Kidney failure in Bardet-Biedl syndrome

Jennifer R Meyer, Anthony D Krentz, Richard L Berg, Jesse G Richardson, Jeremy Pomeroy, Scott J Hebbring, Robert M Haws, Jennifer R Meyer, Anthony D Krentz, Richard L Berg, Jesse G Richardson, Jeremy Pomeroy, Scott J Hebbring, Robert M Haws

Abstract

The aim of this study was to explore kidney failure (KF) in Bardet-Biedl syndrome (BBS), focusing on high-risk gene variants, demographics, and morbidity. We employed the Clinical Registry Investigating BBS (CRIBBS) to identify 44 (7.2%) individuals with KF out of 607 subjects. Molecularly confirmed BBS was identified in 37 KF subjects and 364 CRIBBS registrants. KF was concomitant with recessive causal variants in 12 genes, with BBS10 the most predominant causal gene (26.6%), while disease penetrance was highest in SDCCAG8 (100%). Two truncating variants were present in 67.6% of KF cases. KF incidence was increased in genes not belonging to the BBSome or chaperonin-like genes (p < 0.001), including TTC21B, a new candidate BBS gene. Median age of KF was 12.5 years, with the vast majority of KF occurring by 30 years (86.3%). Females were disproportionately affected (77.3%). Diverse uropathies were identified, but were not more common in the KF group (p = 0.672). Kidney failure was evident in 11 of 15 (73.3%) deaths outside infancy. We conclude that KF poses a significant risk for premature morbidity in BBS. Risk factors for KF include female sex, truncating variants, and genes other than BBSome/chaperonin-like genes highlighting the value of comprehensive genetic investigation.

Trial registration: ClinicalTrials.gov NCT03013543 NCT03651765.

Keywords: Bardet-Biedl syndrome; chronic kidney disease; ciliopathies; genetic association studies; urogenital abnormalities.

Conflict of interest statement

RH is a consultant for Rhythm Pharmaceuticals and Axovia Therapeutics, LLC and principal investigator for the Setmelanotide Phase 2 Treatment Trial in Patients with Rare Genetic Obesity (ClinicalTrials.gov NCT03013543) and Long Term Extension Trial of Setmelanotide (Clinical Trials.gov NCT03651765) sponsored by Rhythm Pharmaceuticals. JP receives research funding from Rhythm Pharmaceuticals and Axovia Therapeutics. SH received research funding from Rhythm Pharmaceuticals. All other authors report no conflict of interest.

© 2022 The Authors. Clinical Genetics published by John Wiley & Sons Ltd.

Figures

FIGURE 1
FIGURE 1
(A) Kidney failure (KF) prevalence by age and sex; (B) All‐cause mortality risk in KF population
FIGURE 2
FIGURE 2
Gene frequency in kidney failure (KF) cohort compared with all CRIBBS participants [Colour figure can be viewed at wileyonlinelibrary.com]
FIGURE 3
FIGURE 3
Distribution of CRIBBS participants with molecular diagnosis by (A) gene variant and (B) gene group [Colour figure can be viewed at wileyonlinelibrary.com]
FIGURE 4
FIGURE 4
Kidney failure (KF) incidence by age and protein group

References

    1. O'Dea D, Parfrey PS, Harnett JD, Hefferton D, Cramer BC, Green J. The importance of renal impairment in the natural history of Bardet–Biedl syndrome. Am J Kidney Dis. 1996;27(6):776‐783. doi:10.1016/s0272-6386(96)90513-2
    1. Florea L, Caba L, Gorduza EV. Bardet–Biedl syndrome‐multiple kaleidoscope images: insight into mechanisms of genotype‐phenotype correlations. Genes. 2021;12(9):1353. doi:10.3390/genes12091353
    1. Shamseldin HE, Shaheen R, Ewida N, et al. The morbid genome of ciliopathies: an update. Genet Med. 2020;22(6):1051‐1060. doi:10.1038/s41436-020-0761-1
    1. Lindstrand A, Frangakis S, Carvalho CM, et al. Copy‐number variation contributes to the mutational load of Bardet–Biedl syndrome. Am J Hum Genet. 2016;99(2):318‐336. doi:10.1016/j.ajhg.2015.04.023
    1. Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. N Engl J Med. 2011;364(16):1533‐1543. doi:10.1056/NEJMra1010172
    1. Zaghloul NA, Katsanis N. Mechanistic insights into Bardet–Biedl syndrome, a model ciliopathy. J Clin Invest. 2009;119(3):428‐437. doi:10.1172/JCI37041
    1. Haws R, Brady S, Davis E, et al. Effect of setmelanotide, a melanocortin‐4 receptor agonist, on obesity in Bardet–Biedl syndrome. Diabetes Obes Metab. 2020;22(11):2133‐2140. doi:10.1111/dom.14133
    1. Dumitrescu AV, Drack AV. Gene therapy for blinding pediatric eye disorders. Adv Pediatr Infect Dis. 2015;62(1):185‐210. doi:10.1016/j.yapd.2015.04.012
    1. Bergmann C. Early and severe polycystic kidney disease and related ciliopathies: an emerging field of interest. Nephron. 2019;141(1):50‐60. doi:10.1159/000493532
    1. Putoux A, Attie‐Bitach T, Martinovic J, Gubler MC. Phenotypic variability of Bardet–Biedl syndrome: focusing on the kidney. Pediatr Nephrol. 2012;27(1):7‐15. doi:10.1007/s00467-010-1751-3
    1. Forsythe E, Sparks K, Best S, et al. Risk factors for severe renal disease in Bardet–Biedl syndrome. J Am Soc Nephrol. 2017;28(3):963‐970. doi:10.1681/ASN.2015091029
    1. Harnett JD, Green JS, Cramer BC, et al. The spectrum of renal disease in Laurence‐Moon‐Biedl syndrome. N Engl J Med. 1988;319(10):615‐618. doi:10.1056/NEJM198809083191005
    1. Imhoff O, Marion V, Stoetzel C, et al. Bardet–Biedl syndrome: a study of the renal and cardiovascular phenotypes in a French cohort. Clin J Am Soc Nephrol. 2011;6(1):22‐29. doi:10.2215/CJN.03320410
    1. Zacchia M, Blanco FDV, Torella A, et al. Urine concentrating defect as presenting sign of progressive renal failure in Bardet–Biedl syndrome patients. Clin Kidney J. 2020;14(6):1545‐1551. doi:10.1093/ckj/sfaa182
    1. Marchese E, Ruoppolo M, Perna A, Capasso G, Zacchia M. Exploring key challenges of understanding the pathogenesis of kidney disease in Bardet–Biedl syndrome. Kidney Int Rep. 2020;5(9):1403‐1415. doi:10.1016/j.ekir.2020.06.017
    1. Beales PL, Elcioglu N, Woolf AS, Parker D, Flinter FA. New criteria for improved diagnosis of Bardet–Biedl syndrome: results of a population survey. J Med Genet. 1999;36(6):437‐446.
    1. Haws RM, Joshi A, Shah SA, Alkandari O, Turman MA. Renal transplantation in Bardet–Biedl syndrome. Pediatr Nephrol. 2016;31(11):2153‐2161. doi:10.1007/s00467-016-3415-4
    1. Jin H, Nachury MV. The BBSome. Curr Biol. 2009;19(12):R472‐R473. doi:10.1016/j.cub.2009.04.015
    1. Álvarez‐Satta M, Castro‐Sánchez S, Valverde D. Bardet–Biedl syndrome as a chaperonopathy: dissecting the major role of Chaperonin‐like BBS proteins (BBS6‐BBS10‐BBS12). Front Mol Biosci. 2017;4:55. doi:10.3389/fmolb.2017.00055
    1. Billingsley G, Bin J, Fieggen KJ, et al. Mutations in chaperonin‐like BBS genes are a major contributor to disease development in a multiethnic Bardet–Biedl syndrome patient population. J Med Genet. 2010;47(7):453‐463. doi:10.1136/jmg.2009.073205
    1. Wingfield JL, Lechtreck KF, Lorentzen E. Trafficking of ciliary membrane proteins by the intraflagellar transport/BBSome machinery. Essays Biochem. 2018;62(6):753‐763. doi:10.1042/EBC20180030
    1. Fan Y, Esmail MA, Ansley SJ, et al. Mutations in a member of the Ras superfamily of small GTP‐binding proteins causes Bardet–Biedl syndrome. Nat Genet. 2004;36(9):989‐993. doi:10.1038/ng1414
    1. Marion V, Stutzmann F, Gérard M, et al. Exome sequencing identifies mutations in LZTFL1, a BBSome and smoothened trafficking regulator, in a family with Bardet–Biedl syndrome with situs inversus and insertional polydactyly. J Med Genet. 2012;49(5):317‐321. doi:10.1136/jmedgenet-2012-100737
    1. Heon E, Kim G, Qin S, et al. Mutations in C8ORF37 cause Bardet–Biedl syndrome (BBS21). Hum Mol Genet. 2016;25(11):2283‐2294. doi:10.1093/hmg/ddw096
    1. Davis EE, Zhang Q, Liu Q, et al. TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. Nat Genet. 2011;43(3):189‐196. doi:10.1038/ng.756
    1. Niederlova V, Modrak M, Tsyklauri O, Huranova M, Stepanek O. Meta‐analysis of genotype‐phenotype associations in Bardet–Biedl syndrome uncovers differences among causative genes. Hum Mutat. 2019;40(11):2068‐2087. doi:10.1002/humu.23862
    1. Forsythe E, Beales PL. Bardet–Biedl syndrome. Eur J Hum Genet. 2013;21(1):8‐13. doi:10.1038/ejhg.2012.115
    1. Levey AS, Eckardt KU, Dorman NM, et al. Nomenclature for kidney function and disease: report of a kidney disease: improving global outcomes (KDIGO) consensus conference. Kidney Int. 2020;97(6):1117‐1129. doi:10.1016/j.kint.2020.02.010
    1. Schwartz GJ, Work DF. Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol. 2009;4(11):1832‐1843. doi:10.2215/CJN.01640309
    1. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of diet in renal disease study group. Ann Intern Med. 1999;130(6):461‐470. doi:10.7326/0003-4819-130-6-199903160-00002
    1. Pomeroy J, Krentz AD, Richardson JG, Berg RL, VanWormer JJ, Haws RM. Bardet–Biedl syndrome: weight patterns and genetics in a rare obesity syndrome. Pediatr Obes. 2021;16(2):e12703. doi:10.1111/ijpo.12703
    1. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53:457‐481.
    1. Cox DR, Oakes D. Analysis of Survival Data. Chapman and Hall; 1984.
    1. Mykytyn K, Nishimura DY, Searby CC, et al. Identification of the gene (BBS1) most commonly involved in Bardet–Biedl syndrome, a complex human obesity syndrome. Nat Genet. 2002;31(4):435‐438. doi:10.1038/ng935
    1. Beales PL, Badano JL, Ross AJ, et al. Genetic interaction of BBS1 mutations with alleles at other BBS loci can result in non‐Mendelian Bardet–Biedl syndrome. Am J Hum Genet. 2003;72(5):1187‐1199. doi:10.1086/375178
    1. Stoetzel C, Laurier V, Davis EE, et al. BBS10 encodes a vertebrate‐specific chaperonin‐like protein and is a major BBS locus [published correction appears in Nat genet. 2006 Jun;38(6):727. Da Silva, Eduardo [corrected to Silva, Eduardo D]]. Nat Genet. 2006;38(5):521‐524. doi:10.1038/ng1771
    1. Feuillan PP, Ng D, Han JC, et al. Patients with Bardet–Biedl syndrome have hyperleptinemia suggestive of leptin resistance. J Clin Endocrinol Metab. 2011;96(3):E528‐E535. doi:10.1210/jc.2010-2290
    1. Katsanis N, Ansley SJ, Badano JL, et al. Triallelic inheritance in Bardet–Biedl syndrome, a Mendelian recessive disorder. Science. 2001;293(5538):2256‐2259. doi:10.1126/science.1063525
    1. Chen JH, Geberhiwot T, Barrett TG, Paisey R, Semple RK. Refining genotype‐phenotype correlation in Alström syndrome through study of primary human fibroblasts. Mol Genet Genomic Med. 2017;5(4):390‐404. doi:10.1002/mgg3.296
    1. Smaoui N, Chaabouni M, Sergeev YV, et al. Screening of the eight BBS genes in Tunisian families: no evidence of triallelism. Invest Ophthalmol Vis Sci. 2006;47(8):3487‐3495. doi:10.1167/iovs.05-1334
    1. National Center for Biotechnology Information . ClinVar; [VCV000412296.1], . Accessed December 10, 2021.
    1. Muller J, Stoetzel C, Vincent MC, et al. Identification of 28 novel mutations in the Bardet–Biedl syndrome genes: the burden of private mutations in an extensively heterogeneous disease. Hum Genet. 2010;127(5):583‐593. doi:10.1007/s00439-010-0804-9
    1. National Center for Biotechnology Information . ClinVar; [VCV000988194.1], . Accessed December 10, 2021.
    1. Mary L, Chennen K, Stoetzel C, et al. Bardet–Biedl syndrome: antenatal presentation of forty‐five fetuses with biallelic pathogenic variants in known Bardet–Biedl syndrome genes. Clin Genet. 2019;95(3):384‐397. doi:10.1111/cge.13500
    1. Shen T, Gao JM, Shou T, et al. Identification of a homozygous BBS7 frameshift mutation in two (related) Chinese Miao families with Bardet–Biedl syndrome. J Chin Med Assoc. 2019;82(2):110‐114. doi:10.1097/jcma.0000000000000011
    1. Nishimura DY, Swiderski RE, Searby CC, et al. Comparative genomics and gene expression analysis identifies BBS9, a new Bardet–Biedl syndrome gene. Am J Hum Genet. 2005;77(6):1021‐1033. doi:10.1086/498323
    1. Janssen S, Ramaswami G, Davis EE, et al. Mutation analysis in Bardet–Biedl syndrome by DNA pooling and massively parallel resequencing in 105 individuals. Hum Genet. 2011;129(1):79‐90. doi:10.1007/s00439-010-0902-8
    1. National Center for Biotechnology Information . ClinVar; [VCV001002877.1], . Accessed December 10, 2021.
    1. Halbritter J, Bizet AA, Schmidts M, et al. Defects in the IFT‐B component IFT172 cause Jeune and Mainzer‐Saldino syndromes in humans. Am J Hum Genet. 2013;93(5):915‐925. doi:10.1016/j.ajhg.2013.09.012
    1. Lucas‐Herald AK, Kinning E, Iida A, et al. A case of functional growth hormone deficiency and early growth retardation in a child with IFT172 mutations. J Clin Endocrinol Metab. 2015;100(4):1221‐1224. doi:10.1210/jc.2014-3852
    1. Schaefer E, Zaloszyc A, Lauer J, et al. Mutations in SDCCAG8/NPHP10 cause Bardet–Biedl syndrome and are associated with penetrant renal disease and absent Polydactyly. Mol Syndromol. 2011;1(6):273‐281. doi:10.1159/00033126853
    1. Zhang W, Taylor SP, Ennis HA, et al. Expanding the genetic architecture and phenotypic spectrum in the skeletal ciliopathies. Hum Mutat. 2018;39(1):152‐166. doi:10.1002/humu.23362
    1. Turin TC, Tonelli M, Manns BJ, Ravani P, Ahmed SB, Hemmelgarn BR. Chronic kidney disease and life expectancy. Nephrol Dial Transplant. 2012;27(8):3182‐3186. doi:10.1093/ndt/gfs052
    1. United States Renal Data System . 2020 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases. 2020.
    1. Lanktree MB, Haghighi A, di Bari I, Song X, Pei Y. Insights into autosomal dominant polycystic kidney disease from genetic studies. Clin J Am Soc Nephrol. 2021;16(5):790‐799. doi:10.2215/CJN.02320220
    1. Fleming LR, Doherty DA, Parisi MA, et al. Prospective evaluation of kidney disease in Joubert syndrome. Clin J Am Soc Nephrol. 2017;12(12):1962‐1973. doi:10.2215/CJN.05660517
    1. Billingsley G, Vincent A, Deveault C, Héon E. Mutational analysis of SDCCAG8 in Bardet–Biedl syndrome patients with renal involvement and absent polydactyly. Ophthalmic Genet. 2012;33(3):150‐154. doi:10.3109/13816810.2012.689411
    1. Reiter JF, Leroux MR. Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol. 2017;18(9):533‐547. doi:10.1038/nrm.2017.60
    1. König J, Kranz B, König S, et al. Phenotypic spectrum of children with nephronophthisis and related ciliopathies. Clin J Am Soc Nephrol. 2017;12(12):1974‐1983. doi:10.2215/CJN.01280217
    1. Olson AJ, Krentz AD, Finta KM, Okorie UC, Haws RM. Thoraco‐abdominal abnormalities in Bardet–Biedl syndrome: situs inversus and heterotaxy. J Pediatr. 2019;204:31‐37. doi:10.1016/j.jpeds.2018.08.068
    1. Cassart M, Eurin D, Didier F, Guibaud L, Avni EF. Antenatal renal sonographic anomalies and postnatal follow‐up of renal involvement in Bardet–Biedl syndrome. Ultrasound Obstet Gynecol. 2004;24(1):51‐54. doi:10.1002/uog.1086
    1. Atmış B, Karabay‐Bayazıt A, Melek E, Bişgin A, Anarat A. Renal features of Bardet–Biedl syndrome: a single center experience. Turk J Pediatr. 2019;61(2):186‐192. doi:10.24953/turkjped.2019.02.006
    1. Rodriguez MM. Congenital anomalies of the kidney and the urinary tract (CAKUT). Fetal Pediatr Pathol. 2014;33(5–6):293‐320. doi:10.3109/15513815.2014.959678
    1. Tonni G, Ida V, Alessandro V, Bonasoni MP. Prune‐belly syndrome: case series and review of the literature regarding early prenatal diagnosis, epidemiology, genetic factors, treatment, and prognosis. Fetal Pediatr Pathol. 2013;31(1):13‐24. doi:10.3109/15513815.2012.659411
    1. Richesson R, Vehik K. Patient registries: utility, validity and inference. In: de la Paz MP, Groft S, eds. Rare Diseases Epidemiology. Advances in Experimental Medicine and Biology. Vol 686. Springer; 2010.
    1. Parker S. The pooling of manpower and resources through the establishment of European reference networks and rare disease patient registries is a necessary area of collaboration for rare renal disorders. Nephrol Dial Transplant. 2014;29(Suppl 4):9‐14. doi:10.1093/ndt/gfu094
    1. Pomeroy J, VanWormer JJ, Meilahn JR, Maki T, Murali HR, Haws RM. Sleep and physical activity patterns in adults and children with Bardet–Biedl syndrome. Orphanet J Rare Dis. 2021;16(1):276. doi:10.1186/s13023-021-01911-4

Source: PubMed

3
購読する