A global map of dominant malaria vectors

Marianne E Sinka, Michael J Bangs, Sylvie Manguin, Yasmin Rubio-Palis, Theeraphap Chareonviriyaphap, Maureen Coetzee, Charles M Mbogo, Janet Hemingway, Anand P Patil, William H Temperley, Peter W Gething, Caroline W Kabaria, Thomas R Burkot, Ralph E Harbach, Simon I Hay, Marianne E Sinka, Michael J Bangs, Sylvie Manguin, Yasmin Rubio-Palis, Theeraphap Chareonviriyaphap, Maureen Coetzee, Charles M Mbogo, Janet Hemingway, Anand P Patil, William H Temperley, Peter W Gething, Caroline W Kabaria, Thomas R Burkot, Ralph E Harbach, Simon I Hay

Abstract

Background: Global maps, in particular those based on vector distributions, have long been used to help visualise the global extent of malaria. Few, however, have been created with the support of a comprehensive and extensive evidence-based approach.

Methods: Here we describe the generation of a global map of the dominant vector species (DVS) of malaria that makes use of predicted distribution maps for individual species or species complexes.

Results: Our global map highlights the spatial variability in the complexity of the vector situation. In Africa, An. gambiae, An. arabiensis and An. funestus are co-dominant across much of the continent, whereas in the Asian-Pacific region there is a highly complex situation with multi-species coexistence and variable species dominance.

Conclusions: The competence of the mapping methodology to accurately portray DVS distributions is discussed. The comprehensive and contemporary database of species-specific spatial occurrence (currently available on request) will be made directly available via the Malaria Atlas Project (MAP) website from early 2012.

Figures

Figure 1
Figure 1
A global map of dominant malaria vector species.
Figure 2
Figure 2
A regional map showing the distribution of nine DVS across the Americas.
Figure 3
Figure 3
A regional map showing the distribution of the three most dominant malaria vectors in Africa.
Figure 4
Figure 4
A regional map showing the distribution of 16 dominant malaria vectors in the Asian-Pacific region.
Figure 5
Figure 5
A map showing a closer view of the complexity and diversity of the distribution of eight DVS in Central America and in the northern regions of South America.
Figure 6
Figure 6
A map showing a closer view of the complexity and diversity of the DVS in Southeast Asia and on the Pacific islands.
Figure 7
Figure 7
A map showing the distribution of 'secondary' DVS across Africa.

References

    1. May JM. Map of the world distribution of malaria vectors. Geograph Review. 1951;41:638–639. doi: 10.2307/210709.
    1. Macdonald G. The epidemiology and control of malaria. London: Oxford University Press; 1957. Local features of malaria; pp. 63–99.
    1. Mouchet J, Carnevale P, Coosemans M, Julvez J, Manguin S, Richard-Lenoble D, Sircoulon J. Biodiversité du paludisme dans le monde. Montrouge, France: John Libbey Eurotext; 2004.
    1. Kiszewski A, Mellinger A, Spielman A, Malaney P, Sachs SE, Sachs J. A global index representing the stability of malaria transmission. Am J Trop Med Hyg. 2004;70:486–498.
    1. Harbach RE. Genus ANOPHELES Meigen, 1818. Mosquito Taxonomic Inventory. Book Genus ANOPHELES Meigen, 1818 Mosquito Taxonomic Inventory City. 2011.
    1. Service MW, Townson H. In: Essential Malariology. Fourth. Gilles HM, Warrell DA, editor. London: Arnold; 2002. The Anopheles vector; pp. 59–84.
    1. Hay SI, Sinka ME, Okara RM, Kabaria CW, Mbithi PM, Tago CC, Benz D, Gething PW, Howes RE, Patil AP, Temperley WH, Bangs MJ, Chareonviriyaphap T, Elyazar IR, Harbach RE, Hemingway J, Manguin S, Mbogo CM, Rubio-Palis Y, Godfray HC. Developing global maps of the dominant Anopheles vectors of human malaria. PLoS Med. 2010;7:e1000209. doi: 10.1371/journal.pmed.1000209.
    1. Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, Gething PW, Elyazar IR, Kabaria CW, Harbach RE, Hay SI. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2011;4:89. doi: 10.1186/1756-3305-4-89.
    1. Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, Gething PW, Kabaria CW, Okara RM, Van Boeckel T, Godfray HCJ, Harbach RE, Hay SI. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2010;3:117. doi: 10.1186/1756-3305-3-117.
    1. Sinka ME, Rubio-Palis Y, Manguin S, Patil AP, Temperley WH, Gething PW, Van Boeckel T, Kabaria CW, Harbach RE, Hay SI. The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2010;3:72. doi: 10.1186/1756-3305-3-72.
    1. Malaria Atlas Project (MAP)
    1. White GB. Malaria. Geographical distribution of arthropod-borne diseases and their principal vectors Geneva: World Health Organization, Division of Vector Biology and Control. 1989. pp. 7–22. WHO/VBC/89967.
    1. Service MW. In: Bruce-Chwatt's Essential Malariology. Third. Gilles HM, Warrell DA, editor. London: Edward Arnold; 1993. The Anopheles vector; pp. 96–123.
    1. Service MW. In: Bruce-Chwatt's Essential Malariology. Third. Gilles HM, Warrell DA, editor. London: Edward Arnold; 1993. Appendix II. Characteristics of some major Anopheles vectors of human malaria; pp. 305–310.
    1. Manguin S, Carnevale P, Mouchet J, Coosemans M, Julvez J, Richard-Lenoble D, Sircoulon J. Biodiversity of malaria in the world. Montrouge, France: John Libbey Eurotext; 2008.
    1. Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J Anim Ecol. 2008;77:802–813. doi: 10.1111/j.1365-2656.2008.01390.x.
    1. ArcMAP (ArcGIS) ESRI.
    1. Reid JA. Anopheline mosquitoes of Malaya and Borneo. Malaysia; 1968.
    1. Harrison BA. Medical entomology studies - XIII. The Myzomyia Series of Anopheles (Cellia) in Thailand, with emphasis on intra-interspecific variations (Diptera: Culicidae) Contrib Am Entomol Inst (Ann Arbor) 1980;17:1–195.
    1. Rao TR. The anophelines of India. 2. New Delhi: Malaria Research Centre, Indian Council of Medical Research; 1984. xvi + 518.
    1. Trung HD, Bortel WV, Sochantha T, Keokenchanh K, Briet OJ, Coosemans M. Behavioural heterogeneity of Anopheles species in ecologically different localities in Southeast Asia: a challenge for vector control. Trop Med Int Health. 2005;10:251–262. doi: 10.1111/j.1365-3156.2004.01378.x.
    1. Parida SK, Hazra RK, Marai N, Tripathy HK, Mahapatra N. Host feeding patterns of malaria vectors of Orissa, India. J Am Mosq Control Assoc. 2006;22:629–634. doi: 10.2987/8756-971X(2006)22[629:HFPOMV];2.
    1. Rubio-Palis Y, Zimmerman RH. Ecoregional classification of malaria vectors in the neotropics. J Med Entomol. 1997;34:499–510.
    1. Wikipedia.
    1. Koekemoer LL, Kamau L, Hunt RH, Coetzee M. Cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg. 2002;66:804–811.
    1. Cohuet A, Simard F, Toto JC, Kengne P, Coetzee M, Fontenille D. Species identification within the Anopheles funestus group of malaria vectors in Cameroon and evidence for a new species. Am J Trop Med Hyg. 2003;69:200–205.
    1. Di Luca M, Boccolini D, Marinuccil M, Romi R. Intrapopulation polymorphism in Anopheles messeae (An. maculipennis complex) inferred by molecular analysis. J Med Entomol. 2004;41:582–586. doi: 10.1603/0022-2585-41.4.582.
    1. Linton YM, Lee AS, Curtis C. Discovery of a third member of the Maculipennis Group in SW England. Euro Mosq Bull. 2005;19:5–9.
    1. Hutchinson GE. Population Studies - Animal Ecology and Demography - Concluding Remarks. Cold Spring Harbor Symposia on Quantitative Biology. 1957;22:415–427. doi: 10.1101/SQB.1957.022.01.039.
    1. Kulhanek SA, Leung B, Ricciardi A. Using ecological niche models to predict the abundance and impact of invasive species: application to the common carp. Ecol Appl. 2011;21:203–213. doi: 10.1890/09-1639.1.
    1. VanDerWal J, Shoo LP, Johnson CN, Williams SE. Abundance and the Environmental Niche: Environmental Suitability Estimated from Niche Models Predicts the Upper Limit of Local Abundance. Am Nat. 2009;174:282–291. doi: 10.1086/600087.
    1. Nyanjom SR, Chen H, Gebre-Michael T, Bekele E, Shililu J, Githure J, Beier JC, Yan G. Population genetic structure of Anopheles arabiensis mosquitoes in Ethiopia and Eritrea. J Hered. 2003;94:457–463. doi: 10.1093/jhered/esg100.
    1. Weeto MM, Koekemoer LL, Kamau L, Hunt RH, Coetzee M. Evaluation of a species-specific PCR assay for the Anopheles funestus group from eleven African countries and Madagascar. Trans R Soc Trop Med Hyg. 2004;98:142–147. doi: 10.1016/S0035-9203(03)00019-1.
    1. Reid JA. The Anopheles barbirostris group (Diptera: Culicidae) Bull Entomol Res. 1962;53:1–57. doi: 10.1017/S0007485300047945.
    1. Reid JA, Harrison BA, Atmosoedjono S. Variation and vector status in Anopheles barbirostris. Mosq Syst. 1979;11:235–251.
    1. VECNet.

Source: PubMed

3
購読する