Potentials and limits to enhance cognitive functions in healthy and pathological aging by tDCS

Kristin Prehn, Agnes Flöel, Kristin Prehn, Agnes Flöel

Abstract

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that is increasingly used in research and clinical settings to enhance the effects of cognitive training. In our present review, we will first summarize studies using tDCS alone and in combination with cognitive training in older adults and patients with Alzheimer's dementia (AD). We will also review one study (Meinzer et al., 2014c) that showed an improvement in cognitive performance during anodal tDCS over the left inferior frontal cortex in patients with mild cognitive impairment (MCI) which is regarded as a prodromal stage of AD. Although promising short-term results have been reported, evidence from randomized controlled trials (RCTs) with sufficient sample sizes is scarce. In addition, stimulation protocols (in terms of intensity, duration, and repetition of stimulation) that lead to sustained improvements in outcome measures relevant for daily life still remain to be established. Following, we will discuss modulating factors such as technical parameters as well as the question whether there are specific cognitive functions (e.g., learning, memory consolidation, executive control) which are more amenable to tDCS enhancement than others. Finally, we will highlight future directions and limitations in this field and emphasize the need to conduct RCTs to establish efficacy of interventions for activities of daily life for a given patient population.

Keywords: Alzheimer’s dementia (AD); executive control; memory; mild cognitive impairment (MCI); transcranial direct current stimulation (tDCS).

References

    1. Antonenko D., Floel A. (2014). Healthy aging by staying selectively connected: a mini-review. Gerontology 60 3–9. 10.1159/000354376
    1. Batsikadze G., Moliadze V., Paulus W., Kuo M. F., Nitsche M. A. (2013). Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J. Physiol. 591 1987–2000. 10.1113/jphysiol.2012.249730
    1. Belleville S. (2008). Cognitive training for persons with mild cognitive impairment. Int. Psychogeriatr. 20 57–66. 10.1017/S104161020700631X
    1. Berryhill M. E., Jones K. T. (2012). tDCS selectively improves working memory in older adults with more education. Neurosci. Lett. 521 148–151. 10.1016/j.neulet.2012.05.074
    1. Bindman L. J., Lippold O. C., Redfearn J. W. (1964). The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J. Physiol. 172 369–382. 10.1113/jphysiol.1964.sp007425
    1. Biswal B., Yetkin F. Z., Haughton V. M., Hyde J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34 537–541. 10.1002/mrm.1910340409
    1. Boggio P. S., Campanha C., Valasek C. A., Fecteau S., Pascual-Leone A., Fregni F. (2010). Modulation of decision-making in a gambling task in older adults with transcranial direct current stimulation. Eur. J. Neurosci. 31 593–597. 10.1111/j.1460-9568.2010.07080.x
    1. Boggio P. S., Ferrucci R., Mameli F., Martins D., Martins O., Vergari M., et al. (2012). Prolonged visual memory enhancement after direct current stimulation in Alzheimer’s disease. Brain Stimul. 5 223–230. 10.1016/j.brs.2011.06.006
    1. Boggio P. S., Khoury L. P., Martins D. C. S., Martins O. E. M. S., De Macedo E. C., Fregni F. (2009). Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. J. Neurol. Neurosurg. Psychiatry 80 444–447. 10.1136/jnnp.2007.141853
    1. Burke S. N., Barnes C. A. (2006). Neural plasticity in the ageing brain. Nat. Rev. Neurosci. 7 30–40. 10.1038/nrn1809
    1. Cotelli M., Manenti R., Brambilla M., Petesi M., Rosini S., Ferrari C., et al. (2014). Anodal tDCS during face-name associations memory training in Alzheimer’s patients. Front. Aging Neurosci. 6:38 10.3389/fnagi.2014.00038
    1. Cotelli M., Manenti R., Zanetti O., Miniussi C. (2012). Non-pharmacological intervention for memory decline. Front. Hum. Neurosci. 6:46 10.3389/fnhum.2012.00046
    1. Elder G. J., Taylor J. P. (2014). Transcranial magnetic stimulation and transcranial direct current stimulation: treatments for cognitive and neuropsychiatric symptoms in the neurodegenerative dementias? Alzheimers Res. Ther. 6 74 10.1186/s13195-014-0074-1
    1. Elman J. A., Oh H., Madison C. M., Baker S. L., Vogel J. W., Marks S. M., et al. (2014). Neural compensation in older people with brain amyloid-beta deposition. Nat. Neurosci. 17 1316–1318. 10.1038/nn.3806
    1. Farias G. A., Guzman-Martinez L., Delgado C., Maccioni R. B. (2014). Nutraceuticals: a novel concept in prevention and treatment of Alzheimer’s disease and related disorders. J. Alzheimers Dis. 42 357–367. 10.3233/JAD-132741
    1. Ferrucci R., Mameli F., Guidi I., Mrakic-Sposta S., Vergari M., Marceglia S., et al. (2008). Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology 71 493–498. 10.1212/01.wnl.0000317060.43722.a3
    1. Fertonani A., Brambilla M., Cotelli M., Miniussi C. (2014). The timing of cognitive plasticity in physiological aging: a tDCS study of naming. Front. Aging Neurosci. 6:131 10.3389/fnagi.2014.00131
    1. Floel A. (2014). tDCS-enhanced motor and cognitive function in neurological diseases. Neuroimage 85 934–947. 10.1016/j.neuroimage.2013.05.098
    1. Floel A., Cohen L. G. (2010). Recovery of function in humans: cortical stimulation and pharmacological treatments after stroke. Neurobiol. Dis. 37 243–251. 10.1016/j.nbd.2009.05.027
    1. Floel A., Suttorp W., Kohl O., Kurten J., Lohmann H., Breitenstein C., et al. (2012). Non-invasive brain stimulation improves object-location learning in the elderly. Neurobiol. Aging 33 1682–1689. 10.1016/j.neurobiolaging.2011.05.007
    1. Folstein M. F., Folstein S. E., Mchugh P. R. (1975). Mini-mental state.” A practical method for grading the cognitive state of patients for the clinician. J. Psychiatry Res. 12 189–198. 10.1016/0022-3956(75)90026-6
    1. Francis P. T. (2005). The interplay of neurotransmitters in Alzheimer’s disease. CNS Spectr. 10 6–9.
    1. Grady C. (2012). The cognitive neuroscience of ageing. Nat. Rev. Neurosci. 13 491–505. 10.1038/nrn3256
    1. Greicius M. D., Srivastava G., Reiss A. L., Menon V. (2004). Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc. Natl. Acad. Sci. U.S.A. 101 4637–4642. 10.1073/pnas.0308627101
    1. Grundman M., Petersen R. C., Ferris S. H., Thomas R. G., Aisen P. S., Bennett D. A., et al. (2004). Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch. Neurol. 61 59–66. 10.1001/archneur.61.1.59
    1. Hardwick R. M., Celnik P. A. (2014). Cerebellar direct current stimulation enhances motor learning in older adults. Neurobiol. Aging 35 2217–2221. 10.1016/j.neurobiolaging.2014.03.030
    1. Harty S., Robertson I. H., Miniussi C., Sheehy O. C., Devine C. A., Mccreery S., et al. (2014). Transcranial direct current stimulation over right dorsolateral prefrontal cortex enhances error awareness in older age. J. Neurosci. 34 3646–3652. 10.1523/JNEUROSCI.5308-13.2014
    1. Holland R., Leff A. P., Josephs O., Galea J. M., Desikan M., Price C. J., et al. (2011). Speech facilitation by left inferior frontal cortex stimulation. Curr. Biol. 21 1403–1407. 10.1016/j.cub.2011.07.021
    1. Horvath J. C., Forte J. D., Carter O. (2015). Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review. Neuropsychologia 66 213–236. 10.1016/j.neuropsychologia.2014.11.021
    1. Hsu W.-Y., Kua Y., Zantoa T. P., Gazzaley A. (2015). Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer’s disease: a systematic review and meta-analysis. Neurobiol. Aging 36 2348–2359. 10.1016/j.neurobiolaging.2015.04.016
    1. Jack C. R., Knopman D. S., Jagust W. J., Petersen R. C., Weiner M. W., Aisen P. S., et al. (2013). Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12 207–216. 10.1016/S1474-4422(12)70291-0
    1. Jagust W. (2013). Vulnerable neural systems and the borderland of brain aging and neurodegeneration. Neuron 77 219–234. 10.1016/j.neuron.2013.01.002
    1. Jean L., Bergeron M.-E., Thivierge S., Simard M. (2010). Cognitive intervention programs for individuals with mild cognitive impairment: systematic review of the literature. Am. J. Geriatr. Psychiatry 18 281–296. 10.1097/JGP.0b013e3181c37ce9
    1. Jones K. T., Gozenman F., Berryhill M. E. (2015a). The strategy and motivational influences on the beneficial effect of neurostimulation: a tDCS and fNIRS study. Neuroimage 105 238–247. 10.1016/j.neuroimage.2014.11.012
    1. Jones K. T., Stephens J. A., Alam M., Bikson M., Berryhill M. E. (2015b). Longitudinal neurostimulation in older adults improves working memory. PLoS ONE 10:e0121904 10.1371/journal.pone.0121904
    1. Khedr E. M., Gamal N. F. E., El-Fetoh N. A., Khalifa H., Ahmed E. M., Ali A. M., et al. (2014). A double-blind randomized clinical trial on the efficacy of cortical direct current stimulation for the treatment of Alzheimer’s disease. Front. Aging Neurosci. 6:275 10.3389/fnagi.2014.00275
    1. Kramer A. F., Erickson K. I. (2007). Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function. Trends Cogn. Sci. 11 342–348. 10.1016/j.tics.2007.06.009
    1. Kulzow N., Kerti L., Witte V. A., Kopp U., Breitenstein C., Floel A. (2014). An object location memory paradigm for older adults with and without mild cognitive impairment. J. Neurosci. Methods 237 16–25. 10.1016/j.jneumeth.2014.08.020
    1. Kuo M. F., Paulus W., Nitsche M. A. (2008). Boosting focally-induced brain plasticity by dopamine. Cereb. Cortex 18 648–651. 10.1093/cercor/bhm098
    1. Kuo M.-F., Paulus W., Nitsche M. A. (2014). Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. Neuroimage 85 948–960. 10.1016/j.neuroimage.2013.05.117
    1. Langbaum J. B., Fleisher A. S., Chen K., Ayutyanont N., Lopera F., Quiroz Y. T., et al. (2013). Ushering in the study and treatment of preclinical Alzheimer disease. Nat. Rev. Neurol. 9 371–381. 10.1038/nrneurol.2013.107
    1. Lindenberg R., Nachtigall L., Meinzer M., Sieg M. M., Floel A. (2013). Differential effects of dual and unihemispheric motor cortex stimulation in older adults. J. Neurosci. 33 9176–9183. 10.1523/JNEUROSCI.0055-13.2013
    1. List J., Lesemann A., Kubke J. C., Kulzow N., Schreiber S. J., Floel A. (2015). Impact of tDCS on cerebral autoregulation in aging and in patients with cerebrovascular diseases. Neurology 84 626–628. 10.1212/WNL.0000000000001230
    1. Manenti R., Brambilla M., Petesi M., Ferrari C., Cotelli M. (2013). Enhancing verbal episodic memory in older and young subjects after non-invasive brain stimulation. Front. Aging Neurosci. 5:49 10.3389/fnagi.2013.00049
    1. Mattson M. P. (2015). Lifelong brain health is a lifelong challenge: from evolutionary principles to empirical evidence. Ageing Res. Rev. 20 37–45. 10.1016/j.arr.2014.12.011
    1. Mckhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E. M. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 34 939–944. 10.1212/WNL.34.7.939
    1. Meinzer M., Antonenko D., Lindenberg R., Hetzer S., Ulm L., Avirame K., et al. (2012). Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation. J. Neurosci. 32 1859–1866. 10.1523/JNEUROSCI.4812-11.2012
    1. Meinzer M., Jahnigen S., Copland D. A., Darkow R., Grittner U., Avirame K., et al. (2014a). Transcranial direct current stimulation over multiple days improves learning and maintenance of a novel vocabulary. Cortex 50 137–147. 10.1016/j.cortex.2013.07.013
    1. Meinzer M., Lindenberg R., Darkow R., Ulm L., Copland D., Floel A. (2014b). Transcranial direct current stimulation and simultaneous functional magnetic resonance imaging. J. Vis. Exp. 86 e51730. 10.3791/51730
    1. Meinzer M., Lindenberg R., Phan M. T., Ulm L., Volk C., Flöel A. (2014c). Transcranial direct current stimulation in mild cognitive impairment: behavioral effects and neural mechanisms. Alzheimers Dement. 10.1016/j.jalz.2014.07.159 [Epub ahead of print].
    1. Meinzer M., Lindenberg R., Sieg M. M., Nachtigall L., Ulm L., Floel A. (2014d). Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults. Front. Aging Neurosci. 6:253 10.3389/fnagi.2014.00253
    1. Meinzer M., Lindenberg R., Antonenko D., Flaisch T., Floel A. (2013). Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes. J. Neurosci. 33 12470–12478. 10.1523/JNEUROSCI.5743-12.2013
    1. Miranda P. C., Lomarev M., Hallett M. (2006). Modeling the current distribution during transcranial direct current stimulation. Clin. Neurophysiol. 117 1623–1629. 10.1016/j.clinph.2006.04.009
    1. Mohs R. C., Knopman D., Petersen R. C., Ferris S. H., Ernesto C., Grundman M., et al. (1997). Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer’s disease assessment scale that broaden its scope. Alzheimer Dis. Assoc. Dis. 11 13–21. 10.1097/00002093-199700112-00003
    1. Monte-Silva K., Kuo M.-F., Hessenthaler S., Fresnoza S., Liebetanz D., Paulus W., et al. (2013). Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimul. 6 424–432. 10.1016/j.brs.2012.04.011
    1. Monte-Silva K., Liebetanz D., Grundey J., Paulus W., Nitsche M. A. (2010). Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity. J. Physiol. 588 3415–3424. 10.1113/jphysiol.2010.190181
    1. Nardone R., Golaszewski S., Ladurner G., Tezzon F., Trinka E. (2011). A review of transcranial magnetic stimulation in the in vivo functional evaluation of central cholinergic circuits in dementia. Dement. Geriatr. Cogn. Disord. 32 18–25. 10.1159/000330016
    1. Nitsche M. A., Doemkes S., Karakose T., Antal A., Liebetanz D., Lang N., et al. (2007). Shaping the effects of transcranial direct current stimulation of the human motor cortex. J. Neurophysiol. 97 3109–3117. 10.1152/jn.01312.2006
    1. Nitsche M. A., Jaussi W., Liebetanz D., Lang N., Tergau F., Paulus W. (2004). Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology 29 1573–1578. 10.1038/sj.npp.1300517
    1. Nitsche M. A., Kuo M. F., Karrasch R., Wachter B., Liebetanz D., Paulus W. (2009). Serotonin affects transcranial direct current-induced neuroplasticity in humans. Biol. Psychiatry 66 503–508. 10.1016/j.biopsych.2009.03.022
    1. Nitsche M. A., Liebetanz D., Antal A., Lang N., Tergau F., Paulus W. (2003). Modulation of cortical excitability by weak direct current stimulation–technical, safety and functional aspects. Suppl. Clin. Neurophysiol. 56 255–276. 10.1016/S1567-424X(09)70230-2
    1. Nitsche M. A., Paulus W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527 633–639. 10.1111/j.1469-7793.2000.t01-1-00633.x
    1. Nitsche M. A., Paulus W. (2011). Transcranial direct current stimulation–update 2011. Restor. Neurol. Neurosci. 29 463–492. 10.3233/RNN-2011-0618
    1. Otal B., Olma M. C., Floel A., Wellwood I. (2015). Inhibitory non-invasive brain stimulation to homologous language regions as an adjunct to speech and language therapy in post-stroke aphasia: a meta-analysis. Front. Hum. Neurosci. 9:236 10.3389/fnhum.2015.00236
    1. Owen A. M., Mcmillan K. M., Laird A. R., Bullmore E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 25 46–59. 10.1002/hbm.20131
    1. Park D. C., Reuter-Lorenz P. (2009). The adaptive brain: aging and neurocognitive scaffolding. Annu. Rev. Psychol. 60 173–196. 10.1146/annurev.psych.59.103006.093656
    1. Park S. H., Seo J. H., Kim Y. H., Ko M. H. (2014). Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults. Neuroreport 25 122–126. 10.1097/WNR.0000000000000080
    1. Parra M. A., Ascencio L. L., Urquina H. F., Manes F., Ibanez A. M. (2012). P300 and neuropsychological assessment in mild cognitive impairment and Alzheimer dementia. Front. Neurol. 3:172 10.3389/fneur.2012.00172
    1. Paulus W., Classen J., Cohen L. G., Large C. H., Di Lazzaro V., Nitsche M., et al. (2008). State of the art: pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimul. 1 151–163. 10.1016/j.brs.2008.06.002
    1. Petersen R. C., Negash S. (2008). Mild cognitive impairment: an overview. CNS Spectr. 13 45–53.
    1. Polania R., Nitsche M. A., Paulus W. (2011). Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum. Brain Mapp. 32 1236–1249. 10.1002/hbm.21104
    1. Reitz C., Brayne C., Mayeux R. (2011). Epidemiology of Alzheimer disease. Nat. Rev. Neurol. 7 137–152. 10.1038/nrneurol.2011.2
    1. Ross L. A., Mccoy D., Coslett H. B., Olson I. R., Wolk D. A. (2011). Improved proper name recall in aging after electrical stimulation of the anterior temporal lobes. Front. Aging Neurosci. 3:16 10.3389/fnagi.2011.00016
    1. Sandrini M., Brambilla M., Manenti R., Rosini S., Cohen L. G., Cotelli M. (2014). Noninvasive stimulation of prefrontal cortex strengthens existing episodic memories and reduces forgetting in the elderly. Front. Aging Neurosci. 6:289 10.3389/fnagi.2014.00289
    1. Shin Y.-I., Foerster A., Nitsche M. A. (2015). Transcranial direct current stimulation (tDCS) – application in neuropsychology. Neuropsychologia 69 154–175. 10.1016/j.neuropsychologia.2015.02.002
    1. Smith S. M., Miller K. L., Moeller S., Xu J. Q., Auerbach E. J., Woolrich M. W., et al. (2012). Temporally-independent functional modes of spontaneous brain activity. Proc. Natl. Acad. Sci. U.S.A. 109 3131–3136. 10.1073/pnas.1121329109
    1. Sperling R. A., Laviolette P. S., O’keefe K., O’brien J., Rentz D. M., Pihlajamaki M., et al. (2009). Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 63 178–188. 10.1016/j.neuron.2009.07.003
    1. Stagg C. J., Jayaram G., Pastor D., Kincses Z. T., Matthews P. M., Johansen-Berg H. (2011). Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia 49 800–804. 10.1016/j.neuropsychologia.2011.02.009
    1. Stagg C. J., Nitsche M. A. (2011). Physiological basis of transcranial direct current stimulation. Neuroscientist 17 37–53. 10.1177/1073858410386614
    1. Starkstein S. E., Mayberg H. S., Preziosi T. J., Andrezejewski P., Leiguarda R., Robinson R. G. (1992). Reliability, validity, and clinical correlates of apathy in Parkinson’s disease. J. Neuropsychiatry Clin. Neurosci. 4 134–139. 10.1176/jnp.4.2.134
    1. Suemoto C. K., Apolinario D., Nakamura-Palacios E. M., Lopes L., Leite R. E. P., Sales M. C., et al. (2014). Effects of a non-focal plasticity protocol on apathy in moderate Alzheimer’s disease: a randomized, double-blind, sham-controlled trial. Brain Stimul. 7 308–313. 10.1016/j.brs.2013.10.003
    1. Taler V., Phillips N. A. (2008). Language performance in Alzheimer’s disease and mild cognitive impairment: a comparative review. J. Clin. Exp. Neuropsychol. 30 501–556. 10.1080/13803390701550128
    1. Tremblay S., Lepage J. F., Latulipe-Loiselle A., Fregni F., Pascual-Leone A., Theoret H. (2014). The uncertain outcome of prefrontal tDCS. Brain Stimul. 7 773–783. 10.1016/j.brs.2014.10.003
    1. Vernieri F., Assenza G., Maggio P., Tibuzzi F., Zappasodi F., Altamura C., et al. (2010). Cortical neuromodulation modifies cerebral vasomotor reactivity. Stroke 41 2087–2090. 10.1161/STROKEAHA.110.583088
    1. Wagner A. D., Shannon B. J., Kahn I., Buckner R. L. (2005). Parietal lobe contributions to episodic memory retrieval. Trends Cogn. Sci. 9 445–453. 10.1016/j.tics.2005.07.001
    1. Wagner T., Fregni F., Fecteau S., Grodzinsky A., Zahn M., Pascual-Leone A. (2007). Transcranial direct current stimulation: a computer-based human model study. Neuroimage 35 1113–1124. 10.1016/j.neuroimage.2007.01.027
    1. Wechsler D. (1997). Wechsler Adult Intelligence Scale, 3rd Edn San Antonia, TX: The Psychological Corporation.
    1. Zimerman M., Nitsch M., Giraux P., Gerloff C., Cohen L. G., Hummel F. C. (2013). Neuroenhancement of the aging brain: restoring skill acquisition in old subjects. Ann. Neurol. 73 10–15. 10.1002/ana.23761

Source: PubMed

3
購読する