Application of Metabolomics to Study Effects of Bariatric Surgery

Paulina Samczuk, Michal Ciborowski, Adam Kretowski, Paulina Samczuk, Michal Ciborowski, Adam Kretowski

Abstract

Bariatric surgery was born in the 1950s at the University of Minnesota. From this time, it continues to evolve and, by the same token, gives new or better possibilities to treat not only obesity but also associated comorbidities. Metabolomics is also a relatively young science discipline, and similarly, it shows great potential for the comprehensive study of the dynamic alterations of the metabolome. It has been widely used in medicine, biology studies, biomarker discovery, and prognostic evaluations. Currently, several dozen metabolomics studies were performed to study the effects of bariatric surgery. LC-MS and NMR are the most frequently used techniques to study main effects of RYGB or SG. Research has yield many interesting results involving not only clinical parameters but also molecular modulations. Detected changes pertain to amino acid, lipids, carbohydrates, or gut microbiota alterations. It proves that including bariatric surgery to metabolic surgery is warranted. However, many molecular modulations after those procedures remain unexplained. Therefore, application of metabolomics to study this field seems to be a proper solution. New findings can suggest new directions of surgery technics modifications, contribute to broadening knowledge about obesity and diseases related to it, and perhaps develop nonsurgical methods of treatment in the future.

Figures

Figure 1
Figure 1
Summary of published studies.
Figure 2
Figure 2
Summary of pathway analysis. The following are the top 25 identified statistically significant pathways: 1: aminoacyl-tRNA biosynthesis; 2: glycine, serine, and threonine metabolism; 3: nitrogen metabolism; 4: phenylalanine metabolism; 5: cysteine and methionine metabolism; 6: citrate cycle (TCA cycle); 7: taurine and hypotaurine metabolism; 8: valine, leucine, and isoleucine biosyntheses; 9: propanoate metabolism; 10: nicotinate and nicotinamide metabolism; 11: alanine, aspartate, and glutamate metabolism; 12: arginine and proline metabolism; 13: synthesis and degradation of ketone bodies; 14: pyrimidine metabolism; 15: methane metabolism; 16: glutathione metabolism; 17: glyoxylate and dicarboxylate metabolism; 18: pyruvate metabolism; 19: purine metabolism; 20: pantothenate and CoA biosyntheses; 21: d-glutamine and d-glutamate metabolism; 22: valine, leucine, and isoleucine degradation; 23: butanoate metabolism; 24: glycolysis or gluconeogenesis; 25: linoleic acid metabolism.

References

    1. Faria G. R. A brief history of bariatric surgery. Porto Biomedical Journal. 2017;2(3):90–92. doi: 10.1016/j.pbj.2017.01.008.
    1. Kremen A. J., Linner J. H., Nelson C. H. An experimental evaluation of the nutritional importance of proximal and distal small intestine. Annals of Surgery. 1954;140(3):439–448. doi: 10.1097/00000658-195409000-00018.
    1. Buchwald H. The evolution of metabolic/bariatric surgery. Obesity Surgery. 2014;24(8):1126–1135. doi: 10.1007/s11695-014-1354-3.
    1. Kashyap S. R., Gatmaitan P., Brethauer S., Schauer P. Bariatric surgery for type 2 diabetes: weighing the impact for obese patients. Cleveland Clinic Journal of Medicine. 2010;77(7):468–476. doi: 10.3949/ccjm.77a.09135.
    1. Slater B. J., Bellatorre N., Eisenberg D. Early postoperative outcomes and medication cost savings after laparoscopic sleeve gastrectomy in morbidly obese patients with type 2 diabetes. Journal of Obesity. 2011;2011:5. doi: 10.1155/2011/350523.350523
    1. Nalepa P., Piechnik A., Kiersztan A. Influence of bariatric surgery on remission of type 2 diabetes. Postȩpy Higieny i Medycyny Doświadczalnej. 2011;65:804–818. doi: 10.5604/17322693.968212.
    1. Modesitt S. C., Hallowell P. T., Slack-Davis J. K., et al. Women at extreme risk for obesity-related carcinogenesis: baseline endometrial pathology and impact of bariatric surgery on weight, metabolic profiles and quality of life. Gynecologic Oncology. 2015;138(2):238–245. doi: 10.1016/j.ygyno.2015.05.015.
    1. Mechanick J. I., Youdim A., Jones D. B., et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient—2013 update: cosponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery. Obesity. 2013;21(Supplement 1):S1–S27. doi: 10.1002/oby.20461.
    1. Neff K. J., Olbers T., le Roux C. W. Bariatric surgery: the challenges with candidate selection, individualizing treatment and clinical outcomes. BMC Medicine. 2013;11(1):p. 8. doi: 10.1186/1741-7015-11-8.
    1. Ahima R. S. Digging deeper into obesity. The Journal of Clinical Investigation. 2011;121(6):2076–2079. doi: 10.1172/JCI58719.
    1. Ashrafian H., Li J. V., Spagou K., et al. Bariatric surgery modulates circulating and cardiac metabolites. Journal of Proteome Research. 2014;13(2):570–580. doi: 10.1021/pr400748f.
    1. Piche M. E., Auclair A., Harvey J., Marceau S., Poirier P. How to choose and use bariatric surgery in 2015. Canadian Journal of Cardiology. 2015;31(2):153–166. doi: 10.1016/j.cjca.2014.12.014.
    1. Bankoglu E. E., Seyfried F., Rotzinger L., et al. Impact of weight loss induced by gastric bypass or caloric restriction on oxidative stress and genomic damage in obese Zucker rats. Free Radical Biology & Medicine. 2016;94:208–217. doi: 10.1016/j.freeradbiomed.2016.02.033.
    1. Brethauer S. A., Chand B., Schauer P. R. Risks and benefits of bariatric surgery: current evidence. Cleveland Clinic Journal of Medicine. 2006;73(11):993–1007. doi: 10.3949/ccjm.73.11.993.
    1. Lee W. J., Almulaifi A., Tsou J. J., Ser K. H., Lee Y. C., Chen S. C. Laparoscopic sleeve gastrectomy for type 2 diabetes mellitus: predicting the success by ABCD score. Surgery for Obesity and Related Diseases. 2015;11(5):991–996. doi: 10.1016/j.soard.2014.12.027.
    1. Benaiges D., Más-Lorenzo A., Goday A., et al. Laparoscopic sleeve gastrectomy: more than a restrictive bariatric surgery procedure? World Journal of Gastroenterology. 2015;21(41):11804–11814. doi: 10.3748/wjg.v21.i41.11804.
    1. Nicholson J. K., Lindon J. C. Systems biology: metabonomics. Nature. 2008;455(7216):1054–1056. doi: 10.1038/4551054a.
    1. Nicholson J. K., Lindon J. C., Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29(11):1181–1189. doi: 10.1080/004982599238047.
    1. Fiehn O., Kopka J., Dormann P., Altmann T., Trethewey R. N., Willmitzer L. Metabolite profiling for plant functional genomics. Nature Biotechnology. 2000;18(11):1157–1161. doi: 10.1038/81137.
    1. Fiehn O. Metabolomics—the link between genotypes and phenotypes. Plant Molecular Biology. 2002;48(1-2):155–171. doi: 10.1023/A:1013713905833.
    1. Zhang A., Sun H., Wang P., Han Y., Wang X. Modern analytical techniques in metabolomics analysis. The Analyst. 2012;137(2):293–300. doi: 10.1039/C1AN15605E.
    1. Lei Z., Huhman D. V., Sumner L. W. Mass spectrometry strategies in metabolomics. Journal of Biological Chemistry. 2011;286(29):25435–25442. doi: 10.1074/jbc.R111.238691.
    1. Spratlin J. L., Serkova N. J., Eckhardt S. G. Clinical applications of metabolomics in oncology: a review. Clinical Cancer Research. 2009;15(2):431–440. doi: 10.1158/1078-0432.CCR-08-1059.
    1. Eckhart A. D., Beebe K., Milburn M. Metabolomics as a key integrator for “omic” advancement of personalized medicine and future therapies. Clinical and Translational Science. 2012;5(3):285–288. doi: 10.1111/j.1752-8062.2011.00388.x.
    1. Luo P., Yu H., Zhao X., et al. Metabolomics study of roux-en-Y gastric bypass surgery (RYGB) to treat type 2 diabetes patients based on ultraperformance liquid chromatography–mass spectrometry. Journal of Proteome Research. 2016;15(4):1288–1299. doi: 10.1021/acs.jproteome.6b00022.
    1. Hertel J., Friedrich N., Wittfeld K., et al. Measuring biological age via metabonomics: the metabolic age score. Journal of Proteome Research. 2016;15(2):400–410. doi: 10.1021/acs.jproteome.5b00561.
    1. Jüllig M., Yip S., Xu A., et al. Lower fetuin-A, retinol binding protein 4 and several metabolites after gastric bypass compared to sleeve gastrectomy in patients with type 2 diabetes. PLoS One. 2014;9(5, article e96489) doi: 10.1371/journal.pone.0096489.
    1. Sledzinski T., Mika A., Stepnowski P., et al. Identification of cyclopropaneoctanoic acid 2-hexyl in human adipose tissue and serum. Lipids. 2013;48(8):839–848. doi: 10.1007/s11745-013-3806-2.
    1. Xia J., Wishart D. S. MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics. 2010;26(18):2342–2344. doi: 10.1093/bioinformatics/btq418.
    1. Nemati R., Lu J., Tura A., Smith G., Murphy R. Acute changes in non-esterified fatty acids in patients with type 2 diabetes receiving bariatric surgery. Obesity Surgery. 2017;27(3):649–656. doi: 10.1007/s11695-016-2323-9.
    1. Oberbach A., Neuhaus J., Inge T., et al. Bariatric surgery in severely obese adolescents improves major comorbidities including hyperuricemia. Metabolism. 2014;63(2):242–249. doi: 10.1016/j.metabol.2013.11.012.
    1. Narath S. H., Mautner S. I., Svehlikova E., et al. An untargeted metabolomics approach to characterize short-term and long-term metabolic changes after bariatric surgery. PLoS One. 2016;11(9, article e0161425) doi: 10.1371/journal.pone.0161425.
    1. Lopes T. I. B., Geloneze B., Pareja J. C., Calixto A. R., Ferreira M. M. C., Marsaioli A. J. “Omics” prospective monitoring of bariatric surgery: Roux-en-Y gastric bypass outcomes using mixed-meal tolerance test and time-resolved 1H NMR-based metabolomics. OMICS: A Journal of Integrative Biology. 2016;20(7):415–423. doi: 10.1089/omi.2016.0061.
    1. Bojsen-Moller K. N., Jacobsen S. H., Dirksen C., et al. Accelerated protein digestion and amino acid absorption after Roux-en-Y gastric bypass. The American Journal of Clinical Nutrition. 2015;102(3):600–607. doi: 10.3945/ajcn.115.109298.
    1. Lopes T. I. B., Geloneze B., Pareja J. C., Calixto A. R., Ferreira M. M. C., Marsaioli A. J. Blood metabolome changes before and after bariatric surgery: a 1H NMR-based clinical investigation. OMICS: A Journal of Integrative Biology. 2015;19(5):318–327. doi: 10.1089/omi.2015.0009.
    1. Arora T., Velagapudi V., Pournaras D. J., et al. Roux-en-Y gastric bypass surgery induces early plasma metabolomic and lipidomic alterations in humans associated with diabetes remission. PLoS One. 2015;10(5, article e0126401) doi: 10.1371/journal.pone.0126401.
    1. Kwon H. N., Lee Y. J., Kang J. H., et al. Prediction of glycated hemoglobin levels at 3 months after metabolic surgery based on the 7-day plasma metabolic profile. PLoS One. 2014;9(11, article e109609) doi: 10.1371/journal.pone.0109609.
    1. Gralka E., Luchinat C., Tenori L., Ernst B., Thurnheer M., Schultes B. Metabolomic fingerprint of severe obesity is dynamically affected by bariatric surgery in a procedure-dependent manner. The American Journal of Clinical Nutrition. 2015;102(6):1313–1322. doi: 10.3945/ajcn.115.110536.
    1. Friedrich N., Budde K., Wolf T., et al. Short-term changes of the urine metabolome after bariatric surgery. OMICS: A Journal of Integrative Biology. 2012;16(11):612–620. doi: 10.1089/omi.2012.0066.
    1. Calvo N., Beltrán-Debón R., Rodríguez-Gallego E., et al. Liver fat deposition and mitochondrial dysfunction in morbid obesity: an approach combining metabolomics with liver imaging and histology. World Journal of Gastroenterology. 2015;21(24):7529–7544. doi: 10.3748/wjg.v21.i24.7529.
    1. Oberbach A., von Bergen M., Blüher S., Lehmann S., Till H. Combined serum proteomic and metabonomic profiling after laparoscopic sleeve gastrectomy in children and adolescents. Journal of Laparoendoscopic & Advanced Surgical Techniques. 2012;22(2):184–188. doi: 10.1089/lap.2011.0115.
    1. Liu R., Hong J., Xu X., et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nature Medicine. 2017;23(7):859–868. doi: 10.1038/nm.4358.
    1. Oberbach A., Blüher M., Wirth H., et al. Combined proteomic and metabolomic profiling of serum reveals association of the complement system with obesity and identifies novel markers of body fat mass changes. Journal of Proteome Research. 2011;10(10):4769–4788. doi: 10.1021/pr2005555.
    1. Sarosiek K., Pappan K. L., Gandhi A. V., et al. Conserved metabolic changes in nondiabetic and type 2 diabetic bariatric surgery patients: Global Metabolomic Pilot Study. Journal of Diabetes Research. 2016;2016:10. doi: 10.1155/2016/3467403.3467403
    1. Jung J., Ha T. K., Lee J., et al. Changes in one-carbon metabolism after duodenal-jejunal bypass surgery. American Journal of Physiology-Endocrinology and Metabolism. 2016;310(8):E624–E632. doi: 10.1152/ajpendo.00260.2015.
    1. Heffron S. P., Singh A., Zagzag J., et al. Laparoscopic gastric banding resolves the metabolic syndrome and improves lipid profile over five years in obese patients with body mass index 30–40 kg/m2. Atherosclerosis. 2014;237(1):183–190. doi: 10.1016/j.atherosclerosis.2014.08.030.
    1. Calvani R., Miccheli A., Capuani G., et al. Gut microbiome-derived metabolites characterize a peculiar obese urinary metabotype. International Journal of Obesity. 2010;34(6):1095–1098. doi: 10.1038/ijo.2010.44.
    1. Chouiali A., Mallet P.-L., Fink G., Biron S., Langlois M.-F. Comparison of two methods for measuring 25-OH vitamin D in the follow-up of patients after bilio-pancreatic diversion bariatric surgery. Clinical Biochemistry. 2017;50(4-5):210–216. doi: 10.1016/j.clinbiochem.2016.11.010.
    1. Stratmann B., Krepak Y., Schiffer E., et al. Beneficial metabolic effects of duodenal jejunal bypass liner for the treatment of adipose patients with type 2 diabetes mellitus: analysis of responders and non-responders. Hormone and Metabolic Research. 2016;48(10):630–637. doi: 10.1055/s-0042-115175.
    1. García-Alonso V., Titos E., Alcaraz-Quiles J., et al. Prostaglandin E2 exerts multiple regulatory actions on human obese adipose tissue remodeling, inflammation, adaptive thermogenesis and lipolysis. PLoS One. 2016;11(4, article e0153751) doi: 10.1371/journal.pone.0153751.
    1. Zhao L., Ni Y., Yu H., et al. Serum stearic acid/palmitic acid ratio as a potential predictor of diabetes remission after Roux-en-Y gastric bypass in obesity. The FASEB Journal. 2017;31(4):1449–1460. doi: 10.1096/fj.201600927R.
    1. Kaska L., Mika A., Stepnowski P., et al. The relationship between specific fatty acids of serum lipids and serum high sensitivity C-reactive protein levels in morbidly obese women. Cellular Physiology and Biochemistry. 2014;34(4):1101–1108. doi: 10.1159/000366324.
    1. Murphy R., Tsai P., Jullig M., Liu A., Plank L., Booth M. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obesity Surgery. 2017;27(4):917–925. doi: 10.1007/s11695-016-2399-2.
    1. Donaldson G. P., Lee S. M., Mazmanian S. K. Gut biogeography of the bacterial microbiota. Nature Reviews Microbiology. 2016;14(1):20–32. doi: 10.1038/nrmicro3552.
    1. Blandino G., Inturri R., Lazzara F., Di Rosa M., Malaguarnera L. Impact of gut microbiota on diabetes mellitus. Diabetes & Metabolism. 2016;42(5):303–315. doi: 10.1016/j.diabet.2016.04.004.
    1. Liu H., Hu C., Zhang X., Jia W. Role of gut microbiota, bile acids and their cross-talk in the effects of bariatric surgery on obesity and type 2 diabetes. Journal of Diabetes Investigation. 2018;9(1):13–20. doi: 10.1111/jdi.12687.
    1. Ohland C. L., Jobin C. Microbial activities and intestinal homeostasis: a delicate balance between health and disease. Cellular and Molecular Gastroenterology and Hepatology. 2015;1(1):28–40. doi: 10.1016/j.jcmgh.2014.11.004.
    1. Lee W.-J., Hase K. Gut microbiota–generated metabolites in animal health and disease. Nature Chemical Biology. 2014;10(6):416–424. doi: 10.1038/nchembio.1535.
    1. Zhang Y. J., Li S., Gan R. Y., Zhou T., Xu D. P., Li H. B. Impacts of gut bacteria on human health and diseases. International Journal of Molecular Sciences. 2015;16(12):7493–7519. doi: 10.3390/ijms16047493.
    1. Dedkova E. N., Blatter L. A. Role of β-hydroxybutyrate, its polymer poly-β-hydroxybutyrate and inorganic polyphosphate in mammalian health and disease. Frontiers in Physiology. 2014;5:p. 260. doi: 10.3389/fphys.2014.00260.
    1. Musshoff F., Klotzbach H., Block W., Traeber F., Schild H., Madea B. Comparison of post-mortem metabolic changes in sheep brain tissue in isolated heads and whole animals using 1H-MR spectroscopy—preliminary results. International Journal of Legal Medicine. 2011;125(5):741–744. doi: 10.1007/s00414-010-0463-3.

Source: PubMed

3
購読する