Importance of the Use of Oxidative Stress Biomarkers and Inflammatory Profile in Aqueous and Vitreous Humor in Diabetic Retinopathy

Ana Karen López-Contreras, María Guadalupe Martínez-Ruiz, Cecilia Olvera-Montaño, Ricardo Raúl Robles-Rivera, Diana Esperanza Arévalo-Simental, José Alberto Castellanos-González, Abel Hernández-Chávez, Selene Guadalupe Huerta-Olvera, Ernesto German Cardona-Muñoz, Adolfo Daniel Rodríguez-Carrizalez, Ana Karen López-Contreras, María Guadalupe Martínez-Ruiz, Cecilia Olvera-Montaño, Ricardo Raúl Robles-Rivera, Diana Esperanza Arévalo-Simental, José Alberto Castellanos-González, Abel Hernández-Chávez, Selene Guadalupe Huerta-Olvera, Ernesto German Cardona-Muñoz, Adolfo Daniel Rodríguez-Carrizalez

Abstract

Diabetic retinopathy is one of the leading causes of visual impairment and morbidity worldwide, being the number one cause of blindness in people between 27 and 75 years old. It is estimated that ~191 million people will be diagnosed with this microvascular complication by 2030. Its pathogenesis is due to alterations in the retinal microvasculature as a result of a high concentration of glucose in the blood for a long time which generates numerous molecular changes like oxidative stress. Therefore, this narrative review aims to approach various biomarkers associated with the development of diabetic retinopathy. Focusing on the molecules showing promise as detection tools, among them we consider markers of oxidative stress (TAC, LPO, MDA, 4-HNE, SOD, GPx, and catalase), inflammation (IL-6, IL-1ß, IL-8, IL-10, IL-17A, TNF-α, and MMPs), apoptosis (NF-kB, cyt-c, and caspases), and recently those that have to do with epigenetic modifications, their measurement in different biological matrices obtained from the eye, including importance, obtaining process, handling, and storage of these matrices in order to have the ability to detect the disease in its early stages.

Keywords: antioxidants; aqueous humor; biomarkers of diabetic retinopathy; diabetic retinopathy; metabolic memory; oxidative stress; tear film; vitreous humor.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Reactive oxygen species and antioxidants in the eye. In the eye, chronic hyperglycemic state, atmospheric O2, and inflammation processes alter different metabolic pathways which stimulates the formation of reactive oxygen species (ROS) in the anterior and posterior segment, starting with oxygen (O2) to which the addition of one electron forms the superoxide anion radical (O2-•), the dismutation of this molecule by superoxide dismutases (SOD) forms hydrogen peroxide (H2O2), and the breakdown of this molecule can generate hydroxyl radical (OH•) which is highly reactive. In addition the reaction of O2- • or OH• radical with polyunsaturated fatty acids generates the peroxyl radical (LOO•). The formation of this radicals can be countered by enzymatic and non-enzymatic antioxidants like vitamin C, vitamin E, glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR), among others. (Modified from ref. [24]).
Figure 2
Figure 2
Main components in tear film. The wide variety of components in each layer of the tear film provides function, nutrition, and protection to the ocular surface. However, it is susceptible to change their composition due to oxidative stress and inflammatory processes that involve the eye structures, which makes it an easy access ocular matrix to identify these changes measuring levels of components as biomarkers. SOD1: superoxide dismutase-1, Ser: serine, Thr: Threonine, Pro: Proline, IL: Interleukin, sIgA: surface Immunoglobuline A, MMP-9: matrix metalloproteinase-9, TNF-α: Tumor necrosis factor-α. Image created with BioRender.com.

References

    1. Campochiaro P.A. Molecular pathogenesis of retinal and choroidal vascular diseases. Prog. Retin. Eye Res. 2015;49:67–81. doi: 10.1016/j.preteyeres.2015.06.002.
    1. Mahajan N., Arora P., Sandhir R.A.-O. Perturbed Biochemical Pathways and Associated Oxidative Stress Lead to Vascular Dysfunctions in Diabetic Retinopathy. Oxid. Med. Cell. Longev. 2019 doi: 10.1155/2019/8458472.
    1. Cunha-Vaz J., Bernardes R., Lobo C. Blood-retinal barrier. Eur. J. Ophthalmol. 2011;21:S3–S9. doi: 10.5301/EJO.2010.6049.
    1. Alder V.A., Su E.N., Yu D.Y., Cringle S., Yu D.-Y. Overview of studies on metabolic and vascular regulatory changes in early diabetic retinopathy. Aust. N. Z. J. Ophthalmol. 1998;26:141–148. doi: 10.1111/j.1442-9071.1998.tb01530.x.
    1. Pusparajah P., Lee L.-H., Kadir K.A. Molecular Markers of Diabetic Retinopathy: Potential Screening Tool of the Future? Front. Physiol. 2016;7:200. doi: 10.3389/fphys.2016.00200.
    1. Aiello L.P., Cahill M.T., Wong J.S. Systemic considerations in the management of diabetic retinopathy. Am. J. Ophthalmol. 2001;132:760–776. doi: 10.1016/S0002-9394(01)01124-2.
    1. Yau J.W., Rogers S.L., Kawasaki R., Lamoureux E.L., Kowalski J.W., Bek T., Chen S.-J., Dekker J.M., Fletcher A., Grauslund J., et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35:556–564. doi: 10.2337/dc11-1909.
    1. Cecilia O.-M., Alberto C.-G.J., José N.-P., Germán C.-M.E., Karen L.-C.A., Miguel R.-P.L., Raúl R.-R.R., Daniel R.-C.A. Oxidative Stress as the Main Target in Diabetic Retinopathy Pathophysiology. J. Diabetes Res. 2019;2019:8562408. doi: 10.1155/2019/8562408.
    1. Zheng Y., He M., Congdon N. The worldwide epidemic of diabetic retinopathy. Indian J. Ophthalmol. 2012;60:428–431. doi: 10.4103/0301-4738.100542.
    1. Avidor D., Loewenstein A., Waisbourd M., Nutman A. Cost-effectiveness of diabetic retinopathy screening programs using telemedicine: A systematic review. Cost Eff. Resour. Alloc. 2020;18:16. doi: 10.1186/s12962-020-00211-1.
    1. Whitehead M., Wickremasinghe S., Osborne A., Wijngaarden P., Martin K.R. Diabetic retinopathy: A complex pathophysiology requiring novel therapeutic strategies. Expert Opin. Biol. Ther. 2018;18:1257–1270. doi: 10.1080/14712598.2018.1545836.
    1. Robles-Rivera R.R., Castellanos-González J.A., Olvera-Montaño C., Flores-Martin R.A., López-Contreras A.K., Arevalo-Simental D.E., Cardona-Muñoz E.G., Roman-Pintos L.M., Rodríguez-Carrizalez A.D. Adjuvant Therapies in Diabetic Retinopathy as an Early Approach to Delay Its Progression: The Importance of Oxidative Stress and Inflammation. Oxid. Med. Cell. Longev. 2020;2020:3096470. doi: 10.1155/2020/3096470.
    1. Santiago A.R., Boia R., Aires I.D., Ambrósio A.F., Fernandes R. Sweet Stress: Coping With Vascular Dysfunction in Diabetic Retinopathy. Front. Physiol. 2018;13:820. doi: 10.3389/fphys.2018.00820.
    1. Flaxman S.R., Bourne R.R.A., Resnikoff S., Ackland P., Braithwaite T., Cicinelli M.V., Das A., Jonas J.B., Keeffe J., Kempen J.H., et al. Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis. Lancet Glob. Health. 2017;5:1221–1234. doi: 10.1016/S2214-109X(17)30393-5.
    1. van der Giet M., Henkel C., Schuchardt M., Tolle M. Anti-VEGF Drugs in Eye Diseases: Local Therapy with Potential Systemic Effects. Curr. Pharm. Des. 2015;21:3548–3556. doi: 10.2174/1381612821666150225120314.
    1. Saccà S.C., Roszkowska A.M., Izzotti A. Environmental light and endogenous antioxidants as the main determinants of non-cancer ocular diseases. Mutat. Res. Rev. Mutat. Res. 2013;752:153–171. doi: 10.1016/j.mrrev.2013.01.001.
    1. Riley P.A. Free Radicals in Biology: Oxidative Stress and the Effects of Ionizing Radiation. Int. J. Radiat. Biol. 1994;65:27–33. doi: 10.1080/09553009414550041.
    1. Richdale K., Chao C., Hamilton M. Eye care providers’ emerging roles in early detection of diabetes and management of diabetic changes to the ocular surface: A review. BMJ Open Diabetes Res. Care. 2020;8:e001094. doi: 10.1136/bmjdrc-2019-001094.
    1. DeMill D.L., Hussain M., Pop-Busui R., Shtein R.M. Ocular surface disease in patients with diabetic peripheral neuropathy. Br. J. Ophthalmol. 2016;100:924. doi: 10.1136/bjophthalmol-2015-307369.
    1. Yoon K.C., Im S.K., Seo M.S. Changes of Tear Film and Ocular Surface in Diabetes Mellitus. Korean J. Ophthalmol. 2004;18:168–174. doi: 10.3341/kjo.2004.18.2.168.
    1. Behl T., Kaur I., Kotwani A. Implication of oxidative stress in progression of diabetic retinopathy. Surv. Ophthalmol. 2016;61:187–196. doi: 10.1016/j.survophthal.2015.06.001.
    1. Johnson F., Giulivi C. Superoxide dismutases and their impact upon human health. Mol. Asp. Med. 2005;26:340–352. doi: 10.1016/j.mam.2005.07.006.
    1. Leonard S.S., Harris G.K., Shi X. Metal-induced oxidative stress and signal transduction. Free Radic. Biol. Med. 2004;37:1921–1942. doi: 10.1016/j.freeradbiomed.2004.09.010.
    1. Chen Y., Mehta G., Vasiliou V. Antioxidant defenses in the ocular surface. Ocul. Surf. 2009;7:176–185. doi: 10.1016/S1542-0124(12)70185-4.
    1. Hardy P., Beauchamp M., Sennlaub F., Gobeil F.J., Tremblay L., Mwaikambo B., Lachapelle P., Chemtob S. New insights into the retinal circulation: Inflammatory lipid mediators in ischemic retinopathy. Prostaglandins Leukot. Essent. Fat. Acids. 2005;72:301–325. doi: 10.1016/j.plefa.2005.02.004.
    1. Bishop P.N. The role of extracellular matrix in retinal vascular development and preretinal neovascularization. Exp. Eye Res. 2015;133:30–36. doi: 10.1016/j.exer.2014.10.021.
    1. Géhl Z., Bakondi E., Resch M.D., Hegedűs C., Kovács K., Lakatos P., Szabó A., Nagy Z., Virág L. Diabetes-induced oxidative stress in the vitreous humor. Redox Biol. 2016;9:100–103. doi: 10.1016/j.redox.2016.07.003.
    1. Blokhina O., Virolainen E., Fagerstedt K.V. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. 2003;91:179–194. doi: 10.1093/aob/mcf118.
    1. Ohia S.E., Opere C.A., LeDay A.M. Pharmacological consequences of oxidative stress in ocular tissues. Mutat. Res. Fundam. Mol. Mech. Mutagenes. 2005;579:22–36. doi: 10.1016/j.mrfmmm.2005.03.025.
    1. Rose R.C., Richer S.P., Bode A.M. Ocular Oxidants and Antioxidant Protection. Proc. Soc. Exp. Biol. Med. 1998;217:397–407. doi: 10.3181/00379727-217-44250.
    1. Shang F., Lu M., Dudek E., Reddan J., Taylor A. Vitamin C and vitamin E restore the resistance of GSH-depleted lens cells to H2O2. Free Radic. Biol. Med. 2003;34:521–530. doi: 10.1016/S0891-5849(02)01304-7.
    1. Shichi H. Cataract formation and prevention. Expert Opin. Investig. Drugs. 2004;13:691–701. doi: 10.1517/13543784.13.6.691.
    1. Beatty S., Koh H.-H., Phil M., Henson D., Boulton M. The Role of Oxidative Stress in the Pathogenesis of Age-Related Macular Degeneration. Surv. Ophthalmol. 2000;45:115–134. doi: 10.1016/S0039-6257(00)00140-5.
    1. Kowluru R., Kern T.S., Engerman R.L. Abnormalities of retinal metabolism in diabetes or galactosemia II. Comparison of γ-glutamyl transpeptidase in retina and cerebral cortex, and effects of antioxidant therapy. Curr. Eye Res. 1994;13:891–896. doi: 10.3109/02713689409015092.
    1. Lu M., Kuroki M., Amano S., Tolentino M., Keough K., Kim I., Bucala R., Adamis A.P. Advanced glycation end products increase retinal vascular endothelial growth factor expression. J. Clin. Investig. 1998;101:1219–1224. doi: 10.1172/JCI1277.
    1. van Reyk D.M., Gillies M.C., Davies M.J. The retina: Oxidative stress and diabetes. Redox Rep. 2003;8:187–192. doi: 10.1179/135100003225002673.
    1. Domènech E., Marfany G. The Relevance of Oxidative Stress in the Pathogenesis and Therapy of Retinal Dystrophies. Antioxidants. 2020;9:347. doi: 10.3390/antiox9040347.
    1. Rashid K., Akhtar-Schaefer I., Langmann T. Microglia in Retinal Degeneration. Front. Immunol. 2019;10:1975. doi: 10.3389/fimmu.2019.01975.
    1. Maan-Yuh Lin A., Yang C.-H., Chai C.-Y. Striatal Dopamine Dynamics Are Altered Following an Intranigral Infusion of Iron in Adult Rats. Free Radic. Biol. Med. 1998;24:988–993. doi: 10.1016/S0891-5849(97)00398-5.
    1. LeDay A.M., Ganguly S., Kulkarni K., Dash A., Opere C., Ohia S. Effect of hydrogen peroxide on amino acid concentrations in bovine retina and vitreous humor, ex vivo. Methods Find Exp. Clin. Pharmacol. 2003;25:695–701. doi: 10.1358/mf.2003.25.9.793336.
    1. Sharpe M.A., Robb S.J., Clark J.B. Nitric oxide and Fenton/Haber–Weiss chemistry: Nitric oxide is a potent antioxidant at physiological concentrations. J. Neurochem. 2003;87:386–394. doi: 10.1046/j.1471-4159.2003.02001.x.
    1. LeDay A.M., Kulkarni K.H., Opere C.A., Ohia S.E. Arachidonic acid metabolites and peroxide-induced inhibition of [3H]D-aspartate release from bovine isolated retinae. Curr. Eye Res. 2004;28:367–372. doi: 10.1076/ceyr.28.5.367.28675.
    1. Halliwell B., Gutteridge J.M.C. The definition and measurement of antioxidants in biological systems. Free Radic. Biol. Med. 1995;18:125–126. doi: 10.1016/0891-5849(95)91457-3.
    1. Ankamah E., Sebag J., Ng E., Nolan J. Vitreous Antioxidants, Degeneration, and Vitreo-Retinopathy: Exploring the Links. Antioxidants. 2019;9:7. doi: 10.3390/antiox9010007.
    1. Behndig A., Svensson B., Marklund S.L., Karlsson K. Superoxide dismutase isoenzymes in the human eye. Investig. Ophthalmol. Vis. Sci. 1998;39:471–475.
    1. Richer S.P., Rose R.C. Water soluble antioxidants in mammalian aqueous humor: Interaction with UV B and hydrogen peroxide. Vis. Res. 1998;38:2881–2888. doi: 10.1016/S0042-6989(98)00069-8.
    1. Horwath-Winter J., Kirchengast S., Meinitzer A., Wachswender C., Faschinger C., Schmut O. Determination of uric acid concentrations in human tear fluid, aqueous humour and serum. Acta Ophthalmol. 2009;87:188–192. doi: 10.1111/j.1755-3768.2008.01215.x.
    1. Milston R., Madigan M.C., Sebag J. Vitreous floaters: Etiology, diagnostics, and management. Surv. Ophthalmol. 2016;61:211–227. doi: 10.1016/j.survophthal.2015.11.008.
    1. Filas B.A., Zhang Q., Okamoto R.J., Shui Y.-B., Beebe D.C. Enzymatic degradation identifies components responsible for the structural properties of the vitreous body. Investig. Ophthalmol. Vis. Sci. 2014;55:55–63. doi: 10.1167/iovs.13-13026.
    1. Kita T., Sakamoto T., Ishibashi T. II.D. Hyalocytes: Essential Vitreous Cells in Vitreoretinal Health and Disease. In: Sebag J., editor. Vitreous: In Health and Disease. Springer; New York, NY, USA: 2014. pp. 151–164.
    1. Shui Y.-B., Holekamp N.M., Kramer B.C., Crowley J.R., Wilkins M.A., Chu F., Malone P.E., Mangers S.J., Hou J.H., Siegfried C.J., et al. The gel state of the vitreous and ascorbate-dependent oxygen consumption: Relationship to the etiology of nuclear cataracts. Arch. Ophthalmol. 2009;127:475–482. doi: 10.1001/archophthalmol.2008.621.
    1. Sa A., Elawadi A.I. Liquefaction of the Vitreous Humor floaters is a Risk Factor for Lens Opacity and Retinal Dysfunction. J. Am. Sci. 2011;7:927–936.
    1. Mirończuk-Chodakowska I., Witkowska A.M., Zujko M.E. Endogenous non-enzymatic antioxidants in the human body. Adv. Med Sci. 2018;63:68–78. doi: 10.1016/j.advms.2017.05.005.
    1. Pham-Huy L.A., He H., Pham-Huy C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. IJBS. 2008;4:89–96.
    1. Park S.W., Ghim W., Oh S., Kim Y., Park U.C., Kang J., Yu H.G. Association of vitreous vitamin C depletion with diabetic macular ischemia in proliferative diabetic retinopathy. PLoS ONE. 2019;14:e0218433. doi: 10.1371/journal.pone.0218433.
    1. Ashoori M., Saedisomeolia A. Riboflavin (vitamin B2) and oxidative stress: A review. Br. J. Nutr. 2014;111:1985–1991. doi: 10.1017/S0007114514000178.
    1. Konerirajapuram N., Coral K., Punitham R., Sharma T., Kasinathan N., Sivaramakrishnan R. Trace Elements Iron, Copper and Zinc in Vitreous of Patients with Various Vitreoretinal Diseases. Indian J. Ophthalmol. 2004;52:145–148.
    1. Sato M., Kondoh M. Recent Studies on Metallothionein: Protection Against Toxicity of Heavy Metals and Oxygen Free Radicals. Tohoku J. Exp. Med. 2002;196:9–22. doi: 10.1620/tjem.196.9.
    1. Tinggi U. Selenium: Its role as antioxidant in human health. Environ. Health Prev. Med. 2008;13:102–108. doi: 10.1007/s12199-007-0019-4.
    1. Golbidi S., Laher I. Antioxidant therapy in human endocrine disorders. Med. Sci. Monit. 2010;16:RA9–RA24.
    1. Golbidi S., Badran M., Laher I. Antioxidant and anti-inflammatory effects of exercise in diabetic patients. Exp. Diabetes Res. 2012;2012:941868. doi: 10.1155/2012/941868.
    1. Sunitha K., Suresh P., Santhosh M.S., Hemshekhar M., Thushara R., Marathe G.K., Thirunavukkarasu C., Kemparaju K., Kumar M.S., Girish K. Inhibition of hyaluronidase by N-acetyl cysteine and glutathione: Role of thiol group in hyaluronan protection. Int. J. Biol. Macromol. 2013;55:39–46. doi: 10.1016/j.ijbiomac.2012.12.047.
    1. Wong R.W., Richa D.C., Hahn P., Green W.R., Dunaief J.L. Iron toxicity as a potential factor in AMD. Retina. 2007;7:997–1003. doi: 10.1097/IAE.0b013e318074c290.
    1. Krizova L., Kalousova M., Kubena A., Benakova H., Zima T., Kovarik Z., Kalvoda J., Kalvodova B. Increased Uric Acid and Glucose Concentrations in Vitreous and Serum of Patients with Diabetic Macular Oedema. Ophthalmic Res. 2011;46:73–79. doi: 10.1159/000322994.
    1. González de Vega R., Fernández-Sánchez M.L., González-Iglesias H., Prados M.C., Sanz-Medel A. Quantitative selenium speciation by HPLC-ICP-MS(IDA) and simultaneous activity measurements in human vitreous humor. Anal. Bioanal. Chem. 2015;407:2405–2413. doi: 10.1007/s00216-014-8241-6.
    1. Herbette S., Roeckel-Drevet P., Drevet J.R. Seleno-independent glutathione peroxidases. FEBS J. 2007;274:2163–2180. doi: 10.1111/j.1742-4658.2007.05774.x.
    1. Wert K.J., Vélez G., Cross M.R., Wagner B.A., Teoh-Fitzgerald M.L., Buettner G.R., McAnany J.J., Olivier A., Tsang S.H., Harper M.M., et al. Extracellular superoxide dismutase (SOD3) regulates oxidative stress at the vitreoretinal interface. Free Radic. Biol. Med. 2018;124:408–419. doi: 10.1016/j.freeradbiomed.2018.06.024.
    1. Yamane K., Minamoto A., Yamashita H., Takamura H., Miyamoto-Myoken Y., Yoshizato K., Nabetani T., Tsugita A., Mishima H.K. Proteome Analysis of Human Vitreous Proteins. Mol. Cell. Proteom. 2003;2:1177. doi: 10.1074/mcp.M300038-MCP200.
    1. Murthy K.R., Goel R., Subbannayya Y., Jacob H.K.C., Murthy P.R., Manda S.S., Patil A.H., Sharma R., Sahasrabuddhe N.A., Parashar A., et al. Proteomic analysis of human vitreous humor. Clin. Proteom. 2014;11:29. doi: 10.1186/1559-0275-11-29.
    1. Łukasik M., Szutowski M., Sołtyszewski I., Cieślak P.A., Małkowska A. Postmortem Vitreous Humor Analysis for Xenobiotics and their Metabolites. Law Forensic Sci. 2018;15:1–8.
    1. Yadav D., Varma L.T., Yadav K. Drug Delivery for the Retina and Posterior Segment Disease. Springer; Cham, Switzerland: 2018. Drug Delivery to Posterior Segment of the Eye: Conventional Delivery Strategies, Their Barriers, and Restrictions; pp. 51–67.
    1. Li S., Fu X.-A., Zhou X.-F., Chen Y.-Y., Chen W.-Q. Angiogenesis-related cytokines in serum of proliferative diabetic retinopathy patients before and after vitrectomy. Int. J. Ophthalmol. 2012;5:726–730. doi: 10.3980/j.issn.2222-3959.2012.06.14.
    1. Tamhane M., Cabrera-Ghayouri S., Abelian G., Viswanath V. Review of Biomarkers in Ocular Matrices: Challenges and Opportunities. Pharm. Res. 2019;36:40. doi: 10.1007/s11095-019-2569-8.
    1. Fong P.Y., Shih K.C., Lam P.Y., Chan T.C.Y., Jhanji V., Tong L. Role of tear film biomarkers in the diagnosis and management of dry eye disease. Taiwan J. Ophthalmol. 2019;9:150–159. doi: 10.4103/tjo.tjo_56_19.
    1. Rentka A., Koroskenyi K., Hársfalvi J., Szekanecz Z., Szucs G., Szodoray P., Kemeny-Beke A. Evaluation of commonly used tear sampling methods and their relevance in subsequent biochemical analysis. Ann. Clin. Biochem. 2017;54:521–529. doi: 10.1177/0004563217695843.
    1. Di Zazzo A., Micera A., De Piano M., Cortes M., Bonini S. Tears and ocular surface disorders: Usefulness of biomarkers. J. Cell. Physiol. 2019;234:9982–9993. doi: 10.1002/jcp.27895.
    1. Inic-Kanada A., Nussbaumer A., Montanaro J., Belij S., Schlacher S., Stein E., Bintner N., Merio M., Zlabinger G.J., Barisani-Asenbauer T. Comparison of ophthalmic sponges and extraction buffers for quantifying cytokine profiles in tears using Luminex technology. Mol. Vis. 2012;18:2717–2725.
    1. Balne P.K., Au V.B., Tong L., Ghosh A., Agrawal M., Connolly J. Bead Based Multiplex Assay for Analysis of Tear Cytokine Profiles. J. Vis. Exp. 2017 doi: 10.3791/55993.
    1. Johnson M., McLaren J.W., Overby D.R. Unconventional aqueous humor outflow: A review. Exp. Eye Res. 2017;158:94–111. doi: 10.1016/j.exer.2016.01.017.
    1. Chowdhury U.R., Madden B.J., Charlesworth M.C., Fautsch M.P. Proteome analysis of human aqueous humor. Investig. Ophthalmol. Vis. Sci. 2010;51:4921–4931. doi: 10.1167/iovs.10-5531.
    1. Murthy K.R., Rajagopalan P., Pinto S.M., Advani J., Murthy P.R., Goel R., Subbannayya Y., Balakrishnan L., Dash M., Anil A.K., et al. Proteomics of Human Aqueous Humor. Omics J. Integr. Biol. 2015;19:283–293. doi: 10.1089/omi.2015.0029.
    1. Goel M., Picciani R.G., Lee R.K., Bhattacharya S.K. Aqueous humor dynamics: A review. Open Ophthalmol. J. 2010;4:52–59. doi: 10.2174/1874364101004010052.
    1. Rusnak S., Vrzalová J., Sobotova M., Hecová L., Ricarova R., Topolcan O. The Measurement of Intraocular Biomarkers in Various Stages of Proliferative Diabetic Retinopathy Using Multiplex xMAP Technology. J. Ophthalmol. 2015;2015:424783. doi: 10.1155/2015/424783.
    1. Scott J.E. The chemical morphology of the vitreous. Eye. 1992;6:553–555. doi: 10.1038/eye.1992.120.
    1. Ulrich J.N., Spannagl M., Kampik A., Gandorfer A. Components of the fibrinolytic system in the vitreous body in patients with vitreoretinal disorders. Clin. Exp. Ophthalmol. 2008;36:431–436. doi: 10.1111/j.1442-9071.2008.01793.x.
    1. Wu C.W., Sauter J.L., Johnson P.K., Chen C.-D., Olsen T.W. Identification and localization of major soluble vitreous proteins in human ocular tissue. Am. J. Ophthalmol. 2004;137:655–661. doi: 10.1016/j.ajo.2003.11.009.
    1. Ghodasra D.H., Fante R., Gardner T.W., Langue M., Niziol L.M., Besirli C., Cohen S.R., Dedania V.S., Demirci H., Jain N., et al. Safety and Feasibility of Quantitative Multiplexed Cytokine Analysis From Office-Based Vitreous Aspiration. Investig. Ophthalmol. Vis. Sci. 2016;57:3017–3023. doi: 10.1167/iovs.15-18721.
    1. Bergandi L., Skorokhod O.A., La Grotta R., Schwarzer E., Nuzzi R. Oxidative Stress, Lipid Peroxidation, and Loss of Hyaluronic Acid in the Human Vitreous Affected by Synchysis Scintillans. J. Ophthalmol. 2019;2019:7231015. doi: 10.1155/2019/7231015.
    1. Srividya G., Jain M., Mahalakshmi K., Gayathri S., Raman R., Angayarkanni N. A novel and less invasive technique to assess cytokine profile of vitreous in patients of diabetic macular oedema. Eye. 2018;32:820–829. doi: 10.1038/eye.2017.285.
    1. García-Ramírez M., Canals F., Hernandez C., Colomé N., Ferrer C., Carrasco E., García-Arumí J., Simó R. Proteomic analysis of human vitreous fluid by fluorescence-based difference gel electrophoresis (DIGE): A new strategy for identifying potential candidates in the pathogenesis of proliferative diabetic retinopathy. Diabetologia. 2007;50:1294–1303. doi: 10.1007/s00125-007-0627-y.
    1. Jenkins A.J., Joglekar M.V., Hardikar A.A., Keech A.C., O’Neal D.N., Januszewski A.S. Biomarkers in Diabetic Retinopathy. Rev. Diabet. Stud. 2015;12:159–195. doi: 10.1900/RDS.2015.12.159.
    1. FDANIH Biomarker Working Group . BEST (Biomarkers, EndpointS, and other Tools) Resource. Food and Drug Administration; Silver Spring, MD, USA: 2018. p. 61.
    1. Wecker T., Hoffmeier K., Plötner A., Grüning B., Horres R., Backofen R., Reinhard T., Schlunck G. MicroRNA Profiling in Aqueous Humor of Individual Human Eyes by Next-Generation Sequencing. Investig. Ophthalmol. Vis. Sci. 2016;57:1706–1713. doi: 10.1167/iovs.15-17828.
    1. Tanaka Y., Tsuda S., Kunikata H., Sato J., Kokubun T., Yasuda M., Nishiguchi K.M., Inada T., Nakazawa T. Profiles of Extracellular miRNAs in the Aqueous Humor of Glaucoma Patients Assessed with a Microarray System. Sci. Rep. 2014;4:5089. doi: 10.1038/srep05089.
    1. Kulaksızoglu S., Karalezli A. Aqueous Humour and Serum Levels of Nitric Oxide, Malondialdehyde and Total Antioxidant Status in Patients with Type 2 Diabetes with Proliferative Diabetic Retinopathy and Nondiabetic Senile Cataracts. Can. J. Diabetes. 2016;40:115–119. doi: 10.1016/j.jcjd.2015.07.002.
    1. Nezzar H., Chiambaretta F., Marceau G., Blanchon L., Faye B., Dechelotte P., Rigal D., Sapin V. Molecular and metabolic retinoid pathways in the human ocular surface. Mol. Vis. 2007;13:1641–1650.
    1. Goyal A., Srivastava A., Sihota R., Kaur J. Evaluation of Oxidative Stress Markers in Aqueous Humor of Primary Open Angle Glaucoma and Primary Angle Closure Glaucoma Patients. Curr. Eye Res. 2014;39:823–829. doi: 10.3109/02713683.2011.556299.
    1. Flohé L., Günzler W.A. Assays of glutathione peroxidase. Methods Enzymol. 1984;105:114–120. doi: 10.1016/s0076-6879(84)05015-1.
    1. Marrocco I., Altieri F., Peluso I. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxid. Med. Cell. Longev. 2017;2017:6501046. doi: 10.1155/2017/6501046.
    1. Huang W., Koralewska-Makár A., Bauer B., Åkesson B. Extracellular glutathione peroxidase and ascorbic acid in aqueous humor and serum of patients operated on for cataract. Clin. Chim. Acta. 1997;261:117–130. doi: 10.1016/S0009-8981(97)06520-0.
    1. Ferreira S.M., Lerner S.F., Brunzini R., Evelson P., Llesuy S. Oxidative stress markers in aqueous humor of glaucoma patients. Am. J. Ophthalmol. 2004;137:62–69. doi: 10.1016/S0002-9394(03)00788-8.
    1. Stadtman E.R., Oliver C.N. Metal-catalyzed oxidation of proteins. Physiological consequences. J. Biol. Chem. 1991;266:2005–2008.
    1. Altomare E., Grattagliano I., Vendemaile G., Micelli-Ferrari T., Signorile A., Cardia L. Oxidative protein damage in human diabetic eye: Evidence of a retinal participation. Eur. J. Clin. Investig. 1997;27:141–147. doi: 10.1046/j.1365-2362.1997.780629.x.
    1. Mancino R., Di Pierro N., Varesi C., Cerulli A., Feraco A., Cedrone C., Pinazo-Duran M.D., Coletta M., Nucci C. Lipid peroxidation and total antioxidant capacity in vitreous, aqueous humor, and blood samples from patients with diabetic retinopathy. Mol. Vis. 2011;17:1298–1304.
    1. Brzović-Šarić V., Landeka I., Šarić B., Barberić M., Andrijašević L., Cerovski B., Oršolić N., Đikić D. Levels of selected oxidative stress markers in the vitreous and serum of diabetic retinopathy patients. Mol. Vis. 2015;21:649–664.
    1. Georgakopoulos C.D., Lamari F.N., Karathanasopoulou I.N., Gartaganis V.S., Pharmakakis N.M., Karamanos N. Tear analysis of ascorbic acid, uric acid and malondialdehyde with capillary electrophoresis. Biomed. Chromatogr. 2010;24:852–857. doi: 10.1002/bmc.1376.
    1. Hernández-Martínez F.J., Piñas-García P., Lleó-Pérez A., Zanon-Moreno V.C., Bendala-Tufanisco E., García-Medina J., Vinuesa-Silva I., Pinazo-Durán M.D. Biomarkers of lipid peroxidation in the aqueous humor of primary open-angle glaucoma patients. Arch. Soc. Esp. Oftalmol. 2016;91:357–362. doi: 10.1016/j.oftal.2016.01.031.
    1. Behndig A., Karlsson K., Johansson B.O., Brännström T., Marklund S.L. Superoxide dismutase isoenzymes in the normal and diseased human cornea. Investig. Ophthalmol. Vis. Sci. 2001;42:2293–2296.
    1. Kim E.B., Kim H.K., Hyon J.Y., Wee W.R., Shin Y.J. Oxidative Stress Levels in Aqueous Humor from High Myopic Patients. Korean J. Ophthalmol. 2016;30:172–179. doi: 10.3341/kjo.2016.30.3.172.
    1. Koliakos G.G., Konstas A.G.P., Schlötzer-Schrehardt U., Hollo G., Katsimbris I.E., Georgiadis N., Ritch R. 8-Isoprostaglandin F2a and ascorbic acid concentration in the aqueous humour of patients with exfoliation syndrome. Br. J. Ophthalmol. 2003;87:353–356. doi: 10.1136/bjo.87.3.353.
    1. Rahim A. 8-Isoprostaglandin F2a Levels in Aqueous Humor of Senile and Diabetic Cataract Patients. Iosr J. Dent. Med Sci. 2012;2:40–42. doi: 10.9790/0853-0234042.
    1. Yilmaz G., Esser P., Kociek N., Aydin P., Heimann K. Elevated vitreous nitric oxide levels in patients with proliferative diabetic retinopathy. Am. J. Ophthalmol. 2000;130:87–90. doi: 10.1016/S0002-9394(00)00398-6.
    1. Liu J., Shi B., He S., Yao X., Willcox M.D., Zhao Z. Changes to tear cytokines of type 2 diabetic patients with or without retinopathy. Mol. Vis. 2010;16:2931–2938.
    1. Liu R., Gao C., Chen H., Li Y., Jin Y., Qi H. Analysis of Th17-associated cytokines and clinical correlations in patients with dry eye disease. PLoS ONE. 2017;12:e0173301. doi: 10.1371/journal.pone.0173301.
    1. Chen H., Zhang X., Liao N., Wen F. Assessment of biomarkers using multiplex assays in aqueous humor of patients with diabetic retinopathy. BMC Ophthalmol. 2017;17:176. doi: 10.1186/s12886-017-0572-6.
    1. Funatsu H., Yamashita H., Mimura T., Noma H., Nakamura S., Hori S. Risk evaluation of outcome of vitreous surgery based on vitreous levels of cytokines. Eye. 2007;21:377–382. doi: 10.1038/sj.eye.6702213.
    1. Tsai T., Kuehn S., Tsiampalis N., Vu M.-K., Kakkassery V., Stute G., Dick H.B., Joachim S.C. Anti-inflammatory cytokine and angiogenic factors levels in vitreous samples of diabetic retinopathy patients. PLoS ONE. 2018;13:e0194603. doi: 10.1371/journal.pone.0194603.
    1. Chernykh V., Smirnov E., Varvarinsky Y., Chernykh D., Obukhova O., Trunov A. IL-4, IL-6, IL-10, IL-17A and vascular endothelial growth factor in the vitreous of patients with proliferative diabetic retinopathy. Adv. Biosci. Biotechnol. 2015;5:184–187. doi: 10.4236/abb.2014.53023.
    1. Sun C., Zhang H., Jiang J., Li Y., Nie C., Gu J., Luo L., Wang Z. Angiogenic and inflammatory biomarker levels in aqueous humor and vitreous of neovascular glaucoma and proliferative diabetic retinopathy. Int. Ophthalmol. 2020;40:467–475. doi: 10.1007/s10792-019-01207-4.
    1. Simsek M., Ozdal P.C., Akbiyik F., Citirik M., Berker N., Erol Y.O., Yilmazbas P. Aqueous humor IL-8, IL-10, and VEGF levels in Fuchs’ uveitis syndrome and Behçet’s uveitis. Int. Ophthalmol. 2019;39:2629–2636. doi: 10.1007/s10792-019-01112-w.
    1. Mao C., Yan H. Roles of elevated intravitreal IL-1β and IL-10 levels in proliferative diabetic retinopathy. Indian J. Ophthalmol. 2014;62:699–701. doi: 10.4103/0301-4738.136220.
    1. Costagliola C., Romano V., De Tollis M., Aceto F., Dell’Omo R., Romano M., Pedicino C., Semeraro F. TNF-alpha levels in tears: A novel biomarker to assess the degree of diabetic retinopathy. Mediat. Inflamm. 2013;2013:629529. doi: 10.1155/2013/629529.
    1. Wu H., Hwang D.-K., Song X., Tao Y. Association between Aqueous Cytokines and Diabetic Retinopathy Stage. J. Ophthalmol. 2017;2017:9402198. doi: 10.1155/2017/9402198.
    1. Boss J.D., Singh P.K., Pandya H.K., Tosi J., Kim C., Tewari A., Juzych M.S., Abrams G.W., Kumar A. Assessment of Neurotrophins and Inflammatory Mediators in Vitreous of Patients With Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2017;58:5594–5603. doi: 10.1167/iovs.17-21973.
    1. Canataroglu H., Varinli I., Ozcan A., Canataroglu A., Doran F., Varinli S. Interleukin (IL)-6, Interleukin (IL)-8 Levels and Cellular Composition of the Vitreous Humor in Proliferative Diabetic Retinopathy, Proliferative Vitreoretinopathy, and Traumatic Proliferative Vitreoretinopathy. Ocul. Immunol. Inflamm. 2005;13:375–381. doi: 10.1080/09273940490518900.
    1. Liu R., Ma B., Gao Y., Ma B., Liu Y., Qi H. Tear Inflammatory Cytokines Analysis and Clinical Correlations in Diabetes and Nondiabetes With Dry Eye. Am. J. Ophthalmol. 2019;200:10–15. doi: 10.1016/j.ajo.2018.12.001.
    1. Fu R., Klinngam W., Heur M., Edman M.C., Hamm-Alvarez S.F. Tear Proteases and Protease Inhibitors: Potential Biomarkers and Disease Drivers in Ocular Surface Disease. Eye Contact Lenses. 2020;46(Suppl. 2):S70–S83. doi: 10.1097/ICL.0000000000000641.
    1. Kłysik A., Naduk-Kik J., Hrabec Z., Gos R., Hrabec E. Intraocular matrix metalloproteinase 2 and 9 in patients with diabetes mellitus with and without diabetic retinopathy. Arch. Med Sci. AMS. 2010;6:375–381. doi: 10.5114/aoms.2010.14258.
    1. Tuuminen R., Loukovaara S. High intravitreal TGF-β1 and MMP-9 levels in eyes with retinal vein occlusion. Eye. 2014;28:1095–1099. doi: 10.1038/eye.2014.137.
    1. Luo L., Li D.Q., Pflugfelder S.C. Hyperosmolarity-induced apoptosis in human corneal epithelial cells is mediated by cytochrome c and MAPK pathways. Cornea. 2007;26:452–460. doi: 10.1097/ICO.0b013e318030d259.
    1. Peskin A.V., Winterbourn C.C. Assay of superoxide dismutase activity in a plate assay using WST-1. Free Radic. Biol. Med. 2017;103:188–191. doi: 10.1016/j.freeradbiomed.2016.12.033.
    1. Kernell A., Lundh B.L., Marklund S.L., Skoog K.O., Björkstén B. Superoxide dismutase in the anterior chamber and the vitreous of diabetic patients. Investig. Ophthalmol. Vis. Sci. 1992;33:3131–3135.
    1. Sies H. Total Antioxidant Capacity: Appraisal of a Concept. J. Nutr. 2007;137:1493–1495. doi: 10.1093/jn/137.6.1493.
    1. Huang D., Ou B., Prior R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005;53:1841–1856. doi: 10.1021/jf030723c.
    1. Ghiselli A., Serafini M., Natella F., Scaccini C. Total antioxidant capacity as a tool to assess redox status: Critical view and experimental data. Free Radic. Biol. Med. 2000;29:1106–1114. doi: 10.1016/S0891-5849(00)00394-4.
    1. Saccà S.C., Pascotto A., Camicione P., Capris P., Izzotti A. Oxidative DNA Damage in the Human Trabecular Meshwork: Clinical Correlation in Patients With Primary Open-Angle Glaucoma. Arch. Ophthalmol. 2005;123:458–463. doi: 10.1001/archopht.123.4.458.
    1. Izuta H., Matsunaga N., Shimazawa M., Sugiyama T., Ikeda T., Hara H. Proliferative diabetic retinopathy and relations among antioxidant activity, oxidative stress, and VEGF in the vitreous body. Mol. Vis. 2010;16:130–136.
    1. Dizdaroglu M., Jaruga P., Birincioglu M., Rodriguez H. Free radical-induced damage to DNA: Mechanisms and measurement. Free Radic. Biol. Med. 2002;32:1102–1115. doi: 10.1016/S0891-5849(02)00826-2.
    1. Cadet J., Douki T., Gasparutto D., Ravanat J.L. Oxidative damage to DNA: Formation, measurement and biochemical features. Mutat. Res. Fundam. Mol. Mech. Mutagenesis. 2003;531:5–23. doi: 10.1016/j.mrfmmm.2003.09.001.
    1. Cadet J., Wagner J.R. Oxidatively generated base damage to cellular DNA by hydroxyl radical and one-electron oxidants: Similarities and differences. Arch. Biochem. Biophys. 2014;557:47–54. doi: 10.1016/j.abb.2014.05.001.
    1. Thiagarajan R., Manikandan R. Antioxidants and cataract. Free Radic. Res. 2013;47:337–345. doi: 10.3109/10715762.2013.777155.
    1. Jia Y., Hu D.-N., Zhu D., Zhang L., Gu P., Fan X., Zhou J.-B. MMP-2, MMP-3, TIMP-1, TIMP-2, and TIMP-3 Protein Levels in Human Aqueous Humor: Relationship With Axial Length. Investig. Ophthalmol. Vis. Sci. 2014;55:3922–3928. doi: 10.1167/iovs.14-13983.
    1. Saxena S., Srivastava P., Khanna V.K. Elevated lipid peroxides induced angiogenesis in proliferative diabetic retinopathy. J. Ocul. Biol. Dis. Inform. 2010;3:85–87. doi: 10.1007/s12177-011-9059-5.
    1. Kersten E., Paun C.C., Schellevis R.L., Hoyng C.B., Delcourt C., Lengyel I., Peto T., Ueffing M., Klaver C.C.W., Dammeier S., et al. Systemic and ocular fluid compounds as potential biomarkers in age-related macular degeneration. Surv. Ophthalmol. 2018;63:9–39. doi: 10.1016/j.survophthal.2017.05.003.
    1. Cai J., Nelson K.C., Wu M., Sternberg P., Jones D.P. Oxidative damage and protection of the RPE. Prog. Retin. Eye Res. 2000;19:205–221. doi: 10.1016/S1350-9462(99)00009-9.
    1. Bergandi L., Skorokhod O.A., Franzone F., La Grotta R., Schwarzer E., Nuzzi R. Induction of oxidative stress in human aqueous and vitreous humors by Nd:YAG laser posterior capsulotomy. Int. J. Ophthalmol. 2018;11:1145–1151. doi: 10.18240/ijo.2018.07.12.
    1. Ethen C.M., Reilly C., Feng X., Olsen T.W., Ferrington D.A. Age-Related Macular Degeneration and Retinal Protein Modification by 4-Hydroxy-2-nonenal. Investig. Ophthalmol. Vis. Sci. 2007;48:3469–3479. doi: 10.1167/iovs.06-1058.
    1. Cipak A., Mrakovcic L., Ciz M., Lojek A., Mihaylova B., Goshev I., Jaganjac M., Cindric M., Sitic S., Margaritoni M., et al. Growth suppression of human breast carcinoma stem cells by lipid peroxidation product 4-hydroxy-2-nonenal and hydroxyl radicalmodified collagen. Acta Biochim. Pol. 2010;57:165–171. doi: 10.18388/abp.2010_2390.
    1. Bishop P.N., Holmes D.F., Kadler K.E., McLeod D., Bos K.J. Age-Related Changes on the Surface of Vitreous Collagen Fibrils. Investig. Ophthalmol. Vis. Sci. 2004;45:1041–1046. doi: 10.1167/iovs.03-1017.
    1. Kamegawa M., Nakanishi-Ueda T., Iwai S., Ueda T., Kosuge S., Ogura H., Sasuga K., Inagaki M., Watanabe M., Oguchi K., et al. Effect of Lipid-Hydroperoxide-Induced Oxidative Stress on Vitamin E, Ascorbate and Glutathione in the Rabbit Retina. Ophthalmic Res. 2007;39:49–54. doi: 10.1159/000097907.
    1. Madsen-Bouterse S.A., Kowluru R.A. Oxidative stress and diabetic retinopathy: Pathophysiological mechanisms and treatment perspectives. Rev. Endocr. Metab. Disord. 2008;9:315–327. doi: 10.1007/s11154-008-9090-4.
    1. Smith K.A., Shepherd J., Wakil A., Kilpatrick E.S. A comparison of methods for the measurement of 8-isoPGF2α: A marker of oxidative stress. Ann. Clin. Biochem. 2011;48:147–154. doi: 10.1258/acb.2010.010151.
    1. Evereklioglu C., Er H., Doganay S., Cekmen M., Turkoz Y., Otlu B., Ozerol E. Nitric oxide and lipid peroxidation are increased and associated with decreased antioxidant enzyme activities in patients with age-related macular degeneration. Doc. Ophthalmol. 2003;106:129–136. doi: 10.1023/A:1022512402811.
    1. Bhutto I.A., Baba T., Merges C., McLeod D.S., Lutty G.A. Low nitric oxide synthases (NOSs) in eyes with age-related macular degeneration (AMD) Exp. Eye Res. 2010;90:155–167. doi: 10.1016/j.exer.2009.10.004.
    1. Chakravarthy U., Stitt A.W., McNally J., Bailie J.R., Hoey E.M., Duprex P., Duprex W.P. Nitric oxide synthase activity and expression in retinal capillary endothelial cells and pericytes. Curr. Eye Res. 1995;14:285–294. doi: 10.3109/02713689509033528.
    1. Becquet F., Courtois Y., Goureau O. Nitric oxide in the eye: Multifaceted roles and diverse outcomes. Surv. Ophthalmol. 1997;42:71–82. doi: 10.1016/S0039-6257(97)84043-X.
    1. Hattenbach L.-O., Allers A., Klais C., Koch F., Hecker M. L-Arginine–Nitric Oxide Pathway–Related Metabolites in the Aqueous Humor of Diabetic Patients. Investig. Ophthalmol. Vis. Sci. 2000;41:213–217.
    1. Wiederholt M., Sturm A., Lepple-Wienhues A. Relaxation of trabecular meshwork and ciliary muscle by release of nitric oxide. Investig. Ophthalmol. Vis. Sci. 1994;35:2515–2520.
    1. Bhattacharya S.K., Lee R.K., Grus F.H. Molecular biomarkers in glaucoma. Investig. Ophthalmol. Vis. Sci. 2013;54:121–131. doi: 10.1167/iovs.12-11067.
    1. Pinazo-Durán M.D., Gallego-Pinazo R., García-Medina J.J., Zanon-Moreno V.C., Nucci C., Dolz-Marco R., Martinez-Castillo S., Galbis-Estrada C., Marco-Ramírez C., López-Gálvez M.I., et al. Oxidative stress and its downstream signaling in aging eyes. Clin. Interv. Aging. 2014;9:637–652. doi: 10.2147/CIA.S52662.
    1. Diederen R.M., La Heij E.C., Deutz N., Kessels A.G.H., Van Eijk H.M.H., Hendrikse F. Increased nitric oxide (NO) pathway metabolites in the vitreous fluid of patients with rhegmatogenous retinal detachment or diabetic traction retinal detachment. Graefe Arch. Clin. Exp. Ophthalmol. 2006;244:683–688. doi: 10.1007/s00417-005-0141-1.
    1. und Hohenstein-Blaul NV T., Funke S., Grus F.H. Tears as a source of biomarkers for ocular and systemic diseases. Exp. Eye Res. 2013;117:126–137. doi: 10.1016/j.exer.2013.07.015.
    1. Amil-Bangsa N.H., Mohd-Ali B., Ishak B., Abdul-Aziz C.N.N., Ngah N.F., Hashim H., Ghazali A.R. Total Protein Concentration and Tumor Necrosis Factor α in Tears of Nonproliferative Diabetic Retinopathy. Optom. Vis. Sci. 2019;96:934–939. doi: 10.1097/OPX.0000000000001456.
    1. Aveleira C.A., Lin C.-M., Abcouwer S.F., Ambrósio A.F., Antonetti D.A. TNF-α signals through PKCζ/NF-κB to alter the tight junction complex and increase retinal endothelial cell permeability. Diabetes. 2010;59:2872–2882. doi: 10.2337/db09-1606.
    1. Arita R., Nakao S., Kita T., Kawahara S., Asato R., Yoshida S., Enaida H., Hafezi-Moghadam A., Ishibashi T. A Key Role for ROCK in TNF-α–Mediated Diabetic Microvascular Damage. Investig. Ophthalmol. Vis. Sci. 2013;54:2373–2383. doi: 10.1167/iovs.12-10757.
    1. Adamiec-Mroczek J., Oficjalska-Młyńczak J. Assessment of selected adhesion molecule and proinflammatory cytokine levels in the vitreous body of patients with type 2 diabetes—Role of the inflammatory-immune process in the pathogenesis of proliferative diabetic retinopathy. Graefe Arch. Clin. Exp. Ophthalmol. Albrecht Graefes Arch. Klin. Exp. Ophthalmol. 2008;246:1665–1670. doi: 10.1007/s00417-008-0868-6.
    1. McArthur K., Feng B., Wu Y., Chen S., Chakrabarti S. MicroRNA-200b regulates vascular endothelial growth factor-mediated alterations in diabetic retinopathy. Diabetes. 2011;60:1314–1323. doi: 10.2337/db10-1557.
    1. Gomaa A.R., Elsayed E.T., Moftah R.F. MicroRNA-200b Expression in the Vitreous Humor of Patients with Proliferative Diabetic Retinopathy. Ophthalmic Res. 2017;58:168–175. doi: 10.1159/000475671.
    1. Chen Q., Qiu F., Zhou K., Matlock H.G., Takahashi Y., Rajala R.V., Yang Y., Moran E., Ma J.-X. Pathogenic Role of microRNA-21 in Diabetic Retinopathy Through Downregulation of PPARα. Diabetes. 2017;66:1671–1682. doi: 10.2337/db16-1246.
    1. Usui-Ouchi A., Ouchi Y., Kiyokawa M., Sakuma T., Ito R., Ebihara N. Upregulation of Mir-21 Levels in the Vitreous Humor Is Associated with Development of Proliferative Vitreoretinal Disease. PLoS ONE. 2016;11:e0158043. doi: 10.1371/journal.pone.0158043.
    1. Besnier M., Shantikumar S., Anwar M., Dixit P., Chamorro-Jorganes A., Sweaad W., Sala-Newby G., Madeddu P., Thomas A.C., Howard L., et al. miR-15a/-16 Inhibit Angiogenesis by Targeting the Tie2 Coding Sequence: Therapeutic Potential of a miR-15a/16 Decoy System in Limb Ischemia. Molecular therapy. Nucleic Acids. 2019;17:49–62. doi: 10.1016/j.omtn.2019.05.002.
    1. Hirota K., Keino H., Inoue M., Ishida H., Hirakata A. Comparisons of microRNA expression profiles in vitreous humor between eyes with macular hole and eyes with proliferative diabetic retinopathy. Graefe Arch. Clin. Exp. Ophthalmol. 2015;253:335–342. doi: 10.1007/s00417-014-2692-5.
    1. Ye E.-A., Steinle J.J. Regulatory role of microRNA on inflammatory responses of diabetic retinopathy. Neural Regen. Res. 2017;12:580–581. doi: 10.4103/1673-5374.205095.
    1. Cho H., Hwang M., Hong E.H., Yu H., Park H., Koh S., Shin Y.U. Micro-RNAs in the aqueous humour of patients with diabetic macular oedema. Clin. Exp. Ophthalmol. 2020;48:624–635. doi: 10.1111/ceo.13750.
    1. Feng B., Chakrabarti S. miR-320 Regulates Glucose-Induced Gene Expression in Diabetes. Isrn Endocrinol. 2012;2012:549875. doi: 10.5402/2012/549875.
    1. Zampetaki A., Willeit P., Burr S., Yin X., Langley S.R., Kiechl S., Klein R., Rossing P., Chaturvedi N., Mayr M. Angiogenic microRNAs Linked to Incidence and Progression of Diabetic Retinopathy in Type 1. Diabetes. 2016;65:216–227. doi: 10.2337/db15-0389.
    1. Zhang Y., Zhou J., Li M.-Q., Xu J., Zhang J.-P., Jin L.-P. MicroRNA-184 promotes apoptosis of trophoblast cells via targeting WIG1 and induces early spontaneous abortion. Cell Death Dis. 2019;10:223. doi: 10.1038/s41419-019-1443-2.
    1. Chen S., Yuan M., Liu Y., Zhao X., Lian P., Chen Y., Liu B., Lu L. Landscape of microRNA in the aqueous humour of proliferative diabetic retinopathy as assessed by next-generation sequencing. Clin. Exp. Ophthalmol. 2019;47:925–936. doi: 10.1111/ceo.13554.
    1. Fang L., Deng Z., Shatseva T., Yang J., Peng C., Du W.W., Yee A.J., Ang L.C., He C., Shan S.W., et al. MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-β8. Oncogene. 2011;30:806–821. doi: 10.1038/onc.2010.465.
    1. Zhang L.-Q., Cui H., Wang L., Fang X., Su S. Role of microRNA-29a in the development of diabetic retinopathy by targeting AGT gene in a rat model. Exp. Mol. Pathol. 2017;102:296–302. doi: 10.1016/j.yexmp.2017.02.004.
    1. Qu Y., Liu H., Lv X., Liu Y., Wang X., Zhang M., Zhang X., Li Y., Lou Q., Li S., et al. MicroRNA-16-5p overexpression suppresses proliferation and invasion as well as triggers apoptosis by targeting VEGFA expression in breast carcinoma. Oncotarget. 2017;8:72400–72410. doi: 10.18632/oncotarget.20398.
    1. Luo Z., Feng X., Wang H., Xu W., Zhao Y., Ma W., Jiang S., Liu D., Huang J., Songyang Z. Mir-23a induces telomere dysfunction and cellular senescence by inhibiting TRF2 expression. Aging Cell. 2015;14:391–399. doi: 10.1111/acel.12304.
    1. Su J.L., Chen P.S., Johansson G., Kuo M.L. Function and regulation of let-7 family microRNAs. Microrna. 2012;1:34–39. doi: 10.2174/2211536611201010034.
    1. Li T., Pan H., Li R. The dual regulatory role of miR-204 in cancer. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2016;37:11667. doi: 10.1007/s13277-016-5144-5.
    1. Jackson D.C., Zeng W., Wong C.Y., Mifsud E.J., Williamson N.A., Ang C.-S., Vingrys A.J., Downie L.E. Tear Interferon-Gamma as a Biomarker for Evaporative Dry Eye Disease. Investig. Ophthalmol. Vis. Sci. 2016;57:4824–4830. doi: 10.1167/iovs.16-19757.
    1. Yu L., Chen X., Qin G., Xie H., Lv P. Tear film function in type 2 diabetic patients with retinopathy. Ophthalmologica. 2008;222:284–291. doi: 10.1159/000140256.
    1. Gao Y., Zhang Y., Ru Y.-S., Wang X.-W., Yang J.-Z., Li C.-H., Wang H.-X., Li X.-R., Li B. Ocular surface changes in type II diabetic patients with proliferative diabetic retinopathy. Int. J. Ophthalmol. 2015;8:358–364. doi: 10.3980/j.issn.2222-3959.2015.02.26.
    1. Csősz É., Boross P., Csutak A., Berta A., Toth F., Poliska S., Török Z., Tőzsér J. Quantitative analysis of proteins in the tear fluid of patients with diabetic retinopathy. J. Proteom. 2012;75:2196–2204. doi: 10.1016/j.jprot.2012.01.019.
    1. Banks W.A., Kastin A.J., Gutierrez E.G. Penetration of interleukin-6 across the murine blood-brain barrier. Neurosci. Lett. 1994;179:53–56. doi: 10.1016/0304-3940(94)90933-4.
    1. Moriarty A., Spalton D., Moriarty B., Shilling J., Ffytche T., Bulsara M. Studies of the Blood-Aqueous Barrier in Diabetes Mellitus. Am. J. Ophthalmol. 1994;117:768–771. doi: 10.1016/S0002-9394(14)70320-4.
    1. Holzinger C., Weissinger E., Zuckermann A., Imhof M., Kink F., Schöllhammer A., Kopp C., Wolner E. Effects of interleukin-1, -2, -4, -6, interferon-gamma and granulocyte/macrophage colony stimulating factor on human vascular endothelial cells. Immunol. Lett. 1993;35:109–117. doi: 10.1016/0165-2478(93)90078-G.
    1. Sharma R.K., Rogojina A.T., Chalam K.V. Multiplex immunoassay analysis of biomarkers in clinically accessible quantities of human aqueous humor. Mol. Vis. 2009;15:60–69.
    1. Globočnik Petrovič M., Korošec P., Košnik M., Hawlina M. Vitreous Levels of Interleukin-8 in Patients With Proliferative Diabetic Retinopathy. Am. J. Ophthalmol. 2007;143:175–176. doi: 10.1016/j.ajo.2006.07.032.
    1. Chono I., Miyazaki D., Miyake H., Komatsu N., Ehara F., Nagase D., Kawamoto Y., Shimizu Y., Ideta R., Inoue Y. High interleukin-8 level in aqueous humor is associated with poor prognosis in eyes with open angle glaucoma and neovascular glaucoma. Sci. Rep. 2018;8:14533. doi: 10.1038/s41598-018-32725-3.
    1. Paine S.K., Sen A., Choudhuri S., Mondal L.K., Chowdhury I.H., Basu A., Mukherjee A., Bhattacharya B. Association of tumor necrosis factor α, interleukin 6, and interleukin 10 promoter polymorphism with proliferative diabetic retinopathy in type 2 diabetic subjects. Retina. 2012;32 doi: 10.1097/IAE.0b013e31822f55f3.
    1. Hernández C., Segura R.M., Fonollosa A., Carrasco E., Francisco G., Simo R. Interleukin-8, monocyte chemoattractant protein-1 and IL-10 in the vitreous fluid of patients with proliferative diabetic retinopathy. Diabet. Med. 2005;22:719–722. doi: 10.1111/j.1464-5491.2005.01538.x.
    1. Rubio-Perez J.M., Morillas-Ruiz J.M. A review: Inflammatory process in Alzheimer’s disease, role of cytokines. Sci. World J. 2012;2012:756357. doi: 10.1100/2012/756357.
    1. Bigda J., Beletsky I., Brakebusch C., Varfolomeev Y., Engelmann H., Holtmann H., Wallach D. Dual role of the p75 tumor necrosis factor (TNF) receptor in TNF cytotoxicity. J. Exp. Med. 1994;180:445–460. doi: 10.1084/jem.180.2.445.
    1. Ozturk B.T., Bozkurt B., Kerimoglu H., Okka M., Kamis U., Gunduz K. Effect of serum cytokines and VEGF levels on diabetic retinopathy and macular thickness. Mol. Vis. 2009;15:1906–1914.
    1. Zorena K., Raczyńska D., Raczyńska K. Biomarkers in Diabetic Retinopathy and the Therapeutic Implications. Mediat. Inflamm. 2013;2013:193604. doi: 10.1155/2013/193604.
    1. Ferrara N., Gerber H.-P., LeCouter J. The biology of VEGF and its receptors. Nat. Med. 2003;9:669–676. doi: 10.1038/nm0603-669.
    1. Vignali D.A.A. Multiplexed particle-based flow cytometric assays. J. Immunol. Methods. 2000;243:243–255. doi: 10.1016/S0022-1759(00)00238-6.
    1. Murugeswari P., Shukla D., Rajendran A., Kim R., Namperumalsamy P., Muthukkaruppan V. Proinflammatory cytokines and angiogenic and anti-angiogenic factors in vitreous of patients with proliferative diabetic retinopathy and eales’ disease. RETINA. 2008;28 doi: 10.1097/IAE.0b013e31816576d5.
    1. Yoshimura T., Sonoda K.-H., Sugahara M., Mochizuki Y., Enaida H., Oshima Y., Ueno A., Hata Y., Yoshida H., Ishibashi T. Comprehensive Analysis of Inflammatory Immune Mediators in Vitreoretinal Diseases. PLoS ONE. 2009;4:e8158. doi: 10.1371/journal.pone.0008158.
    1. Mocan M.C., Kadayifcilar S., Eldem B. Elevated intravitreal interleukin-6 levels in patients with proliferative diabetic retinopathy. Can. J. Ophthalmol. 2006;41:747–752. doi: 10.3129/i06-070.
    1. Garbutcheon-Singh K.B., Carnt N., Pattamatta U., Samarawickrama C., White A., Calder V. A Review of the Cytokine IL-17 in Ocular Surface and Corneal Disease. Curr. Eye Res. 2019;44:1–10. doi: 10.1080/02713683.2018.1519834.
    1. Li Y., Zhou Y. Interleukin-17: The Role for Pathological Angiogenesis in Ocular Neovascular Diseases. Tohoku J. Exp. Med. 2019;247:87–98. doi: 10.1620/tjem.247.87.
    1. Feenstra D.J., Yego E.C., Mohr S. Modes of Retinal Cell Death in Diabetic Retinopathy. J. Clin. Exp. Ophthalmol. 2013;4:298. doi: 10.4172/2155-9570.1000298.
    1. Devi T.S., Hosoya K.-I., Terasaki T., Singh L.P. Critical role of TXNIP in oxidative stress, DNA damage and retinal pericyte apoptosis under high glucose: Implications for diabetic retinopathy. Exp. Cell Res. 2013;319:1001–1012. doi: 10.1016/j.yexcr.2013.01.012.
    1. Dartt D.A. Tear lipocalin: Structure and function. Ocul. Surf. 2011;9:126–138. doi: 10.1016/S1542-0124(11)70022-2.
    1. Yusifov T.N., Abduragimov A.R., Narsinh K., Gasymov O.K., Glasgow B.J. Tear lipocalin is the major endonuclease in tears. Mol. Vis. 2008;14:180–188.
    1. Zhao H., He Y., Ren Y.-R., Chen B.-H. Corneal alteration and pathogenesis in diabetes mellitus. Int. J. Ophthalmol. 2019;12:1939–1950. doi: 10.18240/ijo.2019.12.17.
    1. Kim J., Kim C.-S., Sohn E., Jeong I.-H., Kim H., Kim J.S. Involvement of advanced glycation end products, oxidative stress and nuclear factor-kappaB in the development of diabetic keratopathy. Graefe Arch. Clin. Exp. Ophthalmol. 2011;4:529–536. doi: 10.1007/s00417-010-1573-9.
    1. Hrabec E., Naduk J., Strek M., Hrabec Z. Type IV collagenases (MMP-2 and MMP-9) and their substrates--intracellular proteins, hormones, cytokines, chemokines and their receptors. Postepy Biochem. 2007;53:37–45.
    1. Notari L., Miller A., Martínez A., Amaral J., Ju M., Robinson G., Smith L.E.H., Becerra S.P. Pigment Epithelium–Derived Factor Is a Substrate for Matrix Metalloproteinase Type 2 and Type 9: Implications for Downregulation in Hypoxia. Investig. Ophthalmol. Vis. Sci. 2005;46:2736–2747. doi: 10.1167/iovs.04-1489.
    1. Giebel S.J., Menicucci G., McGuire P.G., Das A. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood–retinal barrier. Lab. Investig. 2005;85:597–607. doi: 10.1038/labinvest.3700251.
    1. Zucker S., Mirza H., Conner C.E., Lorenz A.F., Drews M.D., Bahou W.F., Jesty J. Vascular endothelial groth factor induces tissue factor and matrix metalloproteinase production in endothelial cells: Conversion of prothrombin to thrombin results in progelatininase a activation and cell proliferation. Int. J. Cancer. 1998;75:780–786. doi: 10.1002/(SICI)1097-0215(19980302)75:5<780::AID-IJC19>;2-A.
    1. Descamps F.J., Martens E., Kangave D., Struyf S., Geboes K., Van Damme J., Opdenakker G., Abu El-Asrar A.M. The activated form of gelatinase B/matrix metalloproteinase-9 is associated with diabetic vitreous hemorrhage. Exp. Eye Res. 2006;83:401–407. doi: 10.1016/j.exer.2006.01.017.
    1. Noda K., Ishida S., Inoue M., Obata K.-I., Oguchi Y., Okada Y., Ikeda E. Production and Activation of Matrix Metalloproteinase-2 in Proliferative Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2003;44:2163–2170. doi: 10.1167/iovs.02-0662.
    1. Ow Y.-L.P., Green D.R., Hao Z., Mak T.W. Cytochrome c: Functions beyond respiration. Nat. Rev. Mol. Cell Biol. 2008;9:532–542. doi: 10.1038/nrm2434.
    1. Chertkova R.V., Brazhe N.A., Bryantseva T.V., Nekrasov A.N., Dolgikh D.A., Yusipovich A., Sosnovtseva O.V., Maksimov G.V., Rubin A.B., Kirpichnikov M.P. New insight into the mechanism of mitochondrial cytochrome c function. PLoS ONE. 2017;12:e0178280. doi: 10.1371/journal.pone.0178280.
    1. Mizutani M., Kern T.S., Lorenzi M. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J. Clin. Investig. 1996;97:2883–2890. doi: 10.1172/JCI118746.
    1. Mohr S., Xi X., Tang J., Kern T.S. Caspase Activation in Retinas of Diabetic and Galactosemic Mice and Diabetic Patients. Diabetes. 2002;51:1172. doi: 10.2337/diabetes.51.4.1172.
    1. Chapple C.E., Robisson B., Spinelli L., Guien C., Becker E., Brun C. Extreme multifunctional proteins identified from a human protein interaction network. Nat. Commun. 2015;6:7412. doi: 10.1038/ncomms8412.
    1. Santucci R., Sinibaldi F., Cozza P., Polticelli F., Fiorucci L. Cytochrome c: An extreme multifunctional protein with a key role in cell fate. Int. J. Biol. Macromol. 2019;136:1237–1246. doi: 10.1016/j.ijbiomac.2019.06.180.
    1. Kowluru R.A., Tang J., Kern T.S. Abnormalities of Retinal Metabolism in Diabetes and Experimental Galactosemia. Diabetes. 2001;50:1938. doi: 10.2337/diabetes.50.8.1938.
    1. McKinnon S.J., Lehman D.M., Kerrigan-Baumrind L.A., Merges C.A., Pease M.E., Kerrigan D.F., Ransom N.L., Tahzib N.G., A Reitsamer H., Levkovitch-Verbin H., et al. Caspase Activation and Amyloid Precursor Protein Cleavage in Rat Ocular Hypertension. Investig. Ophthalmol. Vis. Sci. 2002;43:1077–1087.
    1. Tang J., Kern T.S. Inflammation in diabetic retinopathy. Prog. Retin. Eye Res. 2011;30:343–358. doi: 10.1016/j.preteyeres.2011.05.002.
    1. Jiang N., Chen X.-L., Yang H.-W., Ma Y.-R. Effects of nuclear factor κB expression on retinal neovascularization and apoptosis in a diabetic retinopathy rat model. Int. J. Ophthalmol. 2015;8:448–452. doi: 10.3980/j.issn.2222-3959.2015.03.03.
    1. Hammes H.-P., Lin J., Renner O., Shani M., Lundqvist A., Betsholtz C., Brownlee M., Deutsch U. Pericytes and the Pathogenesis of Diabetic Retinopathy. Diabetes. 2002;51:3107. doi: 10.2337/diabetes.51.10.3107.
    1. Busik J.V., Mohr S., Grant M.B. Hyperglycemia-induced reactive oxygen species toxicity to endothelial cells is dependent on paracrine mediators. Diabetes. 2008;57:1952–1965. doi: 10.2337/db07-1520.
    1. Kowluru R.A., Koppolu P., Chakrabarti S., Chen S. Diabetes-induced Activation of Nuclear Transcriptional Factor in the Retina, and its Inhibition by Antioxidants. Free Radic. Res. 2003;37:1169–1180. doi: 10.1080/10715760310001604189.
    1. Yuuki T., Kanda T., Kimura Y., Kotajima N., Tamura J., Kobayashi I., Kishi S. Inflammatory cytokines in vitreous fluid and serum of patients with diabetic vitreoretinopathy. J. Diabetes Complicat. 2001;15:257–259. doi: 10.1016/S1056-8727(01)00155-6.
    1. Kowluru R.A., Shan Y., Mishra M. Dynamic DNA methylation of matrix metalloproteinase-9 in the development of diabetic retinopathy. Lab. Investig. J. Technol. Methods Pathol. 2016;96:1040–1049. doi: 10.1038/labinvest.2016.78.
    1. Coco C., Sgarra L., Potenza M.A., Nacci C., Ms B.P., Barbano R., Parrella P., Montagnani M. Can Epigenetics of Endothelial Dysfunction Represent the Key to Precision Medicine in Type 2 Diabetes Mellitus? Int. J. Mol. Sci. 2019;20:2949. doi: 10.3390/ijms20122949.
    1. Kanda A., Noda K., Saito W., Ishida S. Vitreous renin activity correlates with vascular endothelial growth factor in proliferative diabetic retinopathy. Br. J. Ophthalmol. 2013;97:666–668. doi: 10.1136/bjophthalmol-2012-302680.
    1. Maghbooli Z., Hossein-Nezhad A., Larijani B., Amini M., Keshtkar A. Global DNA methylation as a possible biomarker for diabetic retinopathy. Diabetes Metab. Res. Rev. 2015;31:183–189. doi: 10.1002/dmrr.2584.
    1. Zhong Q., Kowluru R.A. Regulation of matrix metalloproteinase-9 by epigenetic modifications and the development of diabetic retinopathy. Diabetes Care. 2013;62:2559–2568. doi: 10.2337/db12-1141.
    1. Tewari S., Zhong Q., Santos J.M., Kowluru A. Mitochondria DNA replication and DNA methylation in the metabolic memory associated with continued progression of diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 2012;53:4881–4888. doi: 10.1167/iovs.12-9732.
    1. Mishra M., Kowluru R.A. The Role of DNA Methylation in the Metabolic Memory Phenomenon Associated With the Continued Progression of Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2016;57:5748–5757. doi: 10.1167/iovs.16-19759.
    1. Shafabakhsh R., Aghadavod E., Ghayour-Mobarhan M., Ferns G., Asemi Z. Role of histone modification and DNA methylation in signaling pathways involved in diabetic retinopathy. J. Cell. Physiol. 2019;234:7839–7846. doi: 10.1002/jcp.27844.
    1. Mishra M., Kowluru R.A. DNA Methylation—A Potential Source of Mitochondria DNA Base Mismatch in the Development of Diabetic Retinopathy. Mol. Neurobiol. 2019;56:88–101. doi: 10.1007/s12035-018-1086-9.
    1. Mohammed S.A., Ambrosini S., Lüscher T., Paneni F., Costantino S. Epigenetic Control of Mitochondrial Function in the Vasculature. Front. Cardiovasc. Med. 2020;7:28. doi: 10.3389/fcvm.2020.00028.
    1. Iacobazzi V., Castegna A., Infantino V., Andria G. Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool. Mol. Genet. Metab. 2013;110:25–34. doi: 10.1016/j.ymgme.2013.07.012.
    1. Lanza M., Benincasa G., Costa D., Napoli C. Clinical Role of Epigenetics and Network Analysis in Eye Diseases: A Translational Science Review. J. Ophthalmol. 2019;2019:2424956. doi: 10.1155/2019/2424956.
    1. Duraisamy A.J., Mishra M., Kowluru A., Kowluru A. Epigenetics and Regulation of Oxidative Stress in Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2018;59:4831–4840. doi: 10.1167/iovs.18-24548.
    1. Duraisamy A.J., Radhakrishnan R., Seyoum B., Abrams G.W., Kowluru A. Epigenetic Modifications in Peripheral Blood as Potential Noninvasive Biomarker of Diabetic Retinopathy. Transl. Vis. Sci. Technol. 2019;8:43. doi: 10.1167/tvst.8.6.43.
    1. Xu C., Wu Y., Liu G., Liu X., Wang F., Yu J. Relationship between homocysteine level and diabetic retinopathy: A systematic review and meta-analysis. Diagn. Pathol. 2014;9:167. doi: 10.1186/s13000-014-0167-y.
    1. Tawfik A., Mohamed R., Elsherbiny N.M., DeAngelis M.M., Bartoli M., Al-Shabrawey M. Homocysteine: A Potential Biomarker for Diabetic Retinopathy. J. Clin. Med. 2019;8:121. doi: 10.3390/jcm8010121.
    1. Elsherbiny N.M., Sharma I., Kira D., Alhusban S., Samra Y.A., Jadeja R., Martin P., Al-Shabrawey M., Tawfik A. Homocysteine Induces Inflammation in Retina and Brain. Biomolecules. 2020;10:393. doi: 10.3390/biom10030393.
    1. Kowluru R.A., Mishra M. Therapeutic targets for altering mitochondrial dysfunction associated with diabetic retinopathy. Expert Opin. Ther. Targets. 2018;22:233–245. doi: 10.1080/14728222.2018.1439921.
    1. Rodríguez M.L., Pérez S., Mena-Mollá S., Desco M.C., Ortega Á.L. Oxidative Stress and Microvascular Alterations in Diabetic Retinopathy: Future Therapies. Oxid. Med. Cell. Longev. 2019;2019:4940825. doi: 10.1155/2019/4940825.
    1. Sinclair S.H., Schwartz S.S. Diabetic Retinopathy-An Underdiagnosed and Undertreated Inflammatory, Neuro-Vascular Complication of Diabetes. Front. Endocrinol. 2019;10:843. doi: 10.3389/fendo.2019.00843.
    1. Zhang L.W., Zhao H., Chen B.H. Reactive oxygen species mediates a metabolic memory of high glucose stress signaling in bovine retinal pericytes. Int. J. Ophthalmol. 2019;12:1067–1074. doi: 10.18240/ijo.2019.07.03.
    1. Kowluru R.A. Mitochondrial Stability in Diabetic Retinopathy: Lessons Learned From Epigenetics. Diabetes. 2019;68:241–247. doi: 10.2337/dbi18-0016.
    1. Khullar M., Cheema B.S., Raut S.K. Emerging Evidence of Epigenetic Modifications in Vascular Complication of Diabetes. Front. Endocrinol. 2017;8:237. doi: 10.3389/fendo.2017.00237.
    1. Zhang X., Bao S., Lai D., Rapkins R.W., Gillies M.C. Intravitreal triamcinolone acetonide inhibits breakdown of the blood-retinal barrier through differential regulation of VEGF-A and its receptors in early diabetic rat retinas. Diabetes. 2008;57:1026–1033. doi: 10.2337/db07-0982.
    1. Zhang X., Zhao L., Hambly B.D., Bao S., Wang K. Diabetic retinopathy: Reversibility of epigenetic modifications and new therapeutic targets. Cell Biosci. 2017;15:42. doi: 10.1186/s13578-017-0167-1.
    1. Kaspar J.W., Niture S.K., Jaiswal A.K. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med. 2009;47:1304–1309. doi: 10.1016/j.freeradbiomed.2009.07.035.
    1. Zhong Q., Kowluru R.A. Epigenetic modification of Sod2 in the development of diabetic retinopathy and in the metabolic memory: Role of histone methylation. Investig. Ophthalmol. Vis. Sci. 2013;54:244–250. doi: 10.1167/iovs.12-10854.
    1. Santos J.M., Tewari S., Goldberg A.F.X., Kowluru A. Mitochondrial biogenesis and the development of diabetic retinopathy. Free Radic Biol Med. 2011;51:1849–1860. doi: 10.1016/j.freeradbiomed.2011.08.017.
    1. Zhang L.W., Xia H., Han Q., Chen B. Effects of antioxidant gene therapy on the development of diabetic retinopathy and the metabolic memory phenomenon. Graefe Arch. Clin. Exp. Ophthalmol. 2015;253:249–259. doi: 10.1007/s00417-014-2827-8.
    1. Sundar I.K., Yao H., Rahman I. Oxidative stress and chromatin remodeling in chronic obstructive pulmonary disease and smoking-related diseases. Antioxid. Redox Signal. 2013;18:1956–1971. doi: 10.1089/ars.2012.4863.
    1. Aydin Ö.Z., Vermeulen W., Lans H. ISWI chromatin remodeling complexes in the DNA damage response. Cell Cycle. 2014;13:3016–3025. doi: 10.4161/15384101.2014.956551.
    1. Matilainen O., Sleiman M.S.B., Quirós P.M., Garcia S.M.D.A., Auwerx J. The chromatin remodeling factor ISW-1 integrates organismal responses against nuclear and mitochondrial stress. Nat. Commun. 2017;8:1818. doi: 10.1038/s41467-017-01903-8.
    1. Perrone L., Devi T.S., Hosoya K.-I., Terasaki T., Singh L.P. Inhibition of TXNIP expression in vivo blocks early pathologies of diabetic retinopathy. Cell Death Dis. 2010;1:e65. doi: 10.1038/cddis.2010.42.
    1. Reddy M.A., Zhang E., Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia. 2015;58:443–455. doi: 10.1007/s00125-014-3462-y.
    1. Kreuz S., Fischle W. Oxidative stress signaling to chromatin in health and disease. Epigenomics. 2016;8:843–862. doi: 10.2217/epi-2016-0002.
    1. Moodie F.M., Marwick J.A., Anderson C.S., Szulakowski P., Biswas S.K., Bauter M.R., Kilty I., Rahman I. Oxidative stress and cigarette smoke alter chromatin remodeling but differentially regulate NF-kappaB activation and proinflammatory cytokine release in alveolar epithelial cells. FASEB J. 2004;18:1897–1899. doi: 10.1096/fj.04-1506fje.
    1. Gozani O., Karuman P., Jones D.R., Ivanov D., Cha J., Lugovskoy A.A., Baird C.L., Zhu H., Field S.J., Lessnick S.L., et al. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell. 2003;114:99–111. doi: 10.1016/S0092-8674(03)00480-X.
    1. Bua D.J., Martin G.M., Binda O., Gozani O. Nuclear phosphatidylinositol-5-phosphate regulates ING2 stability at discrete chromatin targets in response to DNA damage. Sci. Rep. 2013;3:2137. doi: 10.1038/srep02137.
    1. Saeidi L., Ghaedi H., Sadatamini M., Vahabpour R., Rahimipour A., Shanaki M., Mansoori Z., Kazerouni F. Long non-coding RNA LY86-AS1 and HCG27_201 expression in type 2 diabetes mellitus. Mol. Biol. Rep. 2018;45:2601–2608. doi: 10.1007/s11033-018-4429-8.
    1. Carthew R.W., Sontheimer E.J. Origins and Mechanisms of miRNAs and siRNAs. Cell. 2009;136:642–655. doi: 10.1016/j.cell.2009.01.035.
    1. Xue M., Zhuo Y., Shan B. MicroRNAs, Long Noncoding RNAs, and Their Functions in Human Disease. Methods Mol. Biol. 2017;1617:1–25. doi: 10.1007/978-1-4939-7046-9_1.
    1. Ha T.-Y. MicroRNAs in Human Diseases: From Cancer to Cardiovascular Disease. Immune Netw. 2011;11:135–154. doi: 10.4110/in.2011.11.3.135.
    1. Khalil A.M., Guttman M., Huarte M., Garber M., Raj A., Morales D.R., Thomas K., Presser A., Bernstein B.E., Van Oudenaarden A., et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. USA. 2009;106:11667–11672. doi: 10.1073/pnas.0904715106.
    1. Panchapakesan U., Pollock C. Long non-coding RNAs-towards precision medicine in diabetic kidney disease? Clin. Sci. 2016;130:1599–1602. doi: 10.1042/CS20160261.
    1. Kovacs B., Lumayag S., Cowan C., Xu S. MicroRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Investig. Ophthalmol. Vis. Sci. 2011;52:4402–4409. doi: 10.1167/iovs.10-6879.
    1. Xu W., Li F., Liu Z., Xu Z., Sun B., Cao J., Liu Y. MicroRNA-27b inhibition promotes Nrf2/ARE pathway activation and alleviates intracerebral hemorrhage-induced brain injury. Oncotarget. 2017;8:70669–70684. doi: 10.18632/oncotarget.19974.
    1. Veliceasa D., Biyashev D., Qin G., Misener S., Mackie A.R., Kishore R., Volpert O.V. Therapeutic manipulation of angiogenesis with miR-27b. Vasc. Cell. 2015;7:6. doi: 10.1186/s13221-015-0031-1.
    1. Liu H.N., Cao N., Li X., Qian W., Chen X.-L. Serum microRNA-211 as a biomarker for diabetic retinopathy via modulating Sirtuin 1. Biochem. Biophys. Res. Commun. 2018;505:1236–1243. doi: 10.1016/j.bbrc.2018.10.052.
    1. Mishra M., Duraisamy A.J., Kowluru R.A. Sirt1: A Guardian of the Development of Diabetic Retinopathy. Diabetes. 2018;67:745–754. doi: 10.2337/db17-0996.
    1. Liang Z., Gao K.P., Wang Y.X., Liu Z.C., Tian L., Yang X.Z., Ding J., Wu W.T., Yang W.H., Li Y.L., et al. RNA sequencing identified specific circulating miRNA biomarkers for early detection of diabetes retinopathy. Am. J. Physiol. Endocrinol. Metab. 2018;315:374–385. doi: 10.1152/ajpendo.00021.2018.
    1. Desmettre T. Epigenetics in age-related macular degeneration (AMD)—French translation of the article. J. Fr. Ophtalmol. 2018;41:981–990. doi: 10.1016/j.jfo.2018.06.004.
    1. Leung A.K., Calabrese J.M., Sharp P.A. Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc. Natl. Acad. Sci. USA. 2006;103:18125–18130. doi: 10.1073/pnas.0608845103.
    1. Shen J., Xia W., Khotskaya Y.B., Huo L., Nakanishi K., Lim S.-O., Du Y., Wang Y., Chang W.-C., Chen C.-H., et al. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature. 2013;497:383–387. doi: 10.1038/nature12080.
    1. Qin L.L., An M.-X., Liu Y.-L., Xu H.-C., Lu Z.-Q. MicroRNA-126: A promising novel biomarker in peripheral blood for diabetic retinopathy. Int. J. Ophthalmol. 2017;10:530–534. doi: 10.18240/ijo.2017.04.05.
    1. Thomas A.A., Biswas S., Feng B., Chen S., Gonder J., Chakrabarti S. lncRNA H19 prevents endothelial-mesenchymal transition in diabetic retinopathy. Diabetologia. 2019;62:517–530. doi: 10.1007/s00125-018-4797-6.
    1. Zhang X., Shi E., Yang L., Fu W., Hu F., Zhou X. LncRNA AK077216 is downregulated in diabetic retinopathy and inhibited the apoptosis of retinal pigment epithelial cells by downregulating miR-383. Endocr. J. 2019;66:1011–1016. doi: 10.1507/endocrj.EJ19-0080.
    1. Yin L., Sun Z., Ren Q., Su X., Zhang D. Long Non-Coding RNA BANCR Is Overexpressed in Patients with Diabetic Retinopathy and Promotes Apoptosis of Retinal Pigment Epithelial Cells. Med. Sci. Monit. 2019;25:2845–2851. doi: 10.12659/MSM.913359.
    1. Zhang X., Zou X., Li Y., Wang Y. Downregulation of lncRNA BANCR participates in the development of retinopathy among diabetic patients. Exp. Ther. Med. 2019;17:4132–4138. doi: 10.3892/etm.2019.7444.
    1. Perrone L., Matrone C., Singh L.P. Epigenetic modifications and potential new treatment targets in diabetic retinopathy. J. Ophthalmol. 2014;2014:789120. doi: 10.1155/2014/789120.
    1. El-Osta A. Redox mediating epigenetic changes confer metabolic memories. Circ. Res. 2012:262–264. doi: 10.1161/CIRCRESAHA.112.274936.
    1. Santos J.M., Kowluru R.A. Role of mitochondria biogenesis in the metabolic memory associated with the continued progression of diabetic retinopathy and its regulation by lipoic acid. Investig. Ophthalmol. Vis. Sci. 2011;52:8791–8798. doi: 10.1167/iovs.11-8203.
    1. Kowluru R.A. Diabetic retinopathy, metabolic memory and epigenetic modifications. Vis. Res. 2017;139:30–38. doi: 10.1016/j.visres.2017.02.011.

Source: PubMed

3
購読する