Effects of Video-Game Based Therapy on Balance, Postural Control, Functionality, and Quality of Life of Patients with Subacute Stroke: A Randomized Controlled Trial

María José Cano-Mañas, Susana Collado-Vázquez, Javier Rodríguez Hernández, Antonio Jesús Muñoz Villena, Roberto Cano-de-la-Cuerda, María José Cano-Mañas, Susana Collado-Vázquez, Javier Rodríguez Hernández, Antonio Jesús Muñoz Villena, Roberto Cano-de-la-Cuerda

Abstract

Purpose: To determine the effects of a structured protocol using commercial video games on balance, postural control, functionality, quality of life, and level of motivation in patients with subacute stroke.

Methods: A randomized controlled trial was conducted. A control group (n = 25) received eight weeks of conventional rehabilitation consisting of five weekly sessions based on an approach for task-oriented motor training. The experimental group (n = 25) received eight weeks of conventional rehabilitation consisting of five weekly sessions based on an approach for task-oriented motor training. The experimental group (.

Results: In the between-group comparison, statistically significant differences were observed in the Modified Rankin scores (p < 0.01), the Barthel Index (p < 0.01), the Barthel Index (p < 0.01), the Barthel Index (p < 0.01), the Barthel Index (p < 0.01), the Barthel Index (p < 0.01), the Barthel Index (p < 0.01), the Barthel Index (p < 0.01), the Barthel Index (p < 0.01), the Barthel Index (p < 0.01), the Barthel Index (p < 0.01), the Barthel Index (.

Conclusion: A protocol of semi-immersive video-game based therapy, combined with conventional therapy, may be effective for improving balance, functionality, quality of life, and motivation in patients with subacute stroke. This trial is registered with NCT03528395.

Conflict of interest statement

The authors declare no conflicts of interest.

Copyright © 2020 María José Cano-Mañas et al.

Figures

Figure 1
Figure 1
Video-game based protocol with Xbox® and Kinect®.
Figure 2
Figure 2
Flow diagram.

References

    1. Adams H. P., Jr., del Zoppo G., Alberts M. J. Guidelines for the early management of adults with ischemic stroke. A guideline from the American Heart Association/American Stroke Association Stroke Council. Stroke. 2007;38:1655–1711.
    1. Feigin V. L., Krishnamurthi R. V., Parmar P., et al. Update on the global burden of ischemic and hemorrhagic stroke in 1990–2013: the GBD 2013 study. Neuroepidemiology. 2015;45(3):161–176. doi: 10.1159/000441085.
    1. Global Health Estimates 2016. Disease Burden by Cause, Age, Sex, by Country and by Region, 2000–2016. Geneva, Switzerland: World Health Organization; 2018.
    1. Laver K. E., George S., Thomas S., Deutsch J. E., Crotty M. Virtual reality for stroke rehabilitation. Cochrane of Systematic Reviews. 2011;9 doi: 10.1002/14651858.CD008349.
    1. Brea A., Laclaustra M., Martorell E., Pedragosa Àe. Epidemiología de la enfermedad vascular cerebral en España. Clínica e Investigación en Arteriosclerosis. 2013;25(5):211–217. doi: 10.1016/j.arteri.2013.10.006.
    1. Oliveira C. B., Medeiros Í. R. T., Greters M. G., et al. Abnormal sensory integration affects balance control in hemiparetic patients within the first year after stroke. Clinics. 2011;66(12):2043–2048. doi: 10.1590/s1807-59322011001200008.
    1. Tyson S. F., Hanley M., Chillala J., Selley A., Tallis R. C. Balance disability after stroke. Physical Therapy. 2006;86(1):30–38. doi: 10.1093/ptj/86.1.30.
    1. Tessem S., Hagstrøm N., Fallang B. Weight distribution in standing and sitting positions, and weight transfer during reaching tasks, in seated stroke subjects and healthy subjects. Physiotherapy Research International. 2007;12(2):82–94. doi: 10.1002/pri.362.
    1. Barcala L., Grecco L. A. C., Colella F., Lucareli P. R. G., Salgado A. S. I., Oliveira C. S. Visual biofeedback balance training using wii fit after stroke: a randomized controlled trial. Journal of Physical Therapy Science. 2013;25(8):1027–1032. doi: 10.1589/jpts.25.1027.
    1. Rodríguez- Blázquez C., Forjaz M. J., Martínez-Martín P. Calidad de vida relacionada con la salud en Neurología. In: Cano de-la-Cuerda R., Collado-Vázquez S., editors. Neurorrehabilitación. Métodos específicos de valoración y tratamiento. Madrid, Spain: Médica Panamericana; 2012. pp. 41–50.
    1. Schmid A., Van-Puymbroeck M.., Altenburger P. A., Miller K. K., Combs S. A. Balance is associated with quality of life in chronic stroke. Topics in Stroke Rehabilitation. 2013;20(4):340–346. doi: 10.1310/tsr2004-340.
    1. Ortiz Huerta J. H., Pérez de Heredia Torres M., Guijo Blanco V., Santamaría Vázquez M. Eficacia de la intervención con videoconsolas en pacientes con ictus: revisión sistemática. Revista de Neurología. 2018;66(2):49–58. doi: 10.33588/rn.6602.2017405.
    1. Peñasco Martín B., de los Reyes Guzmán A., Gil Agudo A., Bernal Sahún A., Pérez Aguilar B., de la Peña González A. I. Aplicación de la realidad virtual en los aspectos motores de la neurorrehabilitación. Revista de Neurología. 2010;51(8):481–488. doi: 10.33588/rn.5108.2009665.
    1. Ortiz Gutiérrez R. M., Bermejo Franco A., Cano-de-la-Cuerda R. Introducción a las nuevas tecnologías en neurorrehabilitación. In: Cano-de-la-Cuerda R., editor. Nuevas Tecnologías en Neurorrehabilitación. Aplicaciones Diagnósticas y Terapéuticas. Madrid, Spain: Medica Panamericana; 2018. pp. 91–107.
    1. Bower K. J., Louie J., Landesrocha Y., Seedy P., Gorelik A., Bernhardt J. Clinical feasibility of interactive motion-controlled games for stroke rehabilitation. Journal of NeuroEngineering and Rehabilitation. 2015;12(1):1–12. doi: 10.1186/s12984-015-0057-x.
    1. Pool S. M., Hoyle J. M., Malone L. A., et al. Navigation of a virtual exercise environment with microsoft Kinect by people post-stroke or with cerebral palsy. Assistive Technology. 2016;4:225–232. doi: 10.1080/10400435.2016.1167789.
    1. Liao W., McCombe Waller S., Whitall J. Kinect-based individualized upper extremity rehabilitation is effective and feasible for individuals with stroke using a transition from clinic to home protocol. Cogent Medicine. 2018;5:1–12. doi: 10.1080/2331205x.2018.1428038.
    1. Aşkın A., Atar E., Koçyiğit H., Tosun A. Effects of Kinect-based virtual reality game training on upper extremity motor recovery in chronic stroke. Somatosensory & Motor Research. 2018;35(1):25–32. doi: 10.1080/08990220.2018.1444599.
    1. Bravo-Esteban E., López Larraz E. Potenciación del reaprendizaje motor y la recuperación funcional en pacientes con ictus: estrategias no invasivas de modulación del sistema nervioso central. Revista de Neurología. 2016;62(6):273–281. doi: 10.33588/rn.6206.2015309.
    1. West G. L., Konishi K., Diarra M., Benady-Chorney J., Drisdelle B. L. Impact of video games on plasticity of the hippocampus. Molecular Psychiatry. 2018;23(7):1566–1574. doi: 10.1038/mp.2017.155.
    1. Cano-de la Cuerda R., Ortiz Gutiérrez R. M. Nuevas tecnologías y control motor: robótica, realidad virtual y videojuegos. In: Cano de-la-Cuerda R., Martínez Piédrola R. M., Miangolarra Page J. C., editors. Control y Aprendizaje Motor. Fundamentos, Desarrollo y Reeducación del Movimiento Humano. Madrid, Spain: Medica Panamericana; 2017. pp. 203–209.
    1. Holden M. K. Virtual environments for motor rehabilitation: review. CyberPsychology & Behavior. 2005;8(3):187–211. doi: 10.1089/cpb.2005.8.187.
    1. Keshner E. A., Fung J. The quest to apply VR technology to rehabilitation: tribulations and treasures. Journal of Vestibular Research. 2017;27(1):1–5. doi: 10.3233/ves-170610.
    1. Cano Porras D., Siemonsma P., Inzelberg R., Zeilig G., Plotnik M. Advantages of virtual reality in the rehabilitation of balance and gait. Neurology. 2018;90(22):1017–1025. doi: 10.1212/wnl.0000000000005603.
    1. Corbetta D., Imeri F., Gatti R. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: a systematic review. Journal of Physiotherapy. 2015;61(3):117–124. doi: 10.1016/j.jphys.2015.05.017.
    1. Lohse K. R., Hilderman C. G. E., Cheung K. L., Tatla S., Van der Loos H. F. M. Virtual reality therapy for adults post-stroke: a systematic review and meta analysis exploring virtual environments and commercial games in therapy. PLoS One. 2014;9(3) doi: 10.1371/journal.pone.0093318.e93318
    1. Howard M. C. A meta-analysis and systematic literature review of virtual reality rehabilitation programs. Computers in Human Behavior. 2017;70:317–327. doi: 10.1016/j.chb.2017.01.013.
    1. Murie-Fernández M., Irimia P., Martínez-Vila E., John Meyer M., Teasell R. Neuro-rehabilitation after stroke. Neurología (English Edition) 2010;25(3):189–196. doi: 10.1016/s2173-5808(10)70036-5.
    1. Boutron I., Altman D. G., Moher D., Schulz K. F., Ravaud P. CONSORT statement for randomized trials of nonpharmacologic treatments: a 2017 update and a CONSORT extension for nonpharmacologic trial abstracts. Annals of Internal Medicine. 2017;167(1):40–47. doi: 10.7326/m17-0046.
    1. Montaner J., Alvarez-Sabin J. NIH: stroke scale and its adaptation to Spanish. Neurologia. 2006;21:192–202.
    1. Lozano Gallego M., Hernández Ferrandiz M., Turró Garriga O., Pericot Nierga I., Lopez-Pousa S., Vilalta Franch J., et al. Validacion del montreal cognitive assessment (MoCA): test de cribado para el deterioro cognitivo leve. Datos preliminares. Alzheimer Real Invest Demenc. 2009;43:4–11.
    1. Pendlebury S. T., Cuthbertson F. C., Welch S. J. V., Mehta Z., Rothwell P. M. Underestimation of cognitive impairment by mini-mental state examination versus the montreal cognitive assessment in patients with transient ischemic attack and stroke. Stroke. 2010;41(6):1290–1293. doi: 10.1161/strokeaha.110.579888.
    1. Hong K.-S., Saver J. L. Quantifying the value of stroke disability outcomes: WHO global burden of disease project disability weights for each level of the modified Rankin scale. Stroke. 2009;40(12):3828–3833. doi: 10.1161/strokeaha.109.561365.
    1. Viosca E., Martínez J. L., Almagro P. L., Gracia A., González C. Proposal and validation of a new functional ambulation classification scale for clinical use. Archives of Physical Medicine and Rehabilitation. 2005;86(6):1234–1238. doi: 10.1016/j.apmr.2004.11.016.
    1. Kaya T., Goksel Karatepe A., Gunaydin R., Koc A., Altundal Ercan U. Inter-rater reliability of the modified Ashworth scale and modified modified Ashworth scale in assessing poststroke elbow flexor spasticity. International Journal of Rehabilitation Research. 2011;34(1):59–64. doi: 10.1097/mrr.0b013e32833d6cdf.
    1. Baztan J. J., Pérez-del Molino J., Alarcón T., San Cristobal E., Izquierdo G., Manzarbeitia I. Índice de barthel: instrumento válido para la valoración funcional de pacientes con enfermedad cerebrovascular. Revista Española de Geriatría y Gerontología. 1993;28:32–40.
    1. Rodríguez G. C., Helena L. L. Validez y confiabilidad de la escala de tinetti para población colombiana. Revista Colombiana de Reumatología. 2012;19:218–233.
    1. Duncan P. W., Weiner D. K., Chandler J., Studenski S. Functional reach: a new clinical measure of balance. Journal of Gerontology. 1990;45:192–197. doi: 10.1093/geronj/45.6.m192.
    1. Mathias S., Nayak U. S., Isaacs B. Balance in elderly patients: the “get-up and go” test. Archives of Physical Medicine and Rehabilitation. 1986;67(6):387–389.
    1. Cano-de-la-Cuerda R., Collado-Vázquez S. Análisis instrumental de la marcha. In: Cano-de-la-Cuerda R., Collado-Vázquez S., editors. Neurorrehabilitación. Métodos Específicos de Valoración y Tratamiento. Madrid, Spain: Medica Panamericana; 2012. pp. 161–170.
    1. Badia X., Roset M., Montserrat S., Herdman M., Segura A. The Spanish version of EuroQol: a description and its applications. European quality of life scale. Medicina Clínica (Barc) 1999;112(1):79–85.
    1. Langhorne P., Bernhardt J., Kwakkel G. Stroke rehabilitation. The Lancet. 2011;377(9778):1693–1702. doi: 10.1016/s0140-6736(11)60325-5.
    1. Carr J. H., Shepherd R. B. Neurological Rehabilitation: Optimizing Motor Performance. Oxford, UK: Butterworth-Heinemann; 1998.
    1. Pollock A., Baer G., Campbell P., et al. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database of Systematic Reviews. 2014;4 doi: 10.1002/14651858.CD001920.pub3.CD001920
    1. Cárdenas Castro J. M., Arancibia Martini H. Potencia estadística y cálculo del tamaño del efecto en G∗power: complementos a las pruebas de significación estadística y su aplicación en psicología. Salud & Sociedad. 2016;5(2):210–244. doi: 10.22199/s07187475.2014.0002.00006.
    1. Ho T.-H., Yang F.-C., Lin R.-C., et al. Impact of virtual reality-based rehabilitation on functional outcomes in patients with acute stroke: a retrospective case-matched study. Journal of Neurology. 2019;266(3):589–597. doi: 10.1007/s00415-018-09171-2.
    1. Givon Schaham N., Zeilig H. G., Weingarden D., Rand D. Game analysis and clinical use of the Xbox-Kinect for stroke rehabilitation. International Journal of Rehabilitation Research. 2018;41(4):323–330. doi: 10.1097/mrr.0000000000000302.
    1. Gibbons E. M., Thomson A. N., de Noronha M., Joseph S. Are virtual reality technologies effective in improving lower limb outcomes for patients following stroke—a systematic review with meta-analysis. Topics in Stroke Rehabilitation. 2016;23(6):440–457. doi: 10.1080/10749357.2016.1183349.
    1. Dos Santos L. R. A., Carregosa A. A., Masruha M. R., et al. The use of Nintendo Wii in the rehabilitation of poststroke patients: a systematic review. Journal of Stroke and Cerebrovascular Diseases. 2015;24(10):2298–2305. doi: 10.1016/j.jstrokecerebrovasdis.2015.06.010.
    1. Cheok G., Tan D., Low A., Hewitt J. Is Nintendo Wii an effective intervention for individuals with stroke? a systematic review and meta-analysis. Journal of the American Medical Directors Association. 2015;16(11):923–932. doi: 10.1016/j.jamda.2015.06.010.
    1. Lee H.-C., Huang C.-L., Ho S.-H., Sung W.-H. The effect of a virtual reality game intervention on balance for patients with stroke: a randomized controlled trial. Games for Health Journal. 2017;6(5):303–311. doi: 10.1089/g4h.2016.0109.
    1. Thomson K., Pollock A., Bugge C., Brady M. Commercial gaming devices for stroke upper limb rehabilitation: a systematic review. International Journal of Stroke. 2014;9(4):479–488. doi: 10.1111/ijs.12263.
    1. Mohammadi R., Semnani A. V., Mirmohammadkhani M., Grampurohit N., Otr L. Effects of virtual reality compared to conventional therapy on balance poststroke: a systematic review and meta-analysis. Journal of Stroke and Cerebrovascular Diseases. 2019;28(7):1787–1798. doi: 10.1016/j.jstrokecerebrovasdis.2019.03.054.
    1. Sheehy L., Taillon-Hobson A., Sveistrup H., et al. Does the addition of virtual reality training to a standard program of inpatient rehabilitation improve sitting balance ability and function after stroke? protocol for a single-blind randomized controlled trial. BMC Neurology. 2016;16(1):p. 1. doi: 10.1186/s12883-016-0563-x.
    1. McEwen D., Taillon-Hobson A., Bilodeau M., Sveistrup H., Finestone H. Virtual reality exercise improves mobility after stroke an inpatient randomized controlled trial. Stroke. 2014;45(6):1853–1855. doi: 10.1161/strokeaha.114.005362.
    1. Chen L., Lo W. L. A., Mao Y. R., et al. Effect of virtual reality on postural and balance control in patients with stroke: a systematic literature review. BioMed Research International. 2016;2016:8. doi: 10.1155/2016/7309272.7309272
    1. Luque-Moreno C., Ferragut-Garcías A., Rodríguez-Blanco C., et al. A decade of progress using virtual reality for poststroke lower extremity rehabilitation: systematic review of the intervention methods. BioMed Research International. 2015;2015:7. doi: 10.1155/2015/342529.342529
    1. Cai W., Mueller C., Li Y.-J., Shen W.-D., Stewart R. Post stroke depression and risk of stroke recurrence and mortality: a systematic review and meta-analysis. Ageing Research Reviews. 2019;50:102–109. doi: 10.1016/j.arr.2019.01.013.
    1. Chen M.-H., Huang L.-L., Lee C.-F., et al. A controlled pilot trial of two commercial video games for rehabilitation of arm function after stroke. Clinical Rehabilitation. 2015;29(7):674–682. doi: 10.1177/0269215514554115.
    1. Colomer C., Llorens R., Noé E., Alcañiz M. Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke. Journal of NeuroEngineering and Rehabilitation. 2016;13(1):p. 45. doi: 10.1186/s12984-016-0153-6.

Source: PubMed

3
購読する