G protein-coupled receptors: extranuclear mediators for the non-genomic actions of steroids

Chen Wang, Yi Liu, Ji-Min Cao, Chen Wang, Yi Liu, Ji-Min Cao

Abstract

Steroids hormones possess two distinct actions, a delayed genomic effect and a rapid non-genomic effect. Rapid steroid-triggered signaling is mediated by specific receptors localized most often to the plasma membrane. The nature of these receptors is of great interest and accumulated data suggest that G protein-coupled receptors (GPCRs) are appealing candidates. Increasing evidence regarding the interaction between steroids and specific membrane proteins, as well as the involvement of G protein and corresponding downstream signaling, have led to identification of physiologically relevant GPCRs as steroid extranuclear receptors. Examples include G protein-coupled receptor 30 (GPR30) for estrogen, membrane progestin receptor for progesterone, G protein-coupled receptor family C group 6 member A (GPRC6A) and zinc transporter member 9 (ZIP9) for androgen, and trace amine associated receptor 1 (TAAR1) for thyroid hormone. These receptor-mediated biological effects have been extended to reproductive development, cardiovascular function, neuroendocrinology and cancer pathophysiology. However, although great progress have been achieved, there are still important questions that need to be answered, including the identities of GPCRs responsible for the remaining steroids (e.g., glucocorticoid), the structural basis of steroids and GPCRs' interaction and the integration of extranuclear and nuclear signaling to the final physiological function. Here, we reviewed the several significant developments in this field and highlighted a hypothesis that attempts to explain the general interaction between steroids and GPCRs.

References

    1. Tata J.R. Signalling through nuclear receptors. Nat. Rev. Mol. Cell Biol. 2002;3:702–710.
    1. Selye H. Stress and the general adaptation syndrome. Br. Med. J. 1950;1:1383–1392.
    1. Lösel R., Wehling M. Nongenomic actions of steroid hormones. Nat. Rev. Mol. Cell Biol. 2003;4:46–56. doi: 10.1038/nrm1009.
    1. Losel R.M., Falkenstein E., Feuring M., Schultz A., Tillmann H.C., Rossol-Haseroth K., Wehling M. Nongenomic steroid action: Controversies, questions, and answers. Physiol. Rev. 2003;83:965–1016.
    1. Hammes S.R., Levin E.R. Extranuclear steroid receptors: Nature and actions. Endocr. Rev. 2007;28:726–741.
    1. Wang C., Li Y.J., Zheng Y.Q., Feng B., Liu Y., Cao J.M. Glucocorticoid decreases airway tone via a nongenomic pathway. Respir. Physiol. Neurobiol. 2012;183:10–14.
    1. Wang C., Qiu W., Zheng Y., Li H., Li Y., Feng B., Guo S., Yan L., Cao J.M. Extraneuronal monoamine transporter mediates the permissive action of cortisol in the guinea pig trachea: Possible involvement of tracheal chondrocytes. PLoS One. 2013;8:e76193.
    1. Tasker J.G., Di S., Malcher-Lopes R. Minireview: Rapid glucocorticoid signaling via membrane-associated receptors. Endocrinology. 2006;147:5549–5556.
    1. Groeneweg F.L., Karst H., de Kloet E.R., Joëls M. Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Mol. Cell. Endocrinol. 2012;350:299–309.
    1. Godeau J.F., Schorderet-Slatkine S., Hubert P., Baulieu E.E. Induction of maturation in Xenopus laevis oocytes by a steroid linked to a polymer. Proc. Natl. Acad. Sci. USA. 1978;75:2353–2357.
    1. Maller J.L., Krebs E.G. Regulation of oocyte maturation. Curr. Top. Cell. Regul. 1980;16:271–311.
    1. Hua S.Y., Chen Y.Z. Membrane receptor-mediated electrophysiological effects of glucocorticoid on mammalian neurons. Endocrinology. 1989;124:687–691.
    1. Chen Y.Z., Hua S.Y., Wang C.A., Wu L.G., Gu Q., Xing B.R. An electrophysiological study on the membrane receptor-mediated action of glucocorticoids in mammalian neurons. Neuroendocrinology. 1991;53:25–30.
    1. Maller J.L. Recurring themes in oocyte maturation. Biol. Cell. 1998;90:453–460. doi: 10.1111/j.1768-322X.1998.tb01054.x.
    1. Maller J.L. The elusive progesterone receptor in Xenopus oocytes. Proc. Natl. Acad. Sci. USA. 2001;98:8–10. doi: 10.1073/pnas.98.1.8.
    1. Stahn C., Buttgereit F. Genomic and nongenomic effects of glucocorticoids. Nat. Clin. Pract. Rheumatol. 2008;4:525–533.
    1. Pedram A., Razandi M., Levin E.R. Nature of functional estrogen receptors at the plasma membrane. Mol. Endocrinol. 2006;20:1996–2009.
    1. Strünker T., Goodwin N., Brenker C., Kashikar N.D., Weyand I., Seifert R., Kaupp U.B. The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature. 2011;471:382–386.
    1. Lishko P.V., Botchkina I.L., Kirichok Y. Progesterone activates the principal Ca2+ channel of human sperm. Nature. 2011;471:387–391.
    1. Lieberherr M., Grosse B., Kachkache M., Balsan S. Cell signaling and estrogens in female rat osteoblasts: A possible involvement of unconventional nonnuclear receptors. J. Bone Miner. Res. 1993;8:1365–1376.
    1. Gekle M., Silbernagl S., Wünsch S. Nongenomic action of the mineralocorticoid aldosterone on cytosolic sodium in cultured kidney cells. J. Physiol. 1998;511:255–263.
    1. Qiu J., Lou L.G., Huang X.Y., Lou S.J., Pei G., Chen Y.Z. Nongenomic mechanisms of glucocorticoid inhibition of nicotine-induced calcium influx in PC12 cells: Involvement of protein kinase C. Endocrinology. 1998;139:5103–5108.
    1. Heldring N., Pike A., Andersson S., Matthews J., Cheng G., Hartman J., Tujague M., Ström A., Treuter E., Warner M., et al. Estrogen receptors: How do they signal and what are their targets. Physiol. Rev. 2007;87:905–931.
    1. Filardo E.J., Thomas P. Minireview: G protein-coupled estrogen receptor-1, GPER-1: Its mechanism of action and role in female reproductive cancer, renal and vascular physiology. Endocrinology. 2012;153:2953–2962.
    1. Carmeci C., Thompson D.A., Ring H.Z., Francke U., Weigel R.J. Identification of a gene (GPR30) with homology to the G-protein coupled receptor superfamily associated with estrogen receptor expression in breast cancer. Genomics. 1997;45:607–617.
    1. Thomas P., Pang Y., Filardo E.J., Dong J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology. 2005;146:624–632.
    1. Revankar C.M., Cimino D.F., Sklar L.A., Arterburn J.B., Prossnitz E.R. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science. 2005;307:1625–1630.
    1. Filardo E.J., Graeber C.T., Quinn J.A., Resnick M.B., Giri D., DeLellis R.A., Steinhoff M.M., Sabo E. Distribution of GPR30, a seven membrane-spanning estrogen receptor, in primary breast cancer and its association with clinicopathologic determinants of tumor progression. Clin. Cancer Res. 2006;12:6359–6366.
    1. Cheng S.B., Graeber C.T., Quinn J.A., Filardo E.J. Retrograde transport of the transmembrane estrogen receptor, G-protein-coupled-receptor-30 (GPR30/GPER) from the plasma membrane towards the nucleus. Steroids. 2011;76:892–896.
    1. Sandén C., Broselid S., Cornmark L., Andersson K., Daszkiewicz-Nilsson J., Mårtensson U.E., Olde B., Leeb-Lundberg L.M. G protein-coupled estrogen receptor 1/G protein-coupled receptor 30 localizes in the plasma membrane and traffics intracellularly on cytokeratin intermediate filaments. Mol. Pharmacol. 2011;79:400–410.
    1. Filardo E.J., Quinn J.A., Sabo E. Association of the membrane estrogen receptor, GPR30, with breast tumor metastasis and transactivation of the epidermal growth factor receptor. Steroids. 2008;73:870–873.
    1. Thomas P., Alyea R., Pang Y., Peyton C., Dong J., Berg A.H. Conserved estrogen binding and signaling functions of the G protein-coupled estrogen receptor 1 (GPER) in mammals and fish. Steroids. 2010;75:595–602.
    1. Lindsey S.H., Carver K.A., Prossnitz E.R., Chappell M.C. Vasodilation in response to the GPR30 agonist G-1 is not different from estradiol in the mRen2.Lewis female rat. J. Cardiovasc. Pharmacol. 2011;57:598–603.
    1. Lindsey S.H., Yamaleyeva L.M., Brosnihan K.B., Gallagher P.E., Chappell M.C. Estrogen receptor GPR30 reduces oxidative stress and proteinuria in the salt-sensitive female mRen2.Lewis rat. Hypertension. 2011;58:665–671.
    1. Prossnitz E.R., Barton M. The G-protein-coupled estrogen receptor GPER in health and disease. Nat. Rev. Endocrinol. 2011;7:715–726. doi: 10.1038/nrendo.2011.122.
    1. Samartzis E.P., Noske A., Meisel A., Varga Z., Fink D., Imesch P. The G protein-coupled estrogen receptor (GPER) is expressed in two different subcellular localizations reflecting distinct tumor properties in breast cancer. PLoS One. 2014;9:e83296.
    1. Tian J., Kim S., Heilig E., Ruderman J.V. Identification of XPR-1, a progesterone receptor required for Xenopus oocyte activation. Proc. Natl. Acad. Sci. USA. 2000;97:14358–14363.
    1. Bayaa M., Booth R.A., Sheng Y., Liu X.J. The classical progesterone receptor mediates Xenopus oocyte maturation through a nongenomic mechanism. Proc. Natl. Acad. Sci. USA. 2000;97:12607–12612.
    1. Zhu Y., Rice C.D., Pang Y., Pace M., Thomas P. Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes. Proc. Natl. Acad. Sci. USA. 2003;100:2231–2236.
    1. Zhu Y., Bond J., Thomas P. Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc. Natl. Acad. Sci. USA. 2003;100:2237–2242.
    1. Thomas P., Pang Y., Dong J., Groenen P., Kelder J., de Vlieg J., Zhu Y., Tubbs C. Steroid and G protein binding characteristics of the seatrout and human progestin membrane receptor α subtypes and their evolutionary origins. Endocrinology. 2007;148:705–718.
    1. Dosiou C., Hamilton A.E., Pang Y., Overgaard M.T., Tulac S., Dong J., Thomas P., Giudice L.C. Expression of membrane progesterone receptors on human T lymphocytes and Jurkat cells and activation of G-proteins by progesterone. J. Endocrinol. 2008;196:67–77.
    1. Karteris E., Zervou S., Pang Y., Dong J., Hillhouse E.W., Randeva H.S., Thomas P. Progesterone signaling in human myometrium through two novel membrane G protein-coupled receptors: Potential role in functional progesterone withdrawal at term. Mol. Endocrinol. 2006;20:1519–1534.
    1. Dressing G.E., Goldberg J.E., Charles N.J., Schwertfeger K.L., Lange C.A. Membrane progesterone receptor expression in mammalian tissues: A review of regulation and physiological implications. Steroids. 2011;76:11–17.
    1. Zuo L., Li W., You S. Progesterone reverses the mesenchymal phenotypes of basal phenotype breast cancer cells via a membrane progesterone receptor mediated pathway. Breast Cancer Res. 2010;12:R34.
    1. Schumacher M., Baulieu E.E. Neurosteroids: Synthesis and functions in the central and peripheral nervous systems. Ciba Found. Symp. 1995;191:90–106.
    1. Kelder J., Azevedo R., Pang Y., de Vlieg J., Dong J., Thomas P. Comparison between steroid binding to membrane progesterone receptor α (mPRα) and to nuclear progesterone receptor: Correlation with physicochemical properties assessed by comparative molecular field analysis and identification of mPRα-specific agonists. Steroids. 2010;75:314–322.
    1. Petersen S.L., Intlekofer K.A., Moura-Conlon P.J., Brewer D.N., del Pino Sans J., Lopez J.A. Novel progesterone receptors: Neural localization and possible functions. Front. Neurosci. 2013 doi: 10.3389/fnins.2013.00164.
    1. Sleiter N., Pang Y., Park C., Horton T.H., Dong J., Thomas P., Levine J.E. Progesterone receptor A (PRA) and PRB-independent effects of progesterone on gonadotropin-releasing hormone release. Endocrinology. 2009;150:3833–3844.
    1. Meyer C., Schmid R., Scriba P.C., Wehling M. Purification and partial sequencing of high-affinity progesterone-binding site(s) from porcine liver membranes. Eur. J. Biochem. 1996;239:726–731.
    1. Meyer C., Schmid R., Schmieding K., Falkenstein E., Wehling M. Characterization of high affinity progesterone-binding membrane proteins by anti-peptide antiserum. Steroids. 1998;63:111–116.
    1. Cahill M.A. Progesterone receptor membrane component 1: An integrative review. J. Steroid Biochem. Mol. Biol. 2007;105:16–36.
    1. Rohe H.J., Ahmed I.S., Twist K.E., Craven R.J. PGRMC1 (progesterone receptor membrane component 1): A targetable protein with multiple functions in steroid signaling, P450 activation and drug binding. Pharmacol. Ther. 2009;121:14–19.
    1. Thomas P., Pang Y., Dong J. Enhancement of cell surface expression and receptor functions of membrane progestin receptor α (mPRα) by progesterone receptor membrane component 1 (PGRMC1): Evidence for a role of PGRMC1 as an adaptor protein for steroid receptors. Endocrinology. 2014;155:1107–1119.
    1. Pi M., Chen L., Huang M.Z., Zhu W., Ringhofer B., Luo J., Christenson L., Li B., Zhang J., Jackson P.D., et al. GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS One. 2008;3:e3858. doi: 10.1371/journal.pone.0003858.
    1. Pi M., Parrill A.L., Quarles L.D. GPRC6A mediates the non-genomic effects of steroids. J. Biol. Chem. 2010;285:39953–39964.
    1. Pi M., Quarles L.D. GPRC6A regulates prostate cancer progression. Prostate. 2012;72:399–409.
    1. Pi M., Quarles L.D. Multiligand specificity and wide tissue expression of GPRC6A reveals new endocrine networks. Endocrinology. 2012;153:2062–2069.
    1. Foradori C.D., Weiser M.J., Handa R.J. Non-Genomic actions of androgens. Front. Neuroendocrinol. 2008;29:169–181.
    1. Berg A.H., Rice C.D., Rahman M.S., Dong J., Thomas P. Identification and characterization of membrane androgen receptors in the ZIP9 zinc transporter subfamily: I. Discovery in female Atlantic croaker and evidence ZIP9 mediates testosterone-induced apoptosis of ovarian follicle cells. Endocrinology. 2014 doi: 10.1210/en.2014-1198.
    1. Thomas P., Dong J., Berg A.H., Pang Y. Identification and characterization of membrane androgen receptors in the ZIP9 zinc transporter subfamily: II. Role of human ZIP9 in testosterone-induced prostate and breast cancer cell apoptosis. Endocrinology. 2014 doi: 10.1210/en.2014-1201.
    1. Davis P.J., Davis F.B. Nongenomic actions of thyroid hormone. Thyroid. 1996;6:497–504.
    1. Scanlan T.S., Suchland K.L., Hart M.E., Chiellini G., Huang Y., Kruzich P.J., Frascarelli S., Crossley D.A., Bunzow J.R., Ronca-Testoni S., et al. 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat. Med. 2004;10:638–642.
    1. Lewin A.H., Navarro H.A., Gilmour B.P. Amiodarone and its putative metabolites fail to activate wild type hTAAR1. Bioorg. Med. Chem. Lett. 2009;19:5913–5914.
    1. Sotnikova T.D., Caron M.G., Gainetdinov R.R. Trace amine-associated receptors as emerging therapeutic targets. Mol. Pharmacol. 2009;76:229–235.
    1. Cichero E., Espinoza S., Gainetdinov R.R., Brasili L., Fossa P. Insights into the structure and pharmacology of the human trace amine-associated receptor 1 (hTAAR1): Homology modelling and docking studies. Chem. Biol. Drug Des. 2013;81:509–516.
    1. Tan E.S., Miyakawa M., Bunzow J.R., Grandy D.K., Scanlan T.S. Exploring the structure-activity relationship of the ethylamine portion of 3-iodothyronamine for rat and mouse trace amine-associated receptor 1. J. Med. Chem. 2007;50:2787–2798.
    1. Bledsoe R.K., Montana V.G., Stanley T.B., Delves C.J., Apolito C.J., McKee D.D., Consler T.G., Parks D.J., Stewart E.L., Willson T.M., et al. Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell. 2002;110:93–105. doi: 10.1016/S0092-8674(02)00817-6.
    1. Agretti P., de Marco G., Russo L., Saba A., Raffaelli A., Marchini M., Chiellini G., Grasso L., Pinchera A., Vitti P., et al. 3-Iodothyronamine metabolism and functional effects in FRTL5 thyroid cells. J. Mol. Endocrinol. 2011;47:23–32.
    1. Zucchi R., Chiellini G., Scanlan T.S., Grandy D.K. Trace amine-associated receptors and their ligands. Br. J. Pharmacol. 2006;149:967–978.
    1. Li H., Papadopoulos V. Peripheral-Type benzodiazepine receptor function in cholesterol transport—Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology. 1998;139:4991–4997.
    1. Hanson M.A., Cherezov V., Griffith M.T., Roth C.B., Jaakola V.P., Chien E.Y., Velasquez J., Kuhn P., Stevens R.C. A specific cholesterol binding site is established by the 2.8 A structure of the human β2-adrenergic receptor. Structure. 2008;16:897–905.
    1. Gimpl G., Burger K., Fahrenholz F. Cholesterol as modulator of receptor function. Biochemistry. 1997;36:10959–10974.
    1. Wang C., Li Y.J., Cao J.M. Specificity out of clutter: A hypothetical role of G protein-coupled receptors in the non-genomic effect of steroids. FEBS Lett. 2013;587:823–825.
    1. Covey D.F., Nathan D., Kalkbrenner M., Nilsson K.R., Hu Y., Zorumski C.F., Evers A.S. Enantioselectivity of pregnanolone-induced γ-aminobutyric acidA receptor modulation and anesthesia. J. Pharmacol. Exp. Ther. 2000;293:1009–1016.

Source: PubMed

3
購読する