Oleocanthal, a phenolic derived from virgin olive oil: a review of the beneficial effects on inflammatory disease

Lisa Parkinson, Russell Keast, Lisa Parkinson, Russell Keast

Abstract

Virgin olive oil (VOO) is credited as being one of many healthful components of the Mediterranean diet. Mediterranean populations experience reduced incidence of chronic inflammatory disease states and VOO is readily consumed as part of an everyday dietary pattern. A phenolic compound contained in VOO, named oleocanthal, shares unique perceptual and anti-inflammatory characteristics with Ibuprofen. Over recent years oleocanthal has become a compound of interest in the search for naturally occurring compounds with pharmacological qualities. Subsequent to its discovery and identification, oleocanthal has been reported to exhibit various modes of action in reducing inflammatory related disease, including joint-degenerative disease, neuro-degenerative disease and specific cancers. Therefore, it is postulated that long term consumption of VOO containing oleocanthal may contribute to the health benefits associated with the Mediterranean dietary pattern. The following paper summarizes the current literature on oleocanthal, in terms of its sensory and pharmacological properties, and also discusses the beneficial, health promoting activities of oleocanthal, in the context of the molecular mechanisms within various models of disease.

Figures

Figure 1
Figure 1
It is possible that receptor levels of TRPA-1 in muscle reflect levels in the oropharyngeal region. Therefore low or high levels of TRPA-1 in the oropharyngeal region may reflect the inflammatory responses in muscle through activation of P38 MAPK.

References

    1. Keys A. Coronary heart disease in seven countries. Circulation. 1970;41:186–195.
    1. WHO . World Health Statistics 2010. World Health Organization; Geneva, Switzerland: 2010.
    1. Michel de Lorgeril M., Salen P., Martin J.-L., Monjaud I., Delaye J., Mamelle N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction. Heart Fail. 1999;11:6.
    1. Singh R.B., Dubnov G., Niaz M.A., Ghosh S., Singh R., Rastogi S.S., Manor O., Pella D., Berry E.M. Effect of an Indo-Mediterranean diet on progression of coronary artery disease in high risk patients (Indo-Mediterranean Diet Heart Study): A randomised single-blind trial. Lancet. 2002;360:1455–1461. doi: 10.1016/S0140-6736(02)11472-3.
    1. Stark A.H., Madar P.Z. Olive oil as a functional food: Epidemiology and nutritional approaches. Nutr. Rev. 2002;60:170–176. doi: 10.1301/002966402320243250.
    1. Grosso G., Pajak A., Mistretta A., Marventano S., Raciti T., Buscemi S., Drago F., Scalfi L., Galvano F. Protective role of the Mediterranean diet on several cardiovascular risk factors: Evidence from Sicily, southern Italy. Nutr. Metab. Cardiovasc. Dis. 2014;24:370–377. doi: 10.1016/j.numecd.2013.09.020.
    1. Estruch R., Ros E., Salas-Salvadó J., Covas M.-I., Corella D., Arós F., Gómez-Gracia E., Ruiz-Gutiérrez V., Fiol M., Lapetra J., et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 2013;368:1279–1290. doi: 10.1056/NEJMoa1200303.
    1. Sexton P., Black P., Metcalf P., Wall C.R., Ley S., Wu L., Sommerville F., Brodie S., Kolbe J. Influence of Mediterranean diet on asthma symptoms, lung function, and systemic inflammation: A randomized controlled trial. J. Asthma. 2013;50:75–81. doi: 10.3109/02770903.2012.740120.
    1. Mitrou P.N., Kipnis V., Thiébaut A.C., Reedy J., Subar A.F., Wirfält E., Flood A., Mouw T., Hollenbeck A.R., Leitzmann M.F. Mediterranean dietary pattern and prediction of all-cause mortality in a US population: Results from the NIH-AARP Diet and Health Study. Arch. Intern. Med. 2007;167:2461–2468. doi: 10.1001/archinte.167.22.2461.
    1. Martínez-González M.A., García-López M., Bes-Rastrollo M., Toledo E., Martínez-Lapiscina E.H., Delgado-Rodriguez M., Vazquez Z., Benito S., Beunza J.J. Mediterranean diet and the incidence of cardiovascular disease: A Spanish cohort. Nutr. Metab. Cardiovasc. Dis. 2011;21:237–244.
    1. Carter S.J., Roberts M.B., Salter J., Eaton C.B. Relationship between Mediterranean diet score and atherothrombotic risk: Findings from the Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994. Atherosclerosis. 2010;210:630–636. doi: 10.1016/j.atherosclerosis.2009.12.035.
    1. Bach-Faig A., Berry E.M., Lairon D., Reguant J., Trichopoulou A., Dernini S., Medina F.X., Battino M., Belahsen R., Miranda G. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011;14:2274–2284. doi: 10.1017/S1368980011002515.
    1. Tripoli E., Giammanco M., Tabacchi G., di Majo D., Giammanco S., la Guardia M. The phenolic compounds of olive oil: Structure, biological activity and beneficial effects on human health. Nutr. Res. Rev. 2005;18:98–112. doi: 10.1079/NRR200495.
    1. Caramia G., Gori A., Valli E., Cerretani L. Virgin olive oil in preventive medicine: From legend to epigenetics. Eur. J. Lipid Sci. Technol. 2012;114:375–388. doi: 10.1002/ejlt.201100164.
    1. Corona G., Spencer J., Dessi M. Extra virgin olive oil phenolics: Absorption, metabolism, and biological activities in the GI tract. Toxicol. Ind. Health. 2009;25:285–293. doi: 10.1177/0748233709102951.
    1. Cicerale S., Conlan X.A., Sinclair A.J., Keast R.S.J. Chemistry and health of olive oil phenolics. Crit. Rev. Food Sci. Nutr. 2009;49:218–236.
    1. Cicerale S., Lucas L., Keast R.S. Biological activities of phenolic compounds present in virgin olive oil. Int. J. Mol. Sci. 2010;11:458–479. doi: 10.3390/ijms11020458.
    1. Cicerale S., Lucas L.J., Keast R.S. Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr. Opin. Biotechnol. 2012;23:129–135. doi: 10.1016/j.copbio.2011.09.006.
    1. Beauchamp G.K., Keast R.S., Morel D., Lin J., Pika J., Han Q., Lee C.H., Smith A.B., Breslin P.A. Phytochemistry: Ibuprofen-like activity in extra-virgin olive oil. Nature. 2005;437:45–46. doi: 10.1038/437045a.
    1. Iacono A., Gómez R., Sperry J., Conde J., Bianco G., Meli R., Gómez-Reino J., Smith A., Gualillo O. Effect of oleocanthal and its derivatives on inflammatory response induced by LPS in chondrocyte cell line. Arthritis Rheum. 2010;62:1675–1682.
    1. Pitt J., Roth W., Lacor P., Blankenship M., Velasco P., de Felice F., Breslin P.A., Klein W.L. Alzheimer’s-associated A-beta oligomers show altered structure, immunoreactivity and synaptotoxicity with low doses of oleocanthal. Toxicol. Appl. Pharmacol. 2009;240:189–197. doi: 10.1016/j.taap.2009.07.018.
    1. Elnagar A.Y., Sylvester P.W., el Sayed K.A. (−)-Oleocanthal as a c-Met inhibitor for the control of metastatic breast and prostate cancers. Planta Med. 2011;77:1013–1019. doi: 10.1055/s-0030-1270724.
    1. Li W., Sperry J.B., Crowe A., Trojanowki J.Q., Smith A.B., Lee V.M.Y. Inhibition of tau fibrillization by oleocanthal via reaction with amino groups of tau. J. Neurochem. 2009;110:1339–1351. doi: 10.1111/j.1471-4159.2009.06224.x.
    1. Monti M.C., Margarucci L., Tosco A., Riccio R., Casapullo A. New insights on the interaction mechanism between tau protein and oleocanthal, an extra-virgin olive-oil bioactive component. Food Funct. 2011;2:423–428. doi: 10.1039/c1fo10064e.
    1. Garcia-Rodriguez L.A., Huerta-Alvarez C. Reduced risk of colorectal cancer among long-term users of aspirin and nonaspirin nonsteroidal anti-inflammatory drugs. Epidemiology. 2001;12:88–93. doi: 10.1097/00001648-200101000-00015.
    1. Harris R.E., Beebe-Donk J., Alshafie G.A. Reduction in the risk of human breast cancer by selective cyclooxygenase-2 (COX-2) inhibitors. BMC Cancer. 2006;6:27. doi: 10.1186/1471-2407-6-27.
    1. Hennekens C.H. Update on aspirin in the treatment and prevention of cardiovascular disease. Am. J. Manag. Care. 2002;8:691S–700S.
    1. Montedoro G., Servili M. Simple and hydrolyzable compounds in virgin olive oil. Spectroscopic characterizations of the secoiridoid derivatives. J. Agric. Food Chem. 1993;41:2228–2234. doi: 10.1021/jf00035a076.
    1. Andrewes P., Busch J., de Joode T., Groenewegen A., Alexandre H. Sensory properties of virgin olive oil polyphenols: Identification of deacetoxy-ligstroside aglycon as a key contributor to pungency. J. Agric. Food Chem. 2003;51:1415–1420. doi: 10.1021/jf026042j.
    1. Cicerale S., Breslin P.A.S., Beauchamp G.K., Keast R.S.J. Sensory characterization of the irritant properties of oleocanthal, a natural anti-inflammatory agent in extra virgin olive oils. Chem. Senses. 2009;34:333–339. doi: 10.1093/chemse/bjp006.
    1. Peyrot des Gachons C., Uchida K., Bryant B., Shima A., Sperry J.B., Dankulich-Nagrudny L., Tominaga M., Smith A.B., 3rd, Beauchamp G.K., Breslin P.A. Unusual pungency from extra-virgin olive oil is attributable to restricted spatial expression of the receptor of oleocanthal. J. Neurosci. 2011;31:999–1009. doi: 10.1523/JNEUROSCI.1374-10.2011.
    1. Karkoula E., Skantzari A., Melliou E., Magiatis P. Quantitative measurement of major secoiridoid derivatives in olive oil using qNMR. Proof of the artificial formation of aldehydic oleuropein and ligstroside aglycon isomers. J. Agric. Food Chem. 2014;62:600–607. doi: 10.1021/jf404421p.
    1. Karkoula E., Skantzari A., Melliou E., Magiatis P. Direct measurement of oleocanthal and oleacein levels in olive oil by quantitative 1H-NMR. Establishment of a new index for the characterization of extra virgin olive oils. J. Agric. Food Chem. 2012;60:11696–11703. doi: 10.1021/jf3032765.
    1. Cicerale S., Lucas L., Keast R. Olive Oil-Constituents, Quality, Health Properties and Bioconversions. InTech; Rijeka, Croatia: 2012. Oleocanthal: A naturally occurring anti-inflammatory agent in virgin olive oil; pp. 357–374.
    1. Fischer R., Griffin F., Archer R.C., Zinsmeister S.C., Jastram P.S. Weber ratio in gustatory chemoreception; an indicator of systemic (drug) reactivity. Nature. 1965;207:1049–1053. doi: 10.1038/2071049a0.
    1. Reedy J., Mitrou P.N., Krebs-Smith S.M., Wirfält E., Flood A., Kipnis V., Leitzmann M., Mouw T., Hollenbeck A., Schatzkin A., et al. Index-based dietary patterns and risk of colorectal cancer. Am. J. Epidemiol. 2008;168:38–48. doi: 10.1093/aje/kwn097.
    1. Anna H.W., Mimi C.Y., Chiu-Chen T., Frank Z.S., Malcolm C.P. Dietary patterns and breast cancer risk in Asian American women. Am. J. Clin. Nutr. 2009;89:1145–1154. doi: 10.3945/ajcn.2008.26915.
    1. Gonzalez C.A., Riboli E. Diet and cancer prevention: Contributions from the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Eur. J. Cancer. 2010;46:2555–2562. doi: 10.1016/j.ejca.2010.07.025.
    1. De Lorgeril M., Salen P., Martin J.-L., Monjaud I., Boucher P., Mamelle N. Mediterranean dietary pattern in a randomized trial: Prolonged survival and possible reduced cancer rate. Arch. Intern. Med. 1998;158:1181–1187. doi: 10.1001/archinte.158.11.1181.
    1. Dixon B.L., Subar A.F., Peters U., Weissfeld J.L., Bresalier R.S., Risch A., Schatzkin A., Hayes R.B. Adherence to the USDA food guide, DASH eating plan, and Mediterranean dietary pattern reduces risk of colorectal adenoma. J. Nutr. 2007;137:2443–2450.
    1. Masferrer J., Leahy K., Koki A., Zweifel B., Settle S., Woerner B., Edwards D., Flickinger A., Moore R., Seibert K. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 2000;60:1306–1311.
    1. Harris R.E., Chlebowski R.T., Jackson R.D., Frid D.J., Ascenseo J.L., Anderson G., Loar A., Rodabough R.J., White E., McTiernan A. Breast cancer and nonsteroidal anti-inflammatory drugs: Prospective results from the Women’s Health Initiative. Cancer Res. 2003;63:6096–6101.
    1. Boland G., Butt I., Prasad R., Knox W., Bundred N. COX-2 expression is associated with an aggressive phenotype in ductal carcinoma in situ. Br. J. Cancer. 2004;90:423–429. doi: 10.1038/sj.bjc.6601534.
    1. Subbaramaiah K., Norton L., Gerald W., Dannenberg A. Cyclooxygenase-2 is overexpressed in HER-2/neu-positive breast cancer. J. Biol. Chem. 2002;277:18649–18657. doi: 10.1074/jbc.M111415200.
    1. Ristimaki A., Sivula A., Lundin J., Lundin M., Salminen T., Haglund C., Joensuu H., Isola J. Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res. 2002;62:632–635.
    1. Chenevard R., Hurlimann D., Bechir M., Enseleit F., Spieker L., Hermann M., Riesen W., Gay S., Gay R., Neidhart M. Selective COX-2 inhibition improves endothelial function in coronary artery disease. Circulation. 2003;107:405–409. doi: 10.1161/01.CIR.0000051361.69808.3A.
    1. Scotece M., Gómez R., Conde J., Lopez V., Gómez-Reino J., Lago F., Smith I., Gualillo O. Oleocanthal inhibits proliferation and MIP-1 expression in human multiple myeloma cells. Curr. Med. Chem. 2013;20:2467–2475.
    1. Khanal P., Oh W.-K., Yun H.J., Namgoong G.M., Ahn S.-G., Kwon S.-M., Choi H.-.K., Choi H.S. p-HPEA-EDA, a phenolic compound of virgin olive oil, activates AMP-activated protein kinase to inhibit carcinogenesis. Carcinogenesis. 2011;32:545–553. doi: 10.1093/carcin/bgr001.
    1. Margarucci L., Monti M.C., Cassiano C., Mozzicafreddo M., Angeletti M., Riccio R., Tosco A., Casapullo A. Chemical proteomics-driven discovery of oleocanthal as an Hsp90 inhibitor. Chem. Commun. 2013;49:5844–5846. doi: 10.1039/c3cc41858h.
    1. Scher J., Pillinger M., Abramson S. Nitric oxide synthases and osteoarthritis. Curr. Rheumatol. Rep. 2007;9:9–15.
    1. Tung J., Venta P., Caron J. Inducible nitric oxide expression in equine articular chondrocytes: Effects of antiinflammatory compounds. Osteoarthr. Cartil. 2002;10:5–12. doi: 10.1053/joca.2001.0476.
    1. Espey M.G., Miranda K.M., Feelisch M., Fukuto J., Grisham M.B., Vitek M.P., Wink D.A. Mechanisms of cell death governed by the balance between nitrosative and oxidative stress. Ann. N. Y. Acad. Sci. 2000;899:209–221.
    1. Procházková M., Zanvit P., Doležal T., Prokešová L., Kršiak M. Increased gene expression and production of spinal cyclooxygenase 1 and 2 during experimental osteoarthritis pain. Physiol. Res. 2009;58:419–425.
    1. Kokkonen H., Söderström I., Rocklöv J., Hallmans G., Lejon K., Rantapää Dahlqvist S. Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis. Arthritis Rheum. 2010;62:383–391.
    1. Murakami M., Nishimoto N. The value of blocking IL-6 outside of rheumatoid arthritis: Current perspective. Curr. Opin. Rheumatol. 2011;23:273–277. doi: 10.1097/BOR.0b013e3283456797.
    1. Satoh H., Takeuchi K. Management of NSAID/aspirin-induced small intestinal damage by GI-sparing NSAIDs, anti-ulcer drugs and food constituents. Curr. Med. Chem. 2012;19:82–89. doi: 10.2174/092986712803413980.
    1. Scotece M., Gómez R., Conde J., Lopez V., Gómez-Reino J.J., Lago F., Smith A.B., Gualillo O. Further evidence for the anti-inflammatory activity of oleocanthal: Inhibition of MIP-1α and IL-6 in J774 macrophages and in ATDC5 chondrocytes. Life Sci. 2012;91:1229–1235. doi: 10.1016/j.lfs.2012.09.012.
    1. Van Dam D., Coen K., de Deyn P. Ibuprofen modifies cognitive disease progression in an Alzheimer’s mouse model. J. Psychopharmacol. 2010;24:383–388. doi: 10.1177/0269881108097630.
    1. Li W., Virginia M.Y.L. Characterization of two VQIXXK motifs for tau fibrillization in vitro. Biochemistry. 2006;45:15692–15701. doi: 10.1021/bi061422+.
    1. Guela C., Wu C., Saroff D., Lorenzo A., Yuan M., Yankner B. Aging renders the brain vulnerable to amyloid -protein neurotoxicity. Nat. Med. 1998;4:827–831. doi: 10.1038/nm0798-827.
    1. Abuznait A.H., Qosa H., Busnena B.A., el Sayed K.A., Kaddoumi A. Olive-oil-derived oleocanthal enhances β-amyloid clearance as a potential neuroprotective mechanism against Alzheimer’s disease: In vitro and in vivo studies. ACS Chem. Neurosci. 2013;4:973–982. doi: 10.1021/cn400024q.
    1. Gardener S., Gu Y., Rainey-Smith S.R., Keogh J.B., Clifton P.M., Mathieson S.L., Taddei K., Mondal A., Ward V.K., Scarmeas N., et al. Adherence to a Mediterranean diet and Alzheimer’s disease risk in an Australian population. Transl. Psychiatry. 2012;2:e164.
    1. Scarmeas N., Luchsinger J.A., Schupf N., Brickman A.M., Cosentino S., Tang M.X., Stern Y. Physical activity, diet, and risk of Alzheimer disease. J. Am. Med. Assoc. 2009;302:627–637. doi: 10.1001/jama.2009.1144.
    1. García-Villalba R., Carrasco-Pancorbo A., Nevedomskaya E., Mayboroda O., Deelder A., Segura-Carretero A., Fernández-Gutiérrez A. Exploratory analysis of human urine by LC-ESI-TOF MS after high intake of olive oil: Understanding the metabolism of polyphenols. Anal. Bioanal. Chem. 2010;398:463–475. doi: 10.1007/s00216-010-3899-x.

Source: PubMed

3
購読する