G., Mann B.K. Topical cross–linked HA–based hydrogel accelerates closure of corneal epithelial defects and repair of stromal ulceration in companion animals. Investig. Ophthalmol. Vis. Sci. 2017;58:4616–4622. doi: 10.1167/iovs.16-20848.
    1. Calles J.A., Tàrtara L.I., Lopez–Garcìa A., Diebold Y., Palma S.D., Vallés E.M. Novel bioadhesive hyaluronan–itaconic acid crosslinked films for ocular therapy. Int. J. Pharm. 2013;455:48–56. doi: 10.1016/j.ijpharm.2013.07.063.
    1. Calles J.A., Lopez–Garcìa A., Vallés E.M., Palma S.D., Diebold Y. Preliminary characterization of dexamethasone–loaded cross–linked hyaluronic acid films for topical ocular therapy. Int. J. Pharm. 2016;509:237–243. doi: 10.1016/j.ijpharm.2016.05.054.
    1. Postorino E.I., Rania L., Aragona E., Mannucci C., Alibrandi A., Calapai G., Puzzolo D., Aragona P. Efficacy of eye drops containing cross–linked hyaluronic acid and coenzyme Q10 in treating patients with mild to moderate dye eye. Eur. J. Ophthalmol. 2017 doi: 10.5301/ejo.5001011.
    1. Cagini C., Torroni G., Fiore T., Cerquaglia A., Lupidi M., Aragona P., Iaccheri B. Tear film stability in Sjogren syndrome patients treated with hyaluronic acid versus crosslinked hyaluronic acid–based eye drops. J. Ocul. Pharmacol. Ther. 2017;33:539–542. doi: 10.1089/jop.2016.0149.
    1. Citernesi U.R., Beretta L., Citernesi L. Cross–Linked Hyaluronic Acid, Process for the Preparation Thereof and Use Thereof. Patent WO/2015/007773 A1. 2015 Jan 22;
    1. Charlton J.F., Schwab I.R., Stuchell R. Topical urea as a treatment for non-infectious keratopathy. Acta Ophthalmol. Scand. 1996;74:391–394. doi: 10.1111/j.1600-0420.1996.tb00715.x.
    1. Van Goethem F., Adriaens E., Alepee N., Straube F., De Wever B., Cappadoro M., Catoire S., Hansen E., Wolf A., Vanparys P. Prevalidation of a new in vitro reconstituted human cornea model to assess the eye irritating potential of chemicals. Toxicol. In Vitro. 2006;20:1–17. doi: 10.1016/j.tiv.2005.05.002.
    1. Fischer A.H., Jacobson K.A., Rose J., Zeller R. Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc. 2008 doi: 10.1101/pdb.prot4986.
    1. Valacchi G., Pecorelli A., Mencarelli M., Carbotti P., Fortino V., Muscettola M., Maioli E. Rottlerin: A multifaced regulator of keratinocyte cell cycle. Exp. Dermatol. 2009;18:516–521. doi: 10.1111/j.1600-0625.2008.00816.x.
    1. Condon P.I., McEwen C.G., Wright M., Mackintosh G., Prescott R.J., McDonald C. Double blind, randomized, placebo controlled, crossover, multicenter study to determine the efficacy of a 0.1% (w/v) sodium hyaluronate solution (Fermavisc) in the treatment of dry eye syndrome. Br. J. Ophthalmol. 1999;83:1121–1124. doi: 10.1136/bjo.83.10.1121.
    1. Papa V., Aragona P., Russo S., Di Bella A., Russo P., Milazzo G. Comparison of hypotonic and isotonic solutions containing sodium hyaluronate on the symptomatic treatment of dry eye patients. Ophthalmology. 2001;215:124–127. doi: 10.1159/000050842.
    1. Williams D., Middleton S., Fattahian H., Moridpour R. Comparison of hyaluronic acid–containing topical eye drops with carbomer-based topical ocular gel as a tear replacement in canine keratoconjunctivitis sicca: a prospective study in twenty-five dogs. Vet. Res. Forum. 2012;3:229–232.

Source: PubMed

3
購読する