The Effect of a Virtual Reality-Based Intervention Program on Cognition in Older Adults with Mild Cognitive Impairment: A Randomized Control Trial

Ngeemasara Thapa, Hye Jin Park, Ja-Gyeong Yang, Haeun Son, Minwoo Jang, Jihyeon Lee, Seung Wan Kang, Kyung Won Park, Hyuntae Park, Ngeemasara Thapa, Hye Jin Park, Ja-Gyeong Yang, Haeun Son, Minwoo Jang, Jihyeon Lee, Seung Wan Kang, Kyung Won Park, Hyuntae Park

Abstract

This study aimed to investigate the association between a virtual reality (VR) intervention program and cognitive, brain and physical functions in high-risk older adults. In a randomized controlled trial, we enrolled 68 individuals with mild cognitive impairment (MCI). The MCI diagnosis was based on medical evaluations through a clinical interview conducted by a dementia specialist. Cognitive assessments were performed by neuropsychologists according to standardized methods, including the Mini-Mental State Examination (MMSE) and frontal cognitive function: trail making test (TMT) A & B, and symbol digit substitute test (SDST). Resting state electroencephalogram (EEG) was measured in eyes open and eyes closed conditions for 5 minutes each, with a 19-channel wireless EEG device. The VR intervention program (3 times/week, 100 min each session) comprised four types of VR game-based content to improve the attention, memory and processing speed. Analysis of the subjects for group-time interactions revealed that the intervention group exhibited a significantly improved executive function and brain function at the resting state. Additionally, gait speed and mobility were also significantly improved between and after the follow-up. The VR-based training program improved cognitive and physical function in patients with MCI relative to controls. Encouraging patients to perform VR and game-based training may be beneficial to prevent cognitive decline.

Keywords: dementia; electroencephalogram; mild cognitive impairment; virtual reality.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flowchart of study design.
Figure 2
Figure 2
(A) This figure illustrates the design for the virtual reality (VR) training design and game contents. The total training duration was 100 minutes (three 20 min VR training sessions, and three 10 min eye massage and stretching sessions) held three times a week for 8 weeks. (B) The contents of the VR training games: (a) juice making, (b) crow shooting, (c) find the fireworks number, (d) memory object at the house, (e) and (f) example of subject.
Figure 3
Figure 3
This figure shows a significant decrease in Theta power in the parietal (p = 0.013) and temporal areas (p = 0.036) at follow up (G2) compared to baseline (G1) in the VR intervention group.
Figure 4
Figure 4
This figure shows a significant decrease in the Theta/Beta power ratio (p = 0.027) at follow up (G2) compared to baseline (G1) in the VR intervention group.

References

    1. National Collaborating Centre for Mental Health (UK) Dementia: A NICE-SCIE Guideline on Supporting People With Dementia and Their Carers in Health and Social Care. British Psychological Society; Lester, UK: 2007. Dementia.
    1. World Health Organization Dementia. [(accessed on 26 February 2020)]; Available online: .
    1. Livingston G., Sommerlad A., Orgeta V., Costafreda S.G., Huntley J., Ames D., Ballard C., Banerjee S., Burns A., Cohen-Mansfield J. Dementia prevention, intervention, and care. Lancet. 2017;390:2673–2734. doi: 10.1016/S0140-6736(17)31363-6.
    1. D’Cunha N.M., Georgousopoulou E.N., Dadigamuwage L., Kellett J., Panagiotakos D.B., Thomas J., McKune A.J., Mellor D.D., Naumovski N. Effect of long-term nutraceutical and dietary supplement use on cognition in the elderly: A 10-year systematic review of randomised controlled trials. Br. J. Nutr. 2018;119:280–298. doi: 10.1017/S0007114517003452.
    1. Albert M.S., DeKosky S.T., Dickson D., Dubois B., Feldman H.H., Fox N.C., Gamst A., Holtzman D.M., Jagust W.J., Petersen R.C. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:270–279. doi: 10.1016/j.jalz.2011.03.008.
    1. Pal K., Mukadam N., Petersen I., Cooper C. Mild cognitive impairment and progression to dementia in people with diabetes, prediabetes and metabolic syndrome: A systematic review and meta-analysis. Soc. Psychiatry Psychiatr. Epidemiol. 2018;53:1149–1160. doi: 10.1007/s00127-018-1581-3.
    1. Gauthier S., Reisberg B., Zaudig M., Petersen R.C., Ritchie K., Broich K., Belleville S., Brodaty H., Bennett D., Chertkow H. Mild cognitive impairment. Lancet. 2006;367:1262–1270. doi: 10.1016/S0140-6736(06)68542-5.
    1. Daviglus M.L., Bell C.C., Berrettini W., Bowen P.E., Connolly E.S., Cox N.J., Dunbar-Jacob J.M., Granieri E.C., Hunt G., McGarry K. National Institutes of Health State-of-the-Science Conference statement: Preventing Alzheimer disease and cognitive decline. Ann. Intern. Med. 2010;153:176–181. doi: 10.7326/0003-4819-153-3-201008030-00260.
    1. Park H., Park J.H., Na H.R., Hiroyuki S., Kim G.M., Jung M.K., Kim W.K., Park K.W. Combined Intervention of Physical Activity, Aerobic Exercise, and Cognitive Exercise Intervention to Prevent Cognitive Decline for Patients with Mild Cognitive Impairment: A Randomized Controlled Clinical Study. J. Clin. Med. 2019;8:940. doi: 10.3390/jcm8070940.
    1. Zucchella C., Sinforiani E., Tamburin S., Federico A., Mantovani E., Bernini S., Casale R., Bartolo M. The multidisciplinary approach to Alzheimer’s disease and dementia. A narrative review of non-pharmacological treatment. Front. Neurol. 2018;9:1058. doi: 10.3389/fneur.2018.01058.
    1. Htut T.Z.C., Hiengkaew V., Jalayondeja C., Vongsirinavarat M. Effects of physical, virtual reality-based, and brain exercise on physical, cognition, and preference in older persons: A randomized controlled trial. Eur. Rev. Aging Phys. Act. 2018;15:1–12. doi: 10.1186/s11556-018-0199-5.
    1. Optale G., Urgesi C., Busato V., Marin S., Piron L., Priftis K., Gamberini L., Capodieci S., Bordin A. Controlling memory impairment in elderly adults using virtual reality memory training: A randomized controlled pilot study. Neurorehabilit. Neural Repair. 2010;24:348–357. doi: 10.1177/1545968309353328.
    1. Baus O., Bouchard S. Moving from Virtual Reality Exposure-Based Therapy to Augmented Reality Exposure-Based Therapy: A Review. Front. Hum. Neurosci. 2014:8. doi: 10.3389/fnhum.2014.00112.
    1. Moreno A., Wall K.J., Thangavelu K., Craven L., Ward E., Dissanayaka N.N. A systematic review of the use of virtual reality and its effects on cognition in individuals with neurocognitive disorders. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2019;5:834–850. doi: 10.1016/j.trci.2019.09.016.
    1. Manera V., Chapoulie E., Bourgeois J., Guerchouche R., David R., Ondrej J., Drettakis G., Robert P. A feasibility study with image-based rendered virtual reality in patients with mild cognitive impairment and dementia. PLoS ONE. 2016;11:e0151487.
    1. Gatica-Rojas V., Méndez-Rebolledo G. Virtual reality interface devices in the reorganization of neural networks in the brain of patients with neurological diseases. Neural Regen. Res. 2014;9:888. doi: 10.4103/1673-5374.131612.
    1. Garcia-Betances R.I., Jiménez-Mixco V., Arredondo M.T., Cabrera-Umpiérrez M.F. Using virtual reality for cognitive training of the elderly. Am. J. Alzheimer’s Dis. Other Demen. 2015;30:49–54. doi: 10.1177/1533317514545866.
    1. Rizzo A.S., Kim G.J. A SWOT analysis of the field of virtual reality rehabilitation and therapy. Presence Teleoperators Virtual Environ. 2005;14:119–146. doi: 10.1162/1054746053967094.
    1. Kim O., Pang Y., Kim J.-H. The effectiveness of virtual reality for people with mild cognitive impairment or dementia: A meta-analysis. BMC Psychiatry. 2019;19:219. doi: 10.1186/s12888-019-2180-x.
    1. Zając-Lamparska L., Wiłkość-Dębczyńska M., Wojciechowski A., Podhorecka M., Polak-Szabela A., Warchoł Ł., Kędziora-Kornatowska K., Araszkiewicz A., Izdebski P. Effects of virtual reality-based cognitive training in older adults living without and with mild dementia: A pretest–posttest design pilot study. BMC Res. Notes. 2019;12:776. doi: 10.1186/s13104-019-4810-2.
    1. Weniger G., Ruhleder M., Lange C., Wolf S., Irle E. Egocentric and allocentric memory as assessed by virtual reality in individuals with amnestic mild cognitive impairment. Neuropsychologia. 2011;49:518–527. doi: 10.1016/j.neuropsychologia.2010.12.031.
    1. Sayma M., Tuijt R., Cooper C., Walters K. Are We There Yet? Immersive Virtual Reality to Improve Cognitive Function in Dementia and Mild Cognitive Impairment. Gerontologist. 2019 doi: 10.1093/geront/gnz132.
    1. García-Betances R.I., Arredondo Waldmeyer M.T., Fico G., Cabrera-Umpiérrez M.F. A succinct overview of virtual reality technology use in Alzheimer’s disease. Front. Aging Neurosci. 2015;7:80.
    1. Van der Hiele K., Vein A., Reijntjes R., Westendorp R., Bollen E., Van Buchem M., Van Dijk J., Middelkoop H. EEG correlates in the spectrum of cognitive decline. Clin. Neurophysiol. 2007;118:1931–1939. doi: 10.1016/j.clinph.2007.05.070.
    1. Chandler M.J., Lacritz L., Hynan L., Barnard H., Allen G., Deschner M., Weiner M., Cullum C. A total score for the CERAD neuropsychological battery. Neurology. 2005;65:102–106. doi: 10.1212/01.wnl.0000167607.63000.38.
    1. Kim T.H., Jhoo J.H., Park J.H., Kim J.L., Ryu S.H., Moon S.W., Choo I.H., Lee D.W., Yoon J.C., Do Y.J. Korean version of mini mental status examination for dementia screening and its’ short form. Psychiatry Investig. 2010;7:102. doi: 10.4306/pi.2010.7.2.102.
    1. Makizako H., Shimada H., Park H., Doi T., Yoshida D., Uemura K., Tsutsumimoto K., Suzuki T. Evaluation of multidimensional neurocognitive function using a tablet personal computer: Test–retest reliability and validity in community-dwelling older adults. Geriatr. Gerontol. Int. 2013;13:860–866. doi: 10.1111/ggi.12014.
    1. Klem G.H., Lüders H.O., Jasper H., Elger C. The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. 1999;52:3–6.
    1. Prichep L., John E., Ferris S., Rausch L., Fang Z., Cancro R., Torossian C., Reisberg B. Prediction of longitudinal cognitive decline in normal elderly with subjective complaints using electrophysiological imaging. Neurobiol. Aging. 2006;27:471–481. doi: 10.1016/j.neurobiolaging.2005.07.021.
    1. Sánchez-Moguel S.M., Alatorre-Cruz G.C., Silva-Pereyra J., González-Salinas S., Sanchez-Lopez J., Otero-Ojeda G.A., Fernández T. Two Different Populations within the Healthy Elderly: Lack of Conflict Detection in Those at Risk of Cognitive Decline. Front. Hum. Neurosci. 2018;11:658. doi: 10.3389/fnhum.2017.00658.
    1. Van Son D., De Blasio F.M., Fogarty J.S., Angelidis A., Barry R.J., Putman P. Frontal EEG theta/beta ratio during mind wandering episodes. Biol. Psychol. 2019;140:19–27. doi: 10.1016/j.biopsycho.2018.11.003.
    1. Coyle H., Traynor V., Solowij N. Computerized and virtual reality cognitive training for individuals at high risk of cognitive decline: Systematic review of the literature. Am. J. Geriatr. Psychiatry. 2015;23:335–359. doi: 10.1016/j.jagp.2014.04.009.
    1. Liao Y.-Y., Chen I.-H., Lin Y.-J., Chen Y., Hsu W.-C. Effects of Virtual Reality-Based Physical and Cognitive Training on Executive Function and Dual-Task Gait Performance in Older Adults with Mild Cognitive Impairment: A Randomized Control Trial. Front. Aging Neurosci. 2019;11:162. doi: 10.3389/fnagi.2019.00162.
    1. Mahurin R.K., Velligan D.I., Hazleton B., Mark Davis J., Eckert S., Miller A.L. Trail making test errors and executive function in schizophrenia and depression. Clin. Neuropsychol. 2006;20:271–288. doi: 10.1080/13854040590947498.
    1. Sánchez-Cubillo I., Perianez J., Adrover-Roig D., Rodriguez-Sanchez J., Rios-Lago M., Tirapu J., Barcelo F. Construct validity of the Trail Making Test: Role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J. Int. Neuropsychol. Soc. 2009;15:438–450. doi: 10.1017/S1355617709090626.
    1. Budson A.E., Solomon P.R. Memory Loss, Alzheimer’s disease, and dementia e-book: A practical guide for clinicians. Elsevier Health Sci. 2015:5–38.
    1. Llinàs-Reglà J., Vilalta-Franch J., López-Pousa S., Calvó-Perxas L., Torrents Rodas D., Garre-Olmo J. The trail making test: Association with other neuropsychological measures and normative values for adults aged 55 years and older from a Spanish-Speaking Population-based sample. Assessment. 2017;24:183–196. doi: 10.1177/1073191115602552.
    1. Neri S.G., Cardoso J.R., Cruz L., Lima R.M., De Oliveira R.J., Iversen M.D., Carregaro R.L. Do virtual reality games improve mobility skills and balance measurements in community-dwelling older adults? Systematic review and meta-analysis. Clin. Rehabil. 2017;31:1292–1304. doi: 10.1177/0269215517694677.
    1. Rodrigues-Baroni J.M., Nascimento L.R., Ada L., Teixeira-Salmela L.F. Walking training associated with virtual reality-based training increases walking speed of individuals with chronic stroke: Systematic review with meta-analysis. Braz. J. Phys. Ther. 2014;18:502–512. doi: 10.1590/bjpt-rbf.2014.0062.
    1. Van Schaik P., Martyr A., Blackman T., Robinson J. Involving persons with dementia in the evaluation of outdoor environments. Cyberpsychol. Behav. 2008;11:415–424. doi: 10.1089/cpb.2007.0105.
    1. Fritz N.E., McCarthy C.J., Adamo D.E. Handgrip strength as a means of monitoring progression of cognitive decline—A scoping review. Ageing Res. Rev. 2017;35:112–123. doi: 10.1016/j.arr.2017.01.004.
    1. Sternäng O., Reynolds C.A., Finkel D., Ernsth-Bravell M., Pedersen N.L., Dahl Aslan A.K. Grip strength and cognitive abilities: Associations in old age. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2016;71:841–848.
    1. Vancampfort D., Stubbs B., Firth J., Smith L., Swinnen N., Koyanagi A. Associations between handgrip strength and mild cognitive impairment in middle-aged and older adults in six low-and middle-income countries. Int. J. Geriatr. Psychiatry. 2019;34:609–616. doi: 10.1002/gps.5061.
    1. Best J.R., Liu-Ambrose T., Boudreau R.M., Ayonayon H.N., Satterfield S., Simonsick E.M., Studenski S., Yaffe K., Newman A.B., Rosano C. An evaluation of the longitudinal, bidirectional associations between gait speed and cognition in older women and men. J. Gerontol. A Biol. Sci. Med. Sci. 2016;71:1616–1623. doi: 10.1093/gerona/glw066.
    1. Buracchio T., Dodge H.H., Howieson D., Wasserman D., Kaye J. The trajectory of gait speed preceding mild cognitive impairment. Arch. Neurol. 2010;67:980–986. doi: 10.1001/archneurol.2010.159.
    1. Rasmussen L.J.H., Caspi A., Ambler A., Broadbent J.M., Cohen H.J., D’Arbeloff T., Elliott M., Hancox R.J., Harrington H., Hogan S. Association of neurocognitive and physical function with gait speed in midlife. JAMA Netw. Open. 2019;2:e1913123. doi: 10.1001/jamanetworkopen.2019.13123.
    1. Sánchez A., Millán-Calenti J.C., Lorenzo-López L., Maseda A. Multisensory stimulation for people with dementia: A review of the literature. Am. J. Alzheimer’s Dis. Other Demen. 2013;28:7–14.
    1. Rose F.D., Attree E.A., Brooks B.M., Andrews T.K. Learning and memory in virtual environments: A role in neurorehabilitation? Questions (and occasional answers) from the University of East London. Presence Teleoperators Virtual Environ. 2001;10:345–358. doi: 10.1162/1054746011470208.
    1. Clemente M., Rey B., Rodriguez-Pujadas A., Breton-Lopez J., Barros-Loscertales A., Baños R.M., Botella C., Alcañiz M., Avila C. A functional magnetic resonance imaging assessment of small animals’ phobia using virtual reality as a stimulus. JMIR Serious Games. 2014;2:e6. doi: 10.2196/games.2836.
    1. Hikichi H., Kondo K., Takeda T., Kawachi I. Social interaction and cognitive decline: Results of a 7-year community intervention. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2017;3:23–32. doi: 10.1016/j.trci.2016.11.003.
    1. Zunzunegui M.-V., Alvarado B.E., Del Ser T., Otero A. Social networks, social integration, and social engagement determine cognitive decline in community-dwelling Spanish older adults. J. Gerontol. B Psychol. Sci. Soc. Sci. 2003;58:S93–S100. doi: 10.1093/geronb/58.2.S93.

Source: PubMed

3
購読する