One-Year Echocardiographic, Functional, and Quality of Life Outcomes After Ultrasound-Facilitated Catheter-Based Fibrinolysis for Pulmonary Embolism

Gregory Piazza, Keith M Sterling, Victor F Tapson, Kenneth Ouriel, Andrew S P Sharp, Ping-Yu Liu, Samuel Z Goldhaber, Gregory Piazza, Keith M Sterling, Victor F Tapson, Kenneth Ouriel, Andrew S P Sharp, Ping-Yu Liu, Samuel Z Goldhaber

Abstract

Background: Accelerated tPA (tissue-type plasminogen activator) dosing regimens for ultrasound-facilitated, catheter-directed fibrinolysis improve short-term computed tomographic-measured right ventricular (RV)-to-left ventricular diameter ratio in massive and submassive pulmonary embolism. The impact on RV remodeling, functional status, and quality of life over the long-term remains unclear.

Methods: To study 1-year changes in RV remodeling, functional status, and quality of life, we assessed patients with acute submassive pulmonary embolism randomly assigned to 1 of 4 tPA dosing regimens for ultrasound-facilitated, catheter-directed fibrinolysis in the OPTALYSE-PE trial (Optimum Duration and Dose of r-tPA With the Acoustic Pulse Thrombolysis Procedure for Intermediate-Risk Pulmonary Embolism; 8 mg/2 hours, 8 mg/4 hours, 12 mg/6 hours, and 24 mg/6 hours). Echocardiographic assessment included RV-to-left ventricular diameter ratio within 4 hours of treatment end, and at 48 hours, 30 days, 90 days, and 1 year. Functional status was assessed by 6-minute walk test at 30 days, 90 days, and 1 year and PROMIS-PF-6b scores at 30 days, 90 days, 180 days, 270 days, and 1 year. Quality of life was evaluated by PEmb-QOL scores at 30 days, 90 days, 180 days, 270 days, and 1 year.

Results: Mean RV-to-left ventricular diameter ratio decreased from baseline to 4 hours and further at 48 hours and 30 days, with reductions maintained at 90 days and 1 year in all groups. Mean 6-minute walk distance, PROMIS-PF-6b, and PEmb-QOL scores improved over the course of 1 year in all groups.

Conclusions: Accelerated lower-dose tPA regimens for ultrasound-facilitated, catheter-directed fibrinolysis resulted in sustained recovery of RV-to-left ventricular diameter ratio and tricuspid annular plane systolic excursion and improvements in functional status and quality of life over 1 year. Registration: URL: https://www.ClinicalTrials.gov. Unique Identifier: NCT02396758.

Keywords: echocardiography; fibrinolysis; pulmonary artery; pulmonary embolism; quality of life.

Figures

Figure 1.
Figure 1.
Flow diagram for the echocardiographic analysis. tPA indicates tissue-type plasminogen activator.
Figure 2.
Figure 2.
Right ventricular (RV)-to-left ventricular (LV) diameter ratio at baseline and 4 h, 48 h, 30 d, 90 d, and 1 y after the ultrasound-facilitated, catheter-based fibrinolytic procedure.
Figure 3.
Figure 3.
Tricuspid annular plane systolic excursion (TAPSE) at baseline and 4 h, 48 h, 30 d, 90 d, and 1 y after the ultrasound-facilitated, catheter-based fibrinolytic procedure.
Figure 4.
Figure 4.
Estimated right ventricular (RV) systolic pressure at baseline and 4 h, 48 h, 30 d, 90 d, and 1 y after the ultrasound-facilitated, catheter-based fibrinolytic procedure.
Figure 5.
Figure 5.
Functional performance and quality of life assessments. Six-minute walk test at 30 d, 90 d, and 1 y after the ultrasound-facilitated, catheter-based fibrinolytic procedure (A). *PROMIS-PF-6b scores at 30 d, 90 d, 180 d, 270 d, and 1 y after the ultrasound-facilitated, catheter-based fibrinolytic procedure (B). PEmb-QOL scores at 30 d, 90 d, 180 d, 270 d, and 1 y after the ultrasound-facilitated, catheter-based fibrinolytic procedure (C). *Note: one outlier of 1400 m for Arm 3 at 1 y.
Figure 6.
Figure 6.
Proportion of patients reporting Borg Scale scores for dyspnea and fatigue of 0 at 30, 90 d, and 1 y after the ultrasound-facilitated, catheter-based fibrinolytic procedure. 6MWT indicates six-minute walk test.

References

    1. Kucher N, Boekstegers P, Müller OJ, Kupatt C, Beyer-Westendorf J, Heitzer T, Tebbe U, Horstkotte J, Müller R, Blessing E, et al. Randomized, controlled trial of ultrasound-assisted catheter-directed thrombolysis for acute intermediate-risk pulmonary embolism. Circulation. 2014;129:479–486. doi: 10.1161/CIRCULATIONAHA.113.005544.
    1. Piazza G, Hohlfelder B, Jaff MR, Ouriel K, Engelhardt TC, Sterling KM, Jones NJ, Gurley JC, Bhatheja R, Kennedy RJ, et al. SEATTLE II Investigators. A prospective, single-arm, multicenter trial of ultrasound-facilitated, catheter-directed, low-dose fibrinolysis for acute massive and submassive pulmonary embolism: the SEATTLE II study. JACC Cardiovasc Interv. 2015;8:1382–1392. doi: 10.1016/j.jcin.2015.04.020.
    1. Tapson VF, Sterling K, Jones N, Elder M, Tripathy U, Brower J, Maholic RL, Ross CB, Natarajan K, Fong P, et al. A randomized trial of the optimum duration of acoustic pulse thrombolysis procedure in acute intermediate-risk pulmonary embolism: the OPTALYSE PE trial. JACC Cardiovasc Interv. 2018;11:1401–1410. doi: 10.1016/j.jcin.2018.04.008.
    1. Tu T, Toma C, Tapson VF, Adams C, Jaber WA, Silver M, Khandhar S, Amin R, Weinberg M, Engelhardt T, et al. FLARE Investigators. A prospective, single-arm, multicenter trial of catheter-directed mechanical thrombectomy for intermediate-risk acute pulmonary embolism: the FLARE study. JACC Cardiovasc Interv. 2019;12:859–869. doi: 10.1016/j.jcin.2018.12.022.
    1. Giri J, Sista AK, Weinberg I, Kearon C, Kumbhani DJ, Desai ND, Piazza G, Gladwin MT, Chatterjee S, Kobayashi T, et al. Interventional therapies for acute pulmonary embolism: current status and principles for the development of novel evidence: a scientific statement from the American Heart Association. Circulation. 2019;140:e774–e801. doi: 10.1161/CIR.0000000000000707.
    1. Kearon C, Akl EA, Ornelas J, Blaivas A, Jimenez D, Bounameaux H, Huisman M, King CS, Morris TA, Sood N, et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest. 2016;149:315–352. doi: 10.1016/j.chest.2015.11.026.
    1. Konstantinides SV, Meyer G, Becattini C, Bueno H, Geersing GJ, Harjola VP, Huisman MV, Humbert M, Jennings CS, Jiménez D, et al. ESC Scientific Document Group. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur Heart J. 2020;41:543–603. doi: 10.1093/eurheartj/ehz405.
    1. Kahn SR, Akaberi A, Granton JT, Anderson DR, Wells PS, Rodger MA, Solymoss S, Kovacs MJ, Rudski L, Shimony A, et al. Quality of life, dyspnea, and functional exercise capacity following a first episode of pulmonary embolism: results of the ELOPE cohort study. Am J Med. 2017;130:990.e9–990.e21. doi: 10.1016/j.amjmed.2017.03.033.
    1. Konstantinides SV, Barco S, Rosenkranz S, Lankeit M, Held M, Gerhardt F, Bruch L, Ewert R, Faehling M, Freise J, et al. Late outcomes after acute pulmonary embolism: rationale and design of FOCUS, a prospective observational multicenter cohort study. J Thromb Thrombolysis. 2016;42:600–609. doi: 10.1007/s11239-016-1415-7.
    1. Kahn SR, Hirsch AM, Akaberi A, Hernandez P, Anderson DR, Wells PS, Rodger MA, Solymoss S, Kovacs MJ, Rudski L, et al. Functional and exercise limitations after a first episode of pulmonary embolism: results of the ELOPE prospective cohort study. Chest. 2017;151:1058–1068. doi: 10.1016/j.chest.2016.11.030.
    1. Ma KA, Kahn SR, Akaberi A, Dennie C, Rush C, Granton JT, Anderson D, Wells PS, Rodger MA, Solymoss S, et al. ELOPE Study group. Serial imaging after pulmonary embolism and correlation with functional limitation at 12 months: Results of the ELOPE Study. Res Pract Thromb Haemost. 2018;2:670–677. doi: 10.1002/rth2.12123.
    1. Jaff MR, McMurtry MS, Archer SL, Cushman M, Goldenberg N, Goldhaber SZ, Jenkins JS, Kline JA, Michaels AD, Thistlethwaite P, et al. American Heart Association Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation; American Heart Association Council on Peripheral Vascular Disease; American Heart Association Council on Arteriosclerosis, Thrombosis and Vascular Biology. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association. Circulation. 2011;123:1788–1830. doi: 10.1161/CIR.0b013e318214914f.
    1. Tavoly M, Wik HS, Sirnes PA, Jelsness-Jørgensen LP, Ghanima JP, Klok FA, Sandset PM, Ghanima W. The impact of post-pulmonary embolism syndrome and its possible determinants. Thromb Res. 2018;171:84–91. doi: 10.1016/j.thromres.2018.09.048.
    1. Stevinson BG, Hernandez-Nino J, Rose G, Kline JA. Echocardiographic and functional cardiopulmonary problems 6 months after first-time pulmonary embolism in previously healthy patients. Eur Heart J. 2007;28:2517–2524. doi: 10.1093/eurheartj/ehm295.
    1. Chow V, Ng AC, Seccombe L, Chung T, Thomas L, Celermajer DS, Peters M, Kritharides L. Impaired 6-min walk test, heart rate recovery and cardiac function post pulmonary embolism in long-term survivors. Respir Med. 2014;108:1556–1565. doi: 10.1016/j.rmed.2014.08.002.
    1. Klok FA, Cohn DM, Middeldorp S, Scharloo M, Büller HR, van Kralingen KW, Kaptein AA, Huisman MV. Quality of life after pulmonary embolism: validation of the PEmb-QoL Questionnaire. J Thromb Haemost. 2010;8:523–532. doi: 10.1111/j.1538-7836.2009.03726.x.
    1. Akaberi A, Klok FA, Cohn DM, Hirsch A, Granton J, Kahn SR. Determining the minimal clinically important difference for the PEmbQoL questionnaire, a measure of pulmonary embolism-specific quality of life. J Thromb Haemost. 2018;16:2454–2461. doi: 10.1111/jth.14302.
    1. Chatterjee S, Chakraborty A, Weinberg I, Kadakia M, Wilensky RL, Sardar P, Kumbhani DJ, Mukherjee D, Jaff MR, Giri J. Thrombolysis for pulmonary embolism and risk of all-cause mortality, major bleeding, and intracranial hemorrhage: a meta-analysis. JAMA. 2014;311:2414–2421. doi: 10.1001/jama.2014.5990.
    1. Marti C, John G, Konstantinides S, Combescure C, Sanchez O, Lankeit M, Meyer G, Perrier A. Systemic thrombolytic therapy for acute pulmonary embolism: a systematic review and meta-analysis. Eur Heart J. 2015;36:605–614. doi: 10.1093/eurheartj/ehu218.
    1. Meyer G, Vicaut E, Danays T, Agnelli G, Becattini C, Beyer-Westendorf J, Bluhmki E, Bouvaist H, Brenner B, Couturaud F, et al. PEITHO Investigators. Fibrinolysis for patients with intermediate-risk pulmonary embolism. N Engl J Med. 2014;370:1402–1411. doi: 10.1056/NEJMoa1302097.
    1. Fiumara K, Kucher N, Fanikos J, Goldhaber SZ. Predictors of major hemorrhage following fibrinolysis for acute pulmonary embolism. Am J Cardiol. 2006;97:127–129. doi: 10.1016/j.amjcard.2005.07.117.
    1. Piazza G. Submassive pulmonary embolism. JAMA. 2013;309:171–180. doi: 10.1001/jama.2012.164493.
    1. Konstantinides SV, Vicaut E, Danays T, Becattini C, Bertoletti L, Beyer-Westendorf J, Bouvaist H, Couturaud F, Dellas C, Duerschmied D, et al. Impact of thrombolytic therapy on the long-term outcome of intermediate-risk pulmonary embolism. J Am Coll Cardiol. 2017;69:1536–1544. doi: 10.1016/j.jacc.2016.12.039.
    1. Avgerinos ED, Abou Ali AN, Liang NL, Rivera-Lebron B, Toma C, Maholic R, Makaroun MS, Chaer RA. Catheter-directed interventions compared with systemic thrombolysis achieve improved ventricular function recovery at a potentially lower complication rate for acute pulmonary embolism. J Vasc Surg Venous Lymphat Disord. 2018;6:425–432. doi: 10.1016/j.jvsv.2017.12.058.
    1. Kaymaz C, Akbal OY, Hakgor A, Tokgoz HC, Karagoz A, Tanboga IH, Tanyeri S, Keskin B, Turkday S, Demir D, et al. A five-year, single-centre experience on ultrasound-assisted, catheter-directed thrombolysis in patients with pulmonary embolism at high risk and intermediate to high risk. EuroIntervention. 2018;14:1136–1143. doi: 10.4244/EIJ-D-18-00371.
    1. Klein AJ, Shishehbor MH. Ultrasound-assisted catheter directed therapy (CDT) for pulmonary embolism versus standard CDT: sounds of a cry for data! Vasc Med. 2019;24:248–250. doi: 10.1177/1358863X19838346.
    1. Kuo WT, Banerjee A, Kim PS, DeMarco FJ, Jr, Levy JR, Facchini FR, Unver K, Bertini MJ, Sista AK, Hall MJ, et al. Pulmonary embolism response to fragmentation, embolectomy, and catheter thrombolysis (PERFECT): initial results from a prospective multicenter registry. Chest. 2015;148:667–673. doi: 10.1378/chest.15-0119.
    1. Rao G, Xu H, Wang JJ, Galmer A, Giri J, Jaff MR, Kolluri R, Lau JF, Selim S, Weinberg I, et al. Ultrasound-assisted versus conventional catheter-directed thrombolysis for acute pulmonary embolism: a multicenter comparison of patient-centered outcomes. Vasc Med. 2019;24:241–247. doi: 10.1177/1358863X19838334.
    1. Rothschild DP, Goldstein JA, Ciacci J, Bowers TR. Ultrasound-accelerated thrombolysis (USAT) versus standard catheter-directed thrombolysis (CDT) for treatment of pulmonary embolism: a retrospective analysis. Vasc Med. 2019;24:234–240. doi: 10.1177/1358863X19838350.
    1. Sadiq I, Goldhaber SZ, Liu PY, Piazza G Submassive and Massive Pulmonary Embolism Treatment with Ultrasound AcceleraTed ThromboLysis ThErapy (SEATTLE II) Investigators. Risk factors for major bleeding in the SEATTLE II trial. Vasc Med. 2017;22:44–50. doi: 10.1177/1358863X16676355.
    1. Knox MF, Langholz DE, Berjaoui WK, Eberhart L. Preservation of cardiopulmonary function in patients treated with ultrasound-accelerated thrombolysis in the setting of submassive pulmonary embolism. J Vasc Interv Radiol. 2019;30:734–741. doi: 10.1016/j.jvir.2018.08.027.
    1. Barco S, Russo M, Vicaut E, Becattini C, Bertoletti L, Beyer-Westendorf J, Bouvaist H, Couturaud F, Danays T, Dellas C, et al. Incomplete echocardiographic recovery at 6 months predicts long-term sequelae after intermediate-risk pulmonary embolism. A post-hoc analysis of the Pulmonary Embolism Thrombolysis (PEITHO) trial. Clin Res Cardiol. 2019;108:772–778. doi: 10.1007/s00392-018-1405-1.
    1. Albaghdadi MS, Dudzinski DM, Giordano N, Kabrhel C, Ghoshhajra B, Jaff MR, Weinberg I, Baggish A. Cardiopulmonary exercise testing in patients following massive and submassive pulmonary embolism. J Am Heart Assoc. 2018;7:e006841. doi: 10.1161/JAHA.117.006841.
    1. Sista AK, Miller LE, Kahn SR, Kline JA. Persistent right ventricular dysfunction, functional capacity limitation, exercise intolerance, and quality of life impairment following pulmonary embolism: systematic review with meta-analysis. Vasc Med. 2017;22:37–43. doi: 10.1177/1358863X16670250.
    1. Kaymaz C, Akbal OY, Tanboga IH, Hakgor A, Yilmaz F, Ozturk S, Poci N, Turkday S, Ozdemir N, Konstantinides S. Ultrasound-assisted catheter-directed thrombolysis in high-risk and intermediate-high-risk pulmonary embolism: a meta-analysis. Curr Vasc Pharmacol. 2018;16:179–189. doi: 10.2174/1570161115666170404122535.
    1. Rahaghi FN, San José Estépar R, Goldhaber SZ, Minhas JK, Nardelli P, Vegas Sanchez-Ferrero G, De La Bruere I, Hassan SM, Mason S, Ash SY, et al. Quantification and significance of pulmonary vascular volume in predicting response to ultrasound-facilitated, catheter-directed fibrinolysis in acute pulmonary embolism (SEATTLE-3D). Circ Cardiovasc Imaging. 2019;12:e009903. doi: 10.1161/CIRCIMAGING.119.009903.
    1. Konstam MA, Kiernan MS, Bernstein D, Bozkurt B, Jacob M, Kapur NK, Kociol RD, Lewis EF, Mehra MR, Pagani FD, et al. American Heart Association Council on Clinical Cardiology; Council on Cardiovascular Disease in the Young; and Council on Cardiovascular Surgery and Anesthesia. Evaluation and management of right-sided heart failure: a scientific statement from the American Heart Association. Circulation. 2018;137:e578–e622. doi: 10.1161/CIR.0000000000000560.
    1. Lee K, Kwon O, Lee EJ, Sin MJ, Lee JS, Lee S, Kang DH, Song JK, Song JM. Prognostic value of echocardiographic parameters for right ventricular function in patients with acute non-massive pulmonary embolism. Heart Vessels. 2019;34:1187–1195. doi: 10.1007/s00380-019-01340-1.
    1. Bax JJ, Di Carli M, Narula J, Delgado V. Multimodality imaging in ischaemic heart failure. Lancet. 2019;393:1056–1070. doi: 10.1016/S0140-6736(18)33207-0.
    1. Lahm T, Douglas IS, Archer SL, Bogaard HJ, Chesler NC, Haddad F, Hemnes AR, Kawut SM, Kline JA, Kolb TM, et al. American Thoracic Society Assembly on Pulmonary Circulation. Assessment of right ventricular function in the research setting: knowledge gaps and pathways forward. an official american thoracic society research statement. Am J Respir Crit Care Med. 2018;198:e15–e43. doi: 10.1164/rccm.201806-1160ST.
    1. Marra AM, Halank M, Benjamin N, Bossone E, Cittadini A, Eichstaedt CA, Egenlauf B, Harutyunova S, Fischer C, Gall H, et al. Right ventricular size and function under riociguat in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension (the RIVER study). Respir Res. 2018;19:258. doi: 10.1186/s12931-018-0957-y.

Source: PubMed

3
購読する