Editorial: "Homeostasis and Allostasis of Thyroid Function"

Johannes W Dietrich, John E M Midgley, Rudolf Hoermann, Johannes W Dietrich, John E M Midgley, Rudolf Hoermann

No abstract available

Keywords: TACITUS syndrome; allostasis; feedback regulation; homeostasis; hysteresis; syndrome T; thyroid hormones; thyronamines.

References

    1. Weeke J, Gundersen HJ. Circadian and 30 minutes variations in serum TSH and thyroid hormones in normal subjects. Acta Endocrinol (Copenh) (1978) 89:659–72.10.1530/acta.0.0890659
    1. Brabant G, Prank K, Ranft U, Bergmann P, Schuermeyer T, Hesch RD, et al. Circadian and pulsatile TSH secretion under physiological and pathophysiological conditions. Horm Metab Res Suppl (1990) 23:12–7.
    1. Dietrich JW, Stachon A, Antic B, Klein HH, Hering S. The AQUA-FONTIS study: protocol of a multidisciplinary, cross-sectional and prospective longitudinal study for developing standardized diagnostics and classification of non-thyroidal illness syndrome. BMC Endocr Disord (2008) 8:13.10.1186/1472-6823-8-13
    1. Dietrich JW, Landgrafe G, Fotiadou EH. TSH and thyrotropic agonists: key actors in thyroid homeostasis. J Thyroid Res (2012) 2012:351864.10.1155/2012/351864
    1. Dickey RA, Wartofsky L, Feld S. Optimal thyrotropin level: normal ranges and reference intervals are not equivalent. Thyroid (2005) 15:1035–9.10.1089/thy.2005.15.1035
    1. Inal TC, Serteser M, Coşkun A, Özpinar A, Ünsal I. Indirect reference intervals estimated from hospitalized population for thyrotropin and free thyroxine. Croat Med J (2010) 51:124–30.10.3325/cmj.2010.51.124
    1. Arzideh F, Wosniok W, Haeckel R. Indirect reference intervals of plasma and serum thyrotropin (TSH) concentrations from intra-laboratory data bases from several German and Italian medical centres. Clin Chem Lab Med (2011) 49:659–64.10.1515/CCLM.2011.114
    1. Larisch R, Giacobino A, Eckl W, Wahl H-G, Midgley JEM, Hoermann R. Reference range for thyrotropin. Nuklearmedizin (2015) 54:112–7.10.3413/Nukmed-0671-14-06
    1. Hoermann R, Larisch R, Dietrich JW, Midgley JEM. Derivation of a multivariate reference range for pituitary thyrotropin and thyroid hormones: diagnostic efficiency compared to conventional single reference method. Eur J Endocrinol (2016) 174(6):735–43.10.1530/EJE-16-0031
    1. Peterson SJ, Cappola AR, Castro MR, Dayan CM, Farwell AP, Hennessey JV, et al. An online survey of hypothyroid patients demonstrates prominent dissatisfaction. Thyroid (2018).10.1089/thy.2017.0681
    1. Waise A, Price HC. The upper limit of the reference range for thyroid-stimulating hormone should not be confused with a cut-off to define subclinical hypothyroidism. Ann Clin Biochem (2009) 46:93–8.10.1258/acb.2008.008113
    1. Portillo-Sanchez P, Rodriguez-Gutierrez R, Brito JP. Subclinical hypothyroidism in elderly individuals – overdiagnosis and overtreatment? JAMA Intern Med (2016) 176:1741.10.1001/jamainternmed.2016.5756
    1. Sterling P, Eyer J. Allostasis: a new paradigm to explain arousal pathology. In: Fisher S, Reason J, editors. Handbook of Life Stress, Cognition and Health. Oxford, England: John Wiley & Sons; (1988). p. 629–49.
    1. McEwen BS. Stress, adaptation, and disease: allostasis and allostatic load. Ann N Y Acad Sci (1998) 840:33–44.10.1111/j.1749-6632.1998.tb09546.x
    1. Schulkin J. Allostasis, Homeostasis, and the Costs of Physiological Adaptation. Cambridge, UK: Cambridge University Press; (2015).
    1. Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE. Hypothalamus-pituitary-thyroid axis. Compr Physiol (2016) 6(3):1387–428.10.1002/cphy.c150027
    1. Celi FS, Coppotelli G, Chidakel A, Kelly M, Brillante BA, Shawker T, et al. The role of type 1 and type 2 5′-deiodinase in the pathophysiology of the 3,5,3′-triiodothyronine toxicosis of McCune-Albright syndrome. J Clin Endocrinol Metab (2008) 93:2383–9.10.1210/jc.2007-2237
    1. Köhrle J. Thyrotropin (TSH) action on thyroid hormone deiodinaton and secretion: one aspect of thyrotropin regulation of thyroid cell biology. Horm Metab Res (1990) 23:18–28.
    1. Midgley JEM, Larisch R, Dietrich JW, Hoermann R. Variation in the biochemical response to L-thyroxine therapy and relationship with peripheral thyroid hormone conversion. Endocr Connect (2015) 4(4):196–205.10.1530/EC-15-0056
    1. Hoermann R, Midgley J, Larisch R, Dietrich J. Integration of peripheral and glandular regulation of triiodothyronine production by thyrotropin in untreated and thyroxine-treated subjects. Horm Metab Res (2015) 47:674–80.10.1055/s-0034-1398616
    1. Hoermann R, Midgley JEM, Giacobino A, Eckl WA, Wahl HG, Dietrich JW, et al. Homeostatic equilibria between free thyroid hormones and pituitary thyrotropin are modulated by various influences including age, body mass index and treatment. Clin Endocrinol (Oxf) (2014) 81:907–15.10.1111/cen.12527
    1. Hoermann R, Midgley JEM, Larisch R, Dietrich JW. Relational stability of thyroid hormones in euthyroid subjects and patients with autoimmune thyroid disease. Eur Thyroid J (2016) 5:171–9.10.1159/000447967
    1. Midgley JEM, Hoermann R, Larisch R, Dietrich JW. Physiological states and functional relation between thyrotropin and free thyroxine in thyroid health and disease: in vivo and in silico data suggest a hierarchical model. J Clin Pathol (2013) 66:335–42.10.1136/jclinpath-2012-201213
    1. Clark PM, Holder RL, Haque SM, Hobbs FDR, Roberts LM, Franklyn JA. The relationship between serum TSH and free T4 in older people. J Clin Pathol (2012) 65:463–5.10.1136/jclinpath-2011-200433
    1. Hadlow NC, Rothacker KM, Wardrop R, Brown SJ, Lim EM, Walsh JP. The relationship between TSH and free T4 in a large population is complex and nonlinear and differs by age and sex. J Clin Endocrinol Metab (2013) 98:2936–43.10.1210/jc.2012-4223
    1. Fitzgerald SP, Bean NG. The relationship between population T4/TSH set point data and T4/TSH physiology. J Thyroid Res (2016) 2016:6351473.10.1155/2016/6351473
    1. DiStefano JJ, Stear EB. On identification of hypothalamo-hypophysial control and feedback relationships with the thyroid gland. J Theor Biol (1968) 19:29–50.10.1016/0022-5193(68)90003-9
    1. Dietrich JW, Tesche A, Pickardt CR, Mitzdorf U. Thyrotropic feedback control: evidence for an additional ultrashort feedback loop from fractal analysis. Cybern Syst (2004) 35:315–31.10.1080/01969720490443354
    1. Han SX, Eisenberg M, Larsen PR, DiStefano J. THYROSIM app for education and research predicts potential health risks of over-the-counter thyroid supplements. Thyroid (2016) 26:489–98.10.1089/thy.2015.0373
    1. Hoermann R, Midgley JEM, Larisch R, Dietrich JWC. Advances in applied homeostatic modelling of the relationship between thyrotropin and free thyroxine. PLoS One (2017) 12:e0187232.10.1371/journal.pone.0187232
    1. Goede SL, Leow MK-S, Smit JWA, Klein HH, Dietrich JW. Hypothalamus-pituitary-thyroid feedback control: implications of mathematical modeling and consequences for thyrotropin (TSH) and free thyroxine (FT4) reference ranges. Bull Math Biol (2014) 76:1270–87.10.1007/s11538-014-9955-5
    1. Lumen A, McNally K, George N, Fisher JW, Loizou GD. Quantitative global sensitivity analysis of a biologically based dose-response pregnancy model for the thyroid endocrine system. Front Pharmacol (2015) 6:107.10.3389/fphar.2015.00107
    1. Lumen A, Mattie DR, Fisher JW. Evaluation of perturbations in serum thyroid hormones during human pregnancy due to dietary iodide and perchlorate exposure using a biologically based dose-response model. Toxicol Sci (2013) 133:320–41.10.1093/toxsci/kft078
    1. Degon M, Chipkin SR, Hollot CV, Zoeller RT, Chait Y. A computational model of the human thyroid. Math Biosci (2008) 212:22–53.10.1016/j.mbs.2007.10.009
    1. McLanahan ED, Andersen ME, Fisher JW. A biologically based dose-response model for dietary iodide and the hypothalamic-pituitary-thyroid axis in the adult rat: evaluation of iodide deficiency. Toxicol Sci (2008) 102:241–53.10.1093/toxsci/kfm312
    1. Leow MKS. A mathematical model of pituitary-thyroid interaction to provide an insight into the nature of the thyrotropin-thyroid hormone relationship. J Theor Biol (2007) 248:275–87.10.1016/j.jtbi.2007.05.016
    1. Benvenga S, Di Bari F, Granese R, Antonelli A. Serum Thyrotropin and Phase of the Menstrual Cycle. Front Endocrinol (2017) 8:250.10.3389/fendo.2017.00250
    1. Petrosyan L. Relationship between high normal TSH levels and metabolic syndrome components in type 2 diabetic subjects with euthyroidism. J Clin Transl Endocrinol (2015) 2:110–3.10.1016/j.jcte.2015.02.004
    1. Papi G, Corsello SM, Pontecorvi A. Clinical concepts on thyroid emergencies. Front Endocrinol (2014) 5:102.10.3389/fendo.2014.00102
    1. Leow MKS, Goede SL. The homeostatic set point of the hypothalamus-pituitary-thyroid axis – maximum curvature theory for personalized euthyroid targets. Theor Biol Med Model (2014) 11:35.10.1186/1742-4682-11-35
    1. Goede SL, Leow MKS, Smit JWA, Dietrich JW. A novel minimal mathematical model of the hypothalamus-pituitary-thyroid axis validated for individualized clinical applications. Math Biosci (2014) 249:1–7.10.1016/j.mbs.2014.01.001
    1. Eisenberg M, Distefano JJ, III. TSH-based protocol, tablet instability, and absorption effects on L-T4 bioequivalence. Thyroid (2009) 19:103–10.10.1089/thy.2008.0148
    1. Senese R, Cioffi F, de Lange P, Goglia F, Lanni A. Thyroid: biological actions of “nonclassical” thyroid hormones. J Endocrinol (2014) 221:R1–12.10.1530/JOE-13-0573
    1. Qatato M, Szumska J, Skripnik V, Rijntjes E, Köhrle J, Brix K. Canonical TSH Regulation of Cathepsin-Mediated Thyroglobulin Processing in the Thyroid Gland of Male Mice Requires Taar1 Expression. Front Pharmacol (2018) 9:221.10.3389/fphar.2018.00221
    1. Hoefig CS, Zucchi R, Köhrle J. Thyronamines and derivatives: physiological relevance, pharmacological actions, and future research directions. Thyroid (2016) 26:1656–73.10.1089/thy.2016.0178
    1. Piehl S, Hoefig CS, Scanlan TS, Köhrle J. Thyronamines – past, present, and future. Endocr Rev (2011) 32:64–80.10.1210/er.2009-0040
    1. Laurino A, Raimondi L. Commentary: Torpor: The Rise and Fall of 3-Monoiodothyronamine from Brain to Gut—From Gut to Brain? Front Endocrinol (2017) 8:206.10.3389/fendo.2017.00206
    1. Reichlin S, Utiger RD. Regulation of the pituitary-thyroid axis in man: relationship of TSH concentration to concentration of free and total thyroxine in plasma. J Clin Endocrinol Metab (1967) 27:251–5.10.1210/jcem-27-2-251
    1. Sterling K, Lazarus JH. The thyroid and its control. Annu Rev Physiol (1977) 39:349–71.10.1146/annurev.ph.39.030177.002025
    1. Fontes KN, Cabanelas A, Bloise FF, Andrade CBV, Souza LL, Wilieman M, et al. Differential Regulation of Thyroid Hormone Metabolism Target Genes during Non-thyroidal Illness Syndrome Triggered by Fasting or Sepsis in Adult Mice. Front Physiol (2017) 8:828.10.3389/fphys.2017.00828
    1. Lesmana R, Iwasaki T, Iizuka Y, Amano I, Shimokawa N, Koibuchi N. The change in thyroid hormone signaling by altered training intensity in male rat skeletal muscle. Endocr J (2016) 63:727–38.10.1507/endocrj.EJ16-0126
    1. Wajner SM, Maia AL. New insights toward the acute non-thyroidal illness syndrome. Front Endocrinol (2012) 3:8.10.3389/fendo.2012.00008
    1. Van den Berghe G. Non-thyroidal illness in the ICU: a syndrome with different faces. Thyroid (2014) 24:1456–65.10.1089/thy.2014.0201
    1. Dietrich JW, Müller P, Schiedat F, Schlömicher M, Strauch J, Chatzitomaris A, et al. Nonthyroidal illness syndrome in cardiac illness involves elevated concentrations of 3,5-diiodothyronine and correlates with atrial remodeling. Eur Thyroid J (2015) 4:129–37.10.1159/000381543
    1. Fliers E, Kalsbeek A, Boelen A. Mechanisms in endocrinology: beyond the fixed setpoint of the hypothalamus-pituitary-thyroid axis. Eur J Endocrinol (2014) 171:R197–208.10.1530/EJE-14-0285

Source: PubMed

3
購読する