Imputed expression of schizophrenia-associated genes and cognitive measures in patients with schizophrenia

Chiara Fabbri, Gian Marco Leggio, Filippo Drago, Alessandro Serretti, Chiara Fabbri, Gian Marco Leggio, Filippo Drago, Alessandro Serretti

Abstract

Background: Cognitive dysfunction is a core manifestation of schizophrenia and one of the best predictors of long-term disability. Genes increasing risk for schizophrenia may partly act through the modulation of cognition.

Methods: We imputed the expression of 130 genes recently prioritized for association with schizophrenia, using PsychENCODE variant weights and genotypes of patients with schizophrenia in CATIE. Processing speed, reasoning, verbal memory, working memory, vigilance, and a composite cognitive score were used as phenotypes. We performed linear regression models for each cognitive measure and gene expression score, adjusting for age, years of education, antipsychotic treatment, years since the first antipsychotic treatment and population principal components.

Results: We included 425 patients and expression scores of 91 genes (others had no heritable expression; Bonferroni corrected alpha = 5.49e-4). No gene expression score was associated with cognitive measures, though ENOX1 expression was very close to the threshold for verbal memory (p = 6e-4) and processing speed (p = 7e-4). Other genes were nominally associated with multiple phenotypes (MAN2A1 and PCGF3).

Conclusion: A better understanding of the mechanisms mediating cognitive dysfunction in schizophrenia may help in the definition of disease prognosis and in the identification of new treatments, as the treatment of cognitive impairment remains an unmet therapeutic need.

Trial registration: ClinicalTrials.gov NCT00014001.

Keywords: cognition; gene expression; memory; processing speed; schizophrenia.

Conflict of interest statement

Alessandro Serretti is or has been consultant/speaker for: Abbott, Abbvie, Angelini, Astra Zeneca, Clinical Data, Boheringer, Bristol Myers Squibb, Eli Lilly, GlaxoSmithKline, Innovapharma, Italfarmaco, Janssen, Lundbeck, Naurex, Pfizer, Polifarma, Sanofi, Servier, and Taliaz. Chiara Fabbri was a speaker for Janssen. The other authors declare no potential conflicts of interest.

© 2022 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals LLC.

Figures

FIGURE 1
FIGURE 1
Regression coefficient (B) and 95% confidence intervals for the top genes in terms of association with cognitive measures (see also Table 1)

References

    1. Chang, C. C. , Chow, C. C. , Tellier, L. C. , Vattikuti, S. , Purcell, S. M. , & Lee, J. J. (2015). Second‐generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience, 4, 7. 10.1186/s13742-015-0047-8
    1. Fabbri, C. , & Serretti, A. (2017). Role of 108 schizophrenia‐associated loci in modulating psychopathological dimensions in schizophrenia and bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 174(7), 757–764. 10.1002/ajmg.b.32577
    1. Fett, A.‐K. J. , Viechtbauer, W. , Dominguez, M.‐G. , Penn, D. L. , van Os, J. , & Krabbendam, L. (2011). The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: A meta‐analysis. Neuroscience and Biobehavioral Reviews, 35(3), 573–588. 10.1016/j.neubiorev.2010.07.001
    1. Gold, J. M. , Goldberg, R. W. , McNary, S. W. , Dixon, L. B. , & Lehman, A. F. (2002). Cognitive correlates of job tenure among patients with severe mental illness. The American Journal of Psychiatry, 159(8), 1395–1402. 10.1176/appi.ajp.159.8.1395
    1. Greenwood, T. A. , Lazzeroni, L. C. , Maihofer, A. X. , Swerdlow, N. R. , Calkins, M. E. , Freedman, R. , Green, M. F. , Light, G. A. , Nievergelt, C. M. , Nuechterlein, K. H. , Radant, A. D. , Siever, L. J. , Silverman, J. M. , Stone, W. S. , Sugar, C. A. , Tsuang, D. W. , Tsuang, M. T. , Turetsky, B. I. , Gur, R. C. , … Braff, D. L. (2019). Genome‐wide Association of Endophenotypes for schizophrenia from the consortium on the genetics of schizophrenia (COGS) study. JAMA Psychiatry, 76(12), 1274–1284. 10.1001/jamapsychiatry.2019.2850
    1. GTEx Consortium . (2015). Human genomics. The genotype‐tissue expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science, 348(6235), 648–660. 10.1126/science.1262110
    1. Gusev, A. , Ko, A. , Shi, H. , Bhatia, G. , Chung, W. , Penninx, B. W. J. H. , Jansen, R. , de Geus, E. J. C. , Boomsma, D. I. , Wright, F. A. , Sullivan, P. F. , Nikkola, E. , Alvarez, M. , Civelek, M. , Lusis, A. J. , Lehtimäki, T. , Raitoharju, E. , Kähönen, M. , Seppälä, I. , … Pasaniuc, B. (2016). Integrative approaches for large‐scale transcriptome‐wide association studies. Nature Genetics, 48(3), 245–252. 10.1038/ng.3506
    1. Harvey, P. D. , & Strassnig, M. (2012). Predicting the severity of everyday functional disability in people with schizophrenia: Cognitive deficits, functional capacity, symptoms, and health status. World Psychiatry: Official Journal of the World Psychiatric Association (WPA), 11(2), 73–79. 10.1016/j.wpsyc.2012.05.004
    1. Harvey, P. D. , Sun, N. , Bigdeli, T. B. , Fanous, A. H. , Aslan, M. , Malhotra, A. K. , Lu, Q. , Hu, Y. , Li, B. , Chen, Q. , Mane, S. , Miller, P. , Rajeevan, N. , Sayward, F. , Cheung, K. , Li, Y. , Greenwood, T. A. , Gur, R. E. , Braff, D. L. , … Siever, L. J. (2020). Genome‐wide association study of cognitive performance in U.S. veterans with schizophrenia or bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 183(3), 181–194. 10.1002/ajmg.b.32775
    1. Keefe, R. S. E. , Bilder, R. M. , Harvey, P. D. , Davis, S. M. , Palmer, B. W. , Gold, J. M. , Meltzer, H. Y. , Green, M. F. , Miller, D. D. , Canive, J. M. , Adler, L. W. , Manschreck, T. C. , Swartz, M. , Rosenheck, R. , Perkins, D. O. , Walker, T. M. , Stroup, T. S. , McEvoy, J. P. , & Lieberman, J. A. (2006). Baseline neurocognitive deficits in the CATIE schizophrenia trial. Neuropsychopharmacology, 31(9), 2033–2046. 10.1038/sj.npp.1301072
    1. Keefe, R. S. E. , Mohs, R. C. , Bilder, R. M. , Harvey, P. D. , Green, M. F. , Meltzer, H. Y. , Gold, J. M. , & Sano, M. (2003). Neurocognitive assessment in the clinical antipsychotic trials of intervention effectiveness (CATIE) project schizophrenia trial: Development, methodology, and rationale. Schizophrenia Bulletin, 29(1), 45–55. 10.1093/oxfordjournals.schbul.a006990
    1. Leggio, G. M. , Torrisi, S. A. , Mastrogiacomo, R. , Mauro, D. , Chisari, M. , Devroye, C. , Scheggia, D. , Nigro, M. , Geraci, F. , Pintori, N. , Giurdanella, G. , Costa, L. , Bucolo, C. , Ferretti, V. , Sortino, M. A. , Ciranna, L. , De Luca, M. A. , Mereu, M. , Managò, F. , … Papaleo, F. (2021). The epistatic interaction between the dopamine D3 receptor and dysbindin‐1 modulates higher‐order cognitive functions in mice and humans. Molecular Psychiatry, 26(4), 1272–1285. 10.1038/s41380-019-0511-4
    1. Luo, N. , Sui, J. , Chen, J. , Zhang, F. , Tian, L. , Lin, D. , Song, M. , Calhoun, V. D. , Cui, Y. , Vergara, V. M. , Zheng, F. , Liu, J. , Yang, Z. , Zuo, N. , Fan, L. , Xu, K. , Liu, S. , Li, J. , Xu, Y. , … Jiang, T. (2018). A schizophrenia‐related genetic‐brain‐cognition pathway revealed in a large Chinese population. eBioMedicine, 37, 471–482. 10.1016/j.ebiom.2018.10.009
    1. Mealer, R. G. , Williams, S. E. , Daly, M. J. , Scolnick, E. M. , Cummings, R. D. , & Smoller, J. W. (2020). Glycobiology and schizophrenia: A biological hypothesis emerging from genomic research. Molecular Psychiatry, 25(12), 3129–3139. 10.1038/s41380-020-0753-1
    1. Meijsen, J. J. , Campbell, A. , Hayward, C. , Porteous, D. J. , Deary, I. J. , Marioni, R. E. , & Nicodemus, K. K. (2018). Phenotypic and genetic analysis of cognitive performance in major depressive disorder in the generation Scotland: Scottish family health study. Translational Psychiatry, 8(1), 63. 10.1038/s41398-018-0111-0
    1. Monderer‐Rothkoff, G. , Tal, N. , Risman, M. , Shani, O. , Nissim‐Rafinia, M. , Malki‐Feldman, L. , Medvedeva, V. , Groszer, M. , Meshorer, E. , & Shifman, S. (2021). AUTS2 isoforms control neuronal differentiation. Molecular Psychiatry, 26(2), 666–681. 10.1038/s41380-019-0409-1
    1. Ohi, K. , Ursini, G. , Li, M. , Shin, J. H. , Ye, T. , Chen, Q. , Tao, R. , Kleinman, J. E. , Hyde, T. M. , Hashimoto, R. , & Weinberger, D. R. (2015). DEGS2 polymorphism associated with cognition in schizophrenia is associated with gene expression in brain. Translational Psychiatry, 5(4), e550. 10.1038/tp.2015.45
    1. PsychENCODE Consortium , Akbarian, S. , Liu, C. , Knowles, J. A. , Vaccarino, F. M. , Farnham, P. J. , Crawford, G. E. , Jaffe, A. E. , Pinto, D. , Dracheva, S. , Geschwind, D. H. , Mill, J. , Nairn, A. C. , Abyzov, A. , Pochareddy, S. , Prabhakar, S. , Weissman, S. , Sullivan, P. F. , State, M. W. , … Sestan, N. (2015). The PsychENCODE project. Nature Neuroscience, 18(12), 1707–1712. 10.1038/nn.4156
    1. Recio‐Barbero, M. , Segarra, R. , Zabala, A. , González‐Fraile, E. , González‐Pinto, A. , & Ballesteros, J. (2021). Cognitive enhancers in schizophrenia: A systematic review and meta‐analysis of Alpha‐7 nicotinic acetylcholine receptor agonists for cognitive deficits and negative symptoms. Frontiers in Psychiatry, 12, 631589. 10.3389/fpsyt.2021.631589
    1. Richards, A. L. , Pardiñas, A. F. , Frizzati, A. , Tansey, K. E. , Lynham, A. J. , Holmans, P. , Legge, S. E. , Savage, J. E. , Agartz, I. , Andreassen, O. A. , Blokland, G. A. M. , Corvin, A. , Cosgrove, D. , Degenhardt, F. , Djurovic, S. , Espeseth, T. , Ferraro, L. , Gayer‐Anderson, C. , Giegling, I. , … Walters, J. T. R. (2019). The relationship between polygenic risk scores and cognition in schizophrenia. Schizophrenia Bulletin, sbz061, 336–344. 10.1093/schbul/sbz061
    1. Ruiz‐Sánchez, E. , Jiménez‐Genchi, J. , Alcántara‐Flores, Y. M. , Castañeda‐González, C. J. , Aviña‐Cervantes, C. L. , Yescas, P. , del Socorro González‐Valadez, M. , Martínez‐Rodríguez, N. , Ríos‐Ortiz, A. , González‐González, M. , López‐Navarro, M. E. , & Rojas, P. (2021). Working memory deficits in schizophrenia are associated with the rs34884856 variant and expression levels of the NR4A2 gene in a sample Mexican population: A case control study. BMC Psychiatry, 21(1), 86. 10.1186/s12888-021-03081-w
    1. Scarlett, D.‐J. G. , Herst, P. M. , & Berridge, M. V. (2005). Multiple proteins with single activities or a single protein with multiple activities: The conundrum of cell surface NADH oxidoreductases. Biochimica et Biophysica Acta, 1708(1), 108–119. 10.1016/j.bbabio.2005.03.006
    1. Smeland, O. B. , & Andreassen, O. A. (2018). How can genetics help understand the relationship between cognitive dysfunction and schizophrenia? Scandinavian Journal of Psychology, 59(1), 26–31. 10.1111/sjop.12407
    1. Stroup, T. S. , McEvoy, J. P. , Swartz, M. S. , Byerly, M. J. , Glick, I. D. , Canive, J. M. , McGee, M. F. , Simpson, G. M. , Stevens, M. C. , & Lieberman, J. A. (2003). The National Institute of Mental Health clinical antipsychotic trials of intervention effectiveness (CATIE) project: Schizophrenia trial design and protocol development. Schizophrenia Bulletin, 29(1), 15–31.
    1. Sullivan, P. F. , Lin, D. , Tzeng, J.‐Y. , van den Oord, E. , Perkins, D. , Stroup, T. S. , Wagner, M. , Lee, S. , Wright, F. A. , Zou, F. , Liu, W. , Downing, A. M. , Lieberman, J. , & Close, S. L. (2008). Genomewide association for schizophrenia in the CATIE study: Results of stage 1. Molecular Psychiatry, 13(6), 570–584. 10.1038/mp.2008.25
    1. The Schizophrenia Working Group of the Psychiatric Genomics Consortium , Ripke, S. , Walters, J. T. , & O'Donovan, M. C. (2020). Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia [preprint]. medRxiv. 10.1101/2020.09.12.20192922
    1. Tripathi, A. , Kar, S. K. , & Shukla, R. (2018). Cognitive deficits in schizophrenia: Understanding the biological correlates and remediation strategies. Clinical Psychopharmacology and Neuroscience, 16(1), 7–17. 10.9758/cpn.2018.16.1.7
    1. Venkateswaran, A. , Friedman, D. B. , Walsh, A. J. , Skala, M. C. , Sasi, S. , Rachakonda, G. , Crooks, P. A. , Freeman, M. L. , & Sekhar, K. R. (2013). The novel antiangiogenic VJ115 inhibits the NADH oxidase ENOX1 and cytoskeleton‐remodeling proteins. Investigational New Drugs, 31(3), 535–544. 10.1007/s10637-012-9884-9
    1. Vos, T. , Lim, S. S. , Abbafati, C. , Abbas, K. M. , Abbasi, M. , Abbasifard, M. , Abbasi‐Kangevari, M. , Abbastabar, H. , Abd‐Allah, F. , Abdelalim, A. , Abdollahi, M. , Abdollahpour, I. , Abolhassani, H. , Aboyans, V. , Abrams, E. M. , Abreu, L. G. , Abrigo, M. R. M. , Abu‐Raddad, L. J. , Abushouk, A. I. , … Murray, C. J. L. (2020). Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease study 2019. The Lancet, 396(10258), 1204–1222. 10.1016/S0140-6736(20)30925-9
    1. Waddington, J. L. , Zhen, X. , & O'Tuathaigh, C. M. P. (2020). Developmental genes and regulatory proteins, domains of cognitive impairment in schizophrenia Spectrum psychosis and implications for antipsychotic drug discovery: The example of Dysbindin‐1 isoforms and beyond. Frontiers in Pharmacology, 10, 1638. 10.3389/fphar.2019.01638
    1. Wang, J.‐L. , Tong, C.‐W. , Chang, W.‐T. , & Huang, A.‐M. (2013). Novel genes FAM134C, C3orf10 and ENOX1 are regulated by NRF‐1 and differentially regulate neurite outgrowth in neuroblastoma cells and hippocampal neurons. Gene, 529(1), 7–15. 10.1016/j.gene.2013.08.006
    1. Zheutlin, A. B. , Viehman, R. W. , Fortgang, R. , Borg, J. , Smith, D. J. , Suvisaari, J. , Therman, S. , Hultman, C. M. , & Cannon, T. D. (2016). Cognitive endophenotypes inform genome‐wide expression profiling in schizophrenia. Neuropsychology, 30(1), 40–52. 10.1037/neu0000244

Source: PubMed

3
購読する