Von Willebrand factor, angiodysplasia and angiogenesis

Anna M Randi, Mike A Laffan, Richard D Starke, Anna M Randi, Mike A Laffan, Richard D Starke

Abstract

The large multimeric glycoprotein Von Willebrand factor (VWF) is best known for its role in haemostasis; however in recent years other functions of VWF have been identified, indicating that this protein is involved in multiple vascular processes. We recently described a new role for VWF in controlling angiogenesis, which may have significant clinical implications for patients with Von Willebrand disease (VWD), a genetic or acquired condition caused by the deficiency or dysfunction of VWF. VWD can be associated with angiodysplasia, a condition of degenerative blood vessels often present in the gastrointestinal tract, linked to dysregulated angiogenesis. Angiodysplasia can cause severe intractable bleeding, often refractory to conventional VWD treatments. In this review we summarise the evidence showing that VWF controls angiogenesis, and review the angiogenic pathways which have been implicated in this process. We discuss the possible mechanisms though which VWF regulates angiopoietin-2 (Ang-2) and integrin αvβ3, leading to signalling through vascular endothelial growth factor receptor-2 (VEGFR2), one of the most potent activators of angiogenesis. We also review the evidence that links VWF with angiodysplasia, and how the newly identified function of VWF in controlling angiogenesis may pave the way for the development of novel therapies for the treatment of angiodysplasia in congenital VWD and in acquired conditions such as Heyde syndrome.

Figures

Figure 1
Figure 1
VWF and Angiopoietin-2 (Ang-2) co-localise in Weibel Palade Bodies (WPB) in Human Umbilical Vein Endothelial Cells (HUVEC). WPB are visible as discrete rod-like structures inside the cell. See text for details.
Figure 2
Figure 2
VWF controls angiogenesis through intracellular and extracellular pathways, involving Ang-2 and integrin αvβ3 respectively. These pathways converge to regulate angiogenesis through VEGF Receptor 2 signalling – see text for details.

References

    1. Quick AJ. Telangiectasia: its relationship to the Minot-von Willebrand syndrome. Am.J Med Sci. 1967;254:585–601. doi: 10.1097/00000441-196711000-00002.
    1. Koscielny JK, Latza R, Mursdorf S, et al. Capillary microscopic and rheological dimensions for the diagnosis of von Willebrand disease in comparison to other haemorrhagic diatheses. Thromb.Haemost. 2000;84:981–988.
    1. Duray PH, Marcal JM, Jr, LiVolsi VA, et al. Gastrointestinal angiodysplasia: a possible component of von Willebrand’s disease. Hum.Pathol. 1984;15:539–544. doi: 10.1016/S0046-8177(84)80007-6.
    1. Starke RD, Ferraro F, Paschalaki KE, et al. Endothelial von Willebrand factor regulates angiogenesis. Blood. 2011;117:1071–1080. doi: 10.1182/blood-2010-01-264507.
    1. Carmeliet P. Angiogenesis in health and disease. Nat.Med. 2003;9:653–660. doi: 10.1038/nm0603-653.
    1. Gerhardt H, Golding M, Fruttiger M, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol. 2003;161:1163–1177. doi: 10.1083/jcb.200302047.
    1. Fantin A, Vieira JM, Gestri G, et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood. 2010;116:829–840. doi: 10.1182/blood-2009-12-257832.
    1. Eilken HM, Adams RH. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr.Opin Cell Biol. 2010;22:617–625. doi: 10.1016/j.ceb.2010.08.010.
    1. Jain RK. Molecular regulation of vessel maturation. Nat.Med. 2003;9:685–693. doi: 10.1038/nm0603-685.
    1. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146:873–887. doi: 10.1016/j.cell.2011.08.039.
    1. Ferrara N. VEGF-A: a critical regulator of blood vessel growth. Eur.Cytokine Netw. 2009;20:158–163.
    1. Lohela M, Bry M, Tammela T, Alitalo K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr.Opin Cell Biol. 2009;21:154–165. doi: 10.1016/j.ceb.2008.12.012.
    1. Ladomery MR, Harper SJ, Bates DO. Alternative splicing in angiogenesis: the vascular endothelial growth factor paradigm. Cancer Lett. 2007;249:133–142. doi: 10.1016/j.canlet.2006.08.015.
    1. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat.Rev.Mol Cell Biol. 2006;7:359–371. doi: 10.1038/nrm1911.
    1. Springer ML, Chen AS, Kraft PE, Bednarski M, Blau HM. VEGF gene delivery to muscle: potential role for vasculogenesis in adults. Mol Cell. 1998;2:549–558. doi: 10.1016/S1097-2765(00)80154-9.
    1. Schwarz ER, Speakman MT, Patterson M, et al. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat--angiogenesis and angioma formation. J.Am.Coll.Cardiol. 2000;35:1323–1330. doi: 10.1016/S0735-1097(00)00522-2.
    1. Eklund L, Olsen BR. Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp.Cell Res. 2006;312:630–641. doi: 10.1016/j.yexcr.2005.09.002.
    1. Fukuhara S, Sako K, Minami T, et al. Differential function of Tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1. Nat.Cell Biol. 2008;10:513–526. doi: 10.1038/ncb1714.
    1. Felcht M, Luck R, Schering A, et al. Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling. J.Clin Invest. 2012;122:1991–2005. doi: 10.1172/JCI58832.
    1. Suri C, Jones PF, Patan S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. 1996;87:1171–1180. doi: 10.1016/S0092-8674(00)81813-9.
    1. Suri C, McClain J, Thurston G, et al. Increased vascularization in mice overexpressing angiopoietin-1. Science. 1998;282:468–471. doi: 10.1126/science.282.5388.468.
    1. Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219:983–985. doi: 10.1126/science.6823562.
    1. Thurston G, Suri C, Smith K, et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science. 1999;286:2511–2514. doi: 10.1126/science.286.5449.2511.
    1. Thurston G, Rudge JS, Ioffe E, et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat.Med. 2000;6:460–463. doi: 10.1038/74725.
    1. Tao Z, Chen B, Tan X, et al. Coexpression of VEGF and angiopoietin-1 promotes angiogenesis and cardiomyocyte proliferation reduces apoptosis in porcine myocardial infarction (MI) heart. ProcNatlAcadSciUSA. 2011;108:2064–2069. doi: 10.1073/pnas.1018925108.
    1. Daly C, Eichten A, Castanaro C, et al. Angiopoietin-2 functions as a Tie2 agonist in tumor models, where it limits the effects of VEGF inhibition. Cancer Res. 2013;73:108–118. doi: 10.1158/0008-5472.CAN-12-2064.
    1. Fiedler U, Scharpfenecker M, Koidl S, et al. The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. Blood. 2004;103:4150–4156. doi: 10.1182/blood-2003-10-3685.
    1. Lobov IB, Brooks PC, Lang RA. Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proceedings of the National Academy of Sciences of the United States of America. 2002;99:11205–11210. doi: 10.1073/pnas.172161899.
    1. Holash J, Wiegand SJ, Yancopoulos GD. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene. 1999;18:5356–5362. doi: 10.1038/sj.onc.1203035.
    1. Augustin HG, Koh GY, Thurston G, Alitalo K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat.Rev.Mol Cell Biol. 2009;10:165–177. doi: 10.1038/nrm2639.
    1. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10:9–22. doi: 10.1038/nrc2748.
    1. Gladson CL, Cheresh DA. Glioblastoma expression of vitronectin and the alpha v beta 3 integrin. Adhesion mechanism for transformed glial cells. J.Clin Invest. 1991;88:1924–1932. doi: 10.1172/JCI115516.
    1. Scaringi C, Minniti G, Caporello P, Enrici RM. Integrin inhibitor cilengitide for the treatment of glioblastoma: a brief overview of current clinical results. Anticancer Res. 2012;32:4213–4223.
    1. Reynolds LE, Wyder L, Lively JC, et al. Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nat.Med. 2002;8:27–34. doi: 10.1038/nm0102-27.
    1. Somanath PR, Malinin NL, Byzova TV. Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis. 2009;12:177–185. doi: 10.1007/s10456-009-9141-9.
    1. Carlson TR, Feng Y, Maisonpierre PC, Mrksich M, Morla AO. Direct cell adhesion to the angiopoietins mediated by integrins. J.Biol.Chem. 2001;276:26516–26525. doi: 10.1074/jbc.M100282200.
    1. Thomas M, Felcht M, Kruse K, et al. Angiopoietin-2 stimulation of endothelial cells induces aVb3 integrin internalization and degradation. Journal of Biological Chemistry. 2010.
    1. Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438:932–936. doi: 10.1038/nature04478.
    1. Regula J, Wronska E, Pachlewski J. Vascular lesions of the gastrointestinal tract. Best.Pract.Res.Clin.Gastroenterol. 2008;22:313–328. doi: 10.1016/j.bpg.2007.10.026.
    1. Tan H, Chen H, Xu C, et al. Role of vascular endothelial growth factor in angiodysplasia: an interventional study with thalidomide. J.Gastroenterol.Hepatol. 2012;27:1094–1101. doi: 10.1111/j.1440-1746.2011.06967.x.
    1. Junquera F, Saperas E, de TI, Vidal MT, Malagelada JR. Increased expression of angiogenic factors in human colonic angiodysplasia. Am.J.Gastroenterol. 1999;94:1070–1076. doi: 10.1111/j.1572-0241.1999.01017.x.
    1. Cirulli A, Liso A, D’Ovidio F, et al. Vascular endothelial growth factor serum levels are elevated in patients with hereditary hemorrhagic telangiectasia. Acta Haematol. 2003;110:29–32. doi: 10.1159/000072411.
    1. Gritti G, Cortelezzi A, Bucciarelli P, et al. Circulating and progenitor endothelial cells are abnormal in patients with different types of von Willebrand disease and correlate with markers of angiogenesis. Am.J.Hematol. 2011;86:650–656. doi: 10.1002/ajh.22070.
    1. Rondaij MG, Bierings R, Kragt A, van Mourik JA, Voorberg J. Dynamics and plasticity of Weibel-Palade bodies in endothelial cells. Arterioscler.Thromb.Vasc.Biol. 2006;26:1002–1007. doi: 10.1161/01.ATV.0000209501.56852.6c.
    1. Kanaji S, Fahs SA, Shi Q, Haberichter SL, Montgomery RR. Contribution of platelet vs. endothelial VWF to platelet adhesion and hemostasis. J.Thromb.Haemost. 2012;10:1646–1652. doi: 10.1111/j.1538-7836.2012.04797.x.
    1. Michaux G, Cutler DF. How to roll an endothelial cigar: the biogenesis of Weibel-Palade bodies. Traffic. 2004;5:69–78. doi: 10.1111/j.1600-0854.2004.00157.x.
    1. Metcalf DJ, Nightingale TD, Zenner HL, Lui-Roberts WW, Cutler DF. Formation and function of Weibel-Palade bodies. J.Cell Sci. 2008;121:19–27. doi: 10.1242/jcs.03494.
    1. van Breevoort D, van Agtmaal EL, Dragt BS, et al. Proteomic screen identifies IGFBP7 as a novel component of endothelial cell-specific Weibel-Palade bodies. J.Proteome.Res. 2012;11:2925–2936. doi: 10.1021/pr300010r.
    1. Thomas M, Augustin HG. The role of the Angiopoietins in vascular morphogenesis. Angiogenesis. 2009;12:125–137. doi: 10.1007/s10456-009-9147-3.
    1. Petreaca ML, Yao M, Liu Y, Defea K, Martins-Green M. Transactivation of vascular endothelial growth factor receptor-2 by interleukin-8 (IL-8/CXCL8) is required for IL-8/CXCL8-induced endothelial permeability. Mol.Biol.Cell. 2007;18:5014–5023. doi: 10.1091/mbc.E07-01-0004.
    1. Lenting PJ, Casari C, Christophe OD, Denis CV. von Willebrand factor: the old, the new and the unknown. J.Thromb.Haemost. 2012;10:2428–2437. doi: 10.1111/jth.12008.
    1. Cheresh DA. Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc.Natl.Acad.Sci.U.S.A. 1987;84:6471–6475. doi: 10.1073/pnas.84.18.6471.
    1. Brooks PC, Montgomery AM, Rosenfeld M, et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell. 1994;79:1157–1164. doi: 10.1016/0092-8674(94)90007-8.
    1. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 1994;264:569–571. doi: 10.1126/science.7512751.
    1. Robinson SD, Hodivala-Dilke KM. The role of beta3-integrins in tumor angiogenesis: context is everything. Curr.Opin.Cell Biol. 2011;23:630–637. doi: 10.1016/j.ceb.2011.03.014.
    1. Thijssen VL, Postel R, Brandwijk RJ, et al. Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. ProcNatlAcadSciUSA. 2006;103:15975–15980. doi: 10.1073/pnas.0603883103.
    1. Saint-Lu N, Oortwijn BD, Pegon JN, et al. Identification of galectin-1 and galectin-3 as novel partners for von Willebrand factor. Arterioscler.Thromb.Vasc.Biol. 2012;32:894–901. doi: 10.1161/ATVBAHA.111.240309.
    1. Markowska AI, Liu FT, Panjwani N. Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response. J.Exp.Med. 2010;207:1981–1993. doi: 10.1084/jem.20090121.
    1. Pi L, Shenoy AK, Liu J, et al. CCN2/CTGF regulates neovessel formation via targeting structurally conserved cystine knot motifs in multiple angiogenic regulators. FASEB J. 2012;26:3365–3379. doi: 10.1096/fj.11-200154.
    1. Tamura K, Hashimoto K, Suzuki K, et al. Insulin-like growth factor binding protein-7 (IGFBP7) blocks vascular endothelial cell growth factor (VEGF)-induced angiogenesis in human vascular endothelial cells. Eur.J.Pharmacol. 2009;610:61–67. doi: 10.1016/j.ejphar.2009.01.045.
    1. Warkentin TE, Moore JC, Anand SS, Lonn EM, Morgan DG. Gastrointestinal bleeding, angiodysplasia, cardiovascular disease, and acquired von Willebrand syndrome. Transfus.Med.Rev. 2003;17:272–286. doi: 10.1016/S0887-7963(03)00037-3.
    1. Makris M. Gastrointestinal bleeding in von Willebrand disease. Thromb.Res. 2006;118(Suppl 1):S13–S17. doi: 10.1016/j.thromres.2006.01.022.
    1. Fressinaud E, Meyer D. International survey of patients with von Willebrand disease and angiodysplasia. Thromb.Haemost. 1993;70:546.
    1. Castaman G, Federici AB, Tosetto A, et al. Different bleeding risk in type 2A and 2M von Willebrand disease: a 2-year prospective study in 107 patients. J.Thromb.Haemost. 2012;10:632–638. doi: 10.1111/j.1538-7836.2012.04661.x.
    1. Massyn MW, Khan SA. Heyde syndrome: a common diagnosis in older patients with severe aortic stenosis. Age Ageing. 2009;38:267–270. doi: 10.1093/ageing/afp019.
    1. Abshire TC, Federici AB, Alvarez MT, et al. Prophylaxis in severe forms of von Willebrand’s disease: results from the von Willebrand Disease Prophylaxis Network (VWD PN) Haemophilia. 2013;19:76–81. doi: 10.1111/j.1365-2516.2012.02916.x.
    1. Nomikou E, Tsevrenis V, Gafou A, Bellia M, Theodossiades G. Type IIb von Willebrand disease with angiodysplasias and refractory gastrointestinal bleeding successfully treated with thalidomide. Haemophilia. 2009;15:1340–1342. doi: 10.1111/j.1365-2516.2009.02085.x.
    1. Bauditz J, Schachschal G, Wedel S, Lochs H. Thalidomide for treatment of severe intestinal bleeding. Gut. 2004;53:609–612. doi: 10.1136/gut.2003.029710.
    1. Sohal M, Laffan M. Von Willebrand disease and angiodysplasia responding to atorvastatin. Br.J.Haematol. 2008;142:308–309. doi: 10.1111/j.1365-2141.2008.07005.x.
    1. Alikhan R, Keeling D. Von Willebrand disease, angiodysplasia and atorvastatin. Br.J.Haematol. 2010;149:159–160. doi: 10.1111/j.1365-2141.2009.08031.x.

Source: PubMed

3
購読する