Efficacy of a crosslinked hyaluronic acid-based hydrogel as a tear film supplement: a masked controlled study

David L Williams, Brenda K Mann, David L Williams, Brenda K Mann

Abstract

Keratoconjunctivitis sicca (KCS), or dry eye, is a significant medical problem in both humans and dogs. Treating KCS often requires the daily application of more than one type of eye drop in order to both stimulate tear prodcution and provide a tear supplement to increase hydration and lubrication. A previous study demonstrated the potential for a crosslinked hyaluronic acid-based hydrogel (xCMHA-S) to reduce the clinical signs associated with KCS in dogs while using a reduced dosing regimen of only twice-daily administration. The present study extended those results by comparing the use of the xCMHA-S to a standard HA-containing tear supplement in a masked, randomized clinical study in dogs with a clinical diagnosis of KCS. The xCMHA-S was found to significantly improve ocular surface health (conjunctival hyperaemia, ocular irritation, and ocular discharge) to a greater degree than the alternative tear supplement (P = 0.0003). Further, owners reported the xCMHA-S treatment as being more highly effective than the alternative tear supplement (P = 0.0024). These results further demonstrate the efficacy of the xCMHA-S in reducing the clinical signs associated with KCS, thereby improving patient health and owner happiness.

Conflict of interest statement

Competing Interests: B.K. Mann is employed by and owns stock in SentrX Animal Care where the hydrogel used in the study was developed. D.L. Williams has no competing interests. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Composite score results.
Figure 1. Composite score results.
Post-treatment composite score plotted against pre-treatment composite score for xCMHA-S and ITRD treatments for all 20 dogs in the study. Note that for xCMHA-S, 2 dogs had a pre-treatment composite of 9 and post-treatment composite of 0; for ITRD, 2 dogs had a pre-treatment composite of 6 and post-treatment composite of 3. Lines indicate linear fits for each treatment.

References

    1. Smith JA (2007) The epidemiology of dry eye disease: Report of the epidemiology subcommittee of the International Dry Eye Work Shop (2007). Ocul Surf 5: 93–107.
    1. Williams DL (2008) Immunopathogenesis of keratoconjunctivitis sicca in the dog. Vet Clin North Am Small Anim Pract 38: 251–268.
    1. Kaswan RL, Salisbury MA, Ward DA (1989) Spontaneous canine keratoconjunctivitis sicca. A useful model for human keratoconjunctivitis sicca: treatment with cyclosporine eye drops. Arch Ophthalmol 107: 1210–1216.
    1. Stonecipher K, Perry HD, Gross RH, Kerney DL (2005) The impact of topical cyclosporine A emulsion 0.05% on the outcomes of patients with keratoconjunctivitis sicca. Curr Med Res Opin. 21: 1057–1063.
    1. Bron AJ, Mangat H, Quinlan M, Foley-Nolan A, Eustace P, et al. (1998) Polyacrylic acid gel in patients with dry eyes: a randomised comparison with polyvinyl alcohol. Eur J Ophthalmol 8: 81–89.
    1. Barbucci R, Lamponi S, Borzacchiello A, Ambrosio L, Fini M, et al. (2002) Hyaluronic acid hydrogel in the treatment of osteoarthritis. Biomaterials 23: 4503–4513.
    1. Rah MJ (2011) A review of hyaluronan and its ophthalmic applications. Optometry 82: 38–43.
    1. Kobayashi Y, Okamoto A, Nishinari K (1994) Viscoelasticity of hyaluronic acid with different molecular weights. Biorheology 31: 235–244.
    1. Hamano T, Horimoto K, Lee M, Komemushi S (1996) Sodium hyaluronate eyedrops enhance tear film stability. Jpn J Ophthalmol 40: 62–65.
    1. Guillaumie F, Furrer P, Felt-Baeyens O, Fuhlendorff BL, Nymand S, et al. (2010) Comparative studies of various hyaluronic acids produced by microbial fermentation for potential topical ophthalmic applications. J Biomed Mater Res Part A 92A: 1421–1430.
    1. Gibbs DA, Merrill EW, Smith KA, Balazs EA (1968) Rheology of hyaluronic acid. Biopolymers 6: 777–791.
    1. Higashide T, Sugiyama K (2008) Use of viscoelastic substance in ophthalmic surgery – focus on sodium hyaluronate. Clin Ophthalmol 2: 21–30.
    1. Nakamura S, Okada S, Umeda Y, Saito F (2004) Development of a rabbit model of tear film instability and evaluation of viscosity of artificial tear preparations. Cornea 23: 390–397.
    1. Yang G, Prestwich GD, Mann BK (2011) Thiolated carboxymethyl hyaluronic acid-based biomaterials enhance wound healing in rats, dogs, and horses. ISRN Vet Sci Article ID 851593: 1-7. Available: . Accessed 20 February 2014.
    1. Yang G, Espandar L, Mamalis N, Prestwich GD (2010) A crosslinked hyaluronan gel accelerate healing of corneal epithelial abrasion and alkali burn injuries in rabbits. Vet Ophthalmol 13: 144–150.
    1. Williams DL, Mann BK (2013) A crosslinked HA-based hydrogel ameliorates dry eye symptoms in dogs. Int J Biomater Article ID 460437. Available: . Accessed 20 February 2014.
    1. Williams DL, Middleton S, Fattahian H, Moridpour R (2012) Comparison of hyaluronic acid-containing topical eye drops with carbomer-based topical ocular gel as a tear replacement in canine keratoconjunctivitis sicca; a prospective study in twenty-five dogs. Vet Res Forum 3: 229–232.
    1. Festing MF, Altman DG (2002) Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J 43: 244–258.
    1. Newcombe RG, Duff GR (1987) Eyes or patients? Traps for the unwary in the statistical analysis of ophthalmological studies. Br J Ophthalmol 71: 645–646.

Source: PubMed

3
購読する