Natural Killer Cells and T Cells in Hepatocellular Carcinoma and Viral Hepatitis: Current Status and Perspectives for Future Immunotherapeutic Approaches

Suresh Gopi Kalathil, Yasmin Thanavala, Suresh Gopi Kalathil, Yasmin Thanavala

Abstract

Natural killer (NK) cells account for 25-50% of the total number of hepatic lymphocytes, which implicates that NK cells play an important role in liver immunity. The frequencies of both circulating and tumor infiltrating NK cells are positively correlated with survival benefit in hepatocellular cancer (HCC) and have prognostic implications, which suggests that functional impairment in NK cells and HCC progression are strongly associated. In HCC, T cell exhaustion is accompanied by the interaction between immune checkpoint ligands and their receptors on tumor cells and antigen presenting cells (APC). Immune checkpoint inhibitors (ICIs) have been shown to interfere with this interaction and have altered the therapeutic landscape of multiple cancer types including HCC. Immunotherapy with check-point inhibitors, aimed at rescuing T-cells from exhaustion, has been applied as first-line therapy for HCC. NK cells are the first line effectors in viral hepatitis and play an important role by directly eliminating virus infected cells or by activating antigen specific T cells through IFN-γ production. Furthermore, chimeric antigen receptor (CAR)-engineered NK cells and T cells offer unique opportunities to create CAR-NK with multiple specificities learning from the experience gained with CAR-T cells with potentially less adverse effects. This review focus on the abnormalities of NK cells, T cells, and their functional impairment in patients with chronic viral hepatitis, which contributes to progression to hepatic malignancy. Furthermore, we discuss and summarize recent advances in the NK cell and T cell based immunotherapeutic approaches in HCC.

Trial registration: ClinicalTrials.gov NCT01835223.

Keywords: CTL; NK cell; hepatocellular carcinoma; immunotherapy; viral hepatitis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Shift in the balance between inhibitory and activation signaling; auxiliary methods for enhancing the therapeutic efficacy of NK cell-based immunotherapy. NK cells express a broad spectrum of receptors with activating or inhibitory functions and the balance between signaling inputs through these receptors shifts the equilibrium towards tolerance or activation of cytotoxicity against the target cells. (A). Under normal homeostatic condition, when the overall inhibitory signaling strength outweighs activating receptor signaling, NK cell activation is aborted resulting in tolerance. (B). During viral infection, cells upregulate stimulatory ligands for NK cell activating receptor NKG2D and as a result activation signal surpasses signaling through the inhibitory receptors KIRS and NKG2A, resulting in cytokine release and cytolysis of target cells. (C). Class I MHC ligands of NK cell inhibitory receptors are downregulated in tumor cells during malignant transformation and the loss of inhibitory signals causes positive signaling which leads to NK cell activation and tumor cell killing, referred to the “missing-self” phenomena. (D). Immune-checkpoint inhibitors could potentially relieve suppression of NK cell-mediated cytotoxicity by preventing inhibitory signaling through PD-1, CD6, NKG2A, and killer immunoglobulin-like receptors (KIRs). In addition, activation of members of the natural cytotoxicity receptor family, such as NKG2D, results in the release of preformed cytolytic granules containing granzyme B and perforin. Pro-inflammatory cytokines such as IL-12 and IL-18 enhance NK cell effector function and cytokine secretion, whereas anti-inflammatory cytokine TGFβ inhibits NK cell function. IL-15 is a crucial homeostatic cytokine for NK cells and exogenous IL-15 can cause NK cell activation. NK cells expressing Fc receptors for antibodies, can recognize and kill sensitized tumor cells through ADCC. Genetically modified CAR NK cells accelerate the antitumor activity of adoptive NK cell therapies.

References

    1. Siegel R.L., Miller K.D., Jemal A. Cancer Statistics, 2017. CA A Cancer J. Clin. 2017;67:7–30. doi: 10.3322/caac.21387.
    1. Wallace M.C., Preen D., Jeffrey G.P., Adams L.A. The evolving epidemiology of hepatocellular carcinoma: A global perspective. Expert Rev. Gastroenterol. Hepatol. 2015;9:765–779. doi: 10.1586/17474124.2015.1028363.
    1. Lurje I., Czigany Z., Bednarsch J., Roderburg C., Isfort P., Neumann U.P., Lurje G. Treatment Strategies for Hepatocellular Carcinoma—A Multidisciplinary Approach. Int. J. Mol. Sci. 2019;20:1465. doi: 10.3390/ijms20061465.
    1. Juengpanich S., Shi L., Iranmanesh Y., Chen J., Cheng Z., Khoo A.K., Pan L., Wang Y., Cai X. The role of natural killer cells in hepatocellular carcinoma development and treatment: A narrative review. Transl. Oncol. 2019;12:1092–1107. doi: 10.1016/j.tranon.2019.04.021.
    1. Sun C., Sun H.Y., Xiao W.H., Zhang C., Tian Z.G. Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy. Acta Pharm. Sin. 2015;36:1191–1199. doi: 10.1038/aps.2015.41.
    1. Kim H.D., Song G.W., Park S., Jung M.K., Kim M.H., Kang H.J., Yoo C., Yi K., Kim K.H., Eo S., et al. Association Between Expression Level of PD1 by Tumor-Infiltrating CD8(+) T Cells and Features of Hepatocellular Carcinoma. Gastroenterology. 2018;155:1936–1950. doi: 10.1053/j.gastro.2018.08.030.
    1. Lee H.W., Cho K.J., Park J.Y. Current Status and Future Direction of Immunotherapy in Hepatocellular Carcinoma: What Do the Data Suggest? Immune Netw. 2020;20:e11. doi: 10.4110/in.2020.20.e11.
    1. Dunn C., Brunetto M., Reynolds G., Christophides T., Kennedy P.T., Lampertico P., Das A., Lopes A.R., Borrow P., Williams K., et al. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell–mediated liver damage. J. Exp. Med. 2007;204:667–680. doi: 10.1084/jem.20061287.
    1. Rehermann B. Pathogenesis of chronic viral hepatitis: Differential roles of T cells and NK cells. Nat. Med. 2013;19:859–868. doi: 10.1038/nm.3251.
    1. Heydtmann M. Macrophages in Hepatitis B and Hepatitis C Virus Infections. J. Virol. 2009;83:2796–2802. doi: 10.1128/JVI.00996-08.
    1. Dessouki O., Kamiya Y., Nagahama H., Tanaka M., Suzu S., Sasaki Y., Okada S. Chronic hepatitis C viral infection reduces NK cell frequency and suppresses cytokine secretion: Reversion by anti-viral treatment. Biochem. Biophys. Res. Commun. 2010;393:331–337. doi: 10.1016/j.bbrc.2010.02.008.
    1. Oliviero B., Varchetta S., Paudice E., Michelone G., Zaramella M., Mavilio D., De Filippi F., Bruno S., Mondelli M.U. Natural killer cell functional dichotomy in chronic hepatitis B and chronic hepatitis C virus infections. Gastroenterology. 2009;137:1151–1160. doi: 10.1053/j.gastro.2009.05.047.
    1. Su C.-W., Lin H.-C. Toward a new landscape for the mechanism of immunosuppression in hepatocellular carcinoma. Hepatol. Int. 2021;15:287–289. doi: 10.1007/s12072-021-10161-2.
    1. Fisicaro P., Rossi M., Vecchi A., Acerbi G., Barili V., Laccabue D., Montali I., Zecca A., Penna A., Missale G., et al. The Good and the Bad of Natural Killer Cells in Virus Control: Perspective for Anti-HBV Therapy. Int. J. Mol. Sci. 2019;20:5080. doi: 10.3390/ijms20205080.
    1. Schuch A., Zecher B.F., Müller P.A., Correia M.P., Daul F., Rennert C., Tauber C., Schlitt K., Boettler T., Neumann-Haefelin C., et al. NK-cell responses are biased towards CD16-mediated effector functions in chronic hepatitis B virus infection. J. Hepatol. 2019;70:351–360. doi: 10.1016/j.jhep.2018.10.006.
    1. Liu P., Chen L., Zhang H. Natural Killer Cells in Liver Disease and Hepatocellular Carcinoma and the NK Cell-Based Immunotherapy. J. Immunol Res. 2018;2018:1206737. doi: 10.1155/2018/1206737.
    1. Nattermann J., Feldmann G., Ahlenstiel G., Langhans B., Sauerbruch T., Spengler U. Surface expression and cytolytic function of natural killer cell receptors is altered in chronic hepatitis C. Gut. 2006;55:869–877. doi: 10.1136/gut.2005.076463.
    1. Marotel M., Villard M., Drouillard A., Tout I., Besson L., Allatif O., Pujol M., Rocca Y., Ainouze M., Roblot G., et al. Peripheral natural killer cells in chronic hepatitis B patients display multiple molecular features of T cell exhaustion. Elife. 2021;10:e60095. doi: 10.7554/eLife.60095.
    1. Rehermann B. Natural Killer Cells in Viral Hepatitis. Cell. Mol. Gastroenterol. Hepatol. 2015;1:578–588. doi: 10.1016/j.jcmgh.2015.09.004.
    1. Amadei B., Urbani S., Cazaly A., Fisicaro P., Zerbini A., Ahmed P., Missale G., Ferrari C., Khakoo S.I. Activation of Natural Killer Cells During Acute Infection With Hepatitis C Virus. Gastroenterology. 2010;138:1536–1545. doi: 10.1053/j.gastro.2010.01.006.
    1. Pollmann J., Götz J.-J., Rupp D., Strauss O., Granzin M., Grünvogel O., Mutz P., Kramer C., Lasitschka F., Lohmann V., et al. Hepatitis C virus-induced natural killer cell proliferation involves monocyte-derived cells and the OX40/OX40L axis. J. Hepatol. 2018;68:421–430. doi: 10.1016/j.jhep.2017.10.021.
    1. Peppa D., Gill U.S., Reynolds G., Easom N.J.W., Pallett L.J., Schurich A., Micco L., Nebbia G., Singh H.D., Adams D.H., et al. Up-regulation of a death receptor renders antiviral T cells susceptible to NK cell–mediated deletion. J. Exp. Med. 2012;210:99–114. doi: 10.1084/jem.20121172.
    1. Locarnini S., Hatzakis A., Chen D.S., Lok A. Strategies to control hepatitis B: Public policy, epidemiology, vaccine and drugs. J. Hepatol. 2015;62:S76–S86. doi: 10.1016/j.jhep.2015.01.018.
    1. Alkhouri N., Lawitz E., Poordad F. Novel treatments for chronic hepatitis C: Closing the remaining gaps. Curr. Opin. Pharm. 2017;37:107–111. doi: 10.1016/j.coph.2017.10.001.
    1. Abdel-Hakeem M.S., Shoukry N.H. Protective immunity against hepatitis C: Many shades of gray. Front. Immunol. 2014;5:274. doi: 10.3389/fimmu.2014.00274.
    1. Rehermann B., Ferrari C., Pasquinelli C., Chisari F.V. The hepatitis B virus persists for decades after patients’ recovery from acute viral hepatitis despite active maintenance of a cytotoxic T–lymphocyte response. Nat. Med. 1996;2:1104–1108. doi: 10.1038/nm1096-1104.
    1. Lechner F., Wong D.K., Dunbar P.R., Chapman R., Chung R.T., Dohrenwend P., Robbins G., Phillips R., Klenerman P., Walker B.D. Analysis of successful immune responses in persons infected with hepatitis C virus. J. Exp. Med. 2000;191:1499–1512. doi: 10.1084/jem.191.9.1499.
    1. Schmidt J., Blum H.E., Thimme R. T-cell responses in hepatitis B and C virus infection: Similarities and differences. Emerg Microbes Infect. 2013;2:e15. doi: 10.1038/emi.2013.14.
    1. Dazert E., Neumann-Haefelin C., Bressanelli S., Fitzmaurice K., Kort J., Timm J., McKiernan S., Kelleher D., Gruener N., Tavis J.E., et al. Loss of viral fitness and cross-recognition by CD8+ T cells limit HCV escape from a protective HLA-B27-restricted human immune response. J. Clin. Investig. 2009;119:376–386. doi: 10.1172/JCI36587.
    1. Kim A.Y., Kuntzen T., Timm J., Nolan B.E., Baca M.A., Reyor L.L., Berical A.C., Feller A.J., Johnson K.L., Wiesch J.S.Z., et al. Spontaneous Control of HCV Is Associated With Expression of HLA-B*57 and Preservation of Targeted Epitopes. Gastroenterology. 2011;140:686–696. doi: 10.1053/j.gastro.2010.09.042.
    1. Fitzmaurice K., Petrovic D., Ramamurthy N., Simmons R., Merani S., Gaudieri S., Sims S., Dempsey E., Freitas E., Lea S., et al. Molecular footprints reveal the impact of the protective HLA-A*03 allele in hepatitis C virus infection. Gut. 2011;60:1563–1571. doi: 10.1136/gut.2010.228403.
    1. Penna A., Pilli M., Zerbini A., Orlandini A., Mezzadri S., Sacchelli L., Missale G., Ferrari C. Dysfunction and functional restoration of HCV-specific CD8 responses in chronic hepatitis C virus infection. Hepatology. 2007;45:588–601. doi: 10.1002/hep.21541.
    1. Larrubia J.R., Lokhande M.U., García-Garzón S., Miquel J., González-Praetorius A., Parra-Cid T., Sanz-de-Villalobos E. Persistent hepatitis C virus (HCV) infection impairs HCV-specific cytotoxic T cell reactivity through Mcl-1/Bim imbalance due to CD127 down-regulation. J. Viral Hepat. 2013;20:85–94. doi: 10.1111/j.1365-2893.2012.01618.x.
    1. Lopes A.R., Kellam P., Das A., Dunn C., Kwan A., Turner J., Peppa D., Gilson R.J., Gehring A., Bertoletti A., et al. Bim-mediated deletion of antigen-specific CD8+ T cells in patients unable to control HBV infection. J. Clin. Investig. 2008;118:1835–1845. doi: 10.1172/JCI33402.
    1. Accapezzato D., Francavilla V., Paroli M., Casciaro M., Chircu L.V., Cividini A., Abrignani S., Mondelli M.U., Barnaba V. Hepatic expansion of a virus-specific regulatory CD8(+) T cell population in chronic hepatitis C virus infection. J. Clin. Investig. 2004;113:963–972. doi: 10.1172/JCI200420515.
    1. Alatrakchi N., Graham C.S., van der Vliet H.J.J., Sherman K.E., Exley M.A., Koziel M.J. Hepatitis C virus (HCV)-specific CD8+ cells produce transforming growth factor beta that can suppress HCV-specific T-cell responses. J. Virol. 2007;81:5882–5892. doi: 10.1128/JVI.02202-06.
    1. Bertoletti A., Sette A., Chisari F.V., Penna A., Levrero M., Carli M.D., Fiaccadori F., Ferrari C. Natural variants of cytotoxic epitopes are T-cell receptor antagonists for antiviral cytotoxic T cells. Nature. 1994;369:407–410. doi: 10.1038/369407a0.
    1. Wölfl M., Rutebemberwa A., Mosbruger T., Mao Q., Li H.-m., Netski D., Ray S.C., Pardoll D., Sidney J., Sette A., et al. Hepatitis C virus immune escape via exploitation of a hole in the T cell repertoire. J. Immunol. 2008;181:6435–6446. doi: 10.4049/jimmunol.181.9.6435.
    1. Barili V., Fisicaro P., Montanini B., Acerbi G., Filippi A., Forleo G., Romualdi C., Ferracin M., Guerrieri F., Pedrazzi G., et al. Targeting p53 and histone methyltransferases restores exhausted CD8+ T cells in HCV infection. Nat. Commun. 2020;11:604. doi: 10.1038/s41467-019-14137-7.
    1. Fisicaro P., Barili V., Montanini B., Acerbi G., Ferracin M., Guerrieri F., Salerno D., Boni C., Massari M., Cavallo M.C., et al. Targeting mitochondrial dysfunction can restore antiviral activity of exhausted HBV-specific CD8 T cells in chronic hepatitis B. Nat. Med. 2017;23:327–336. doi: 10.1038/nm.4275.
    1. Schurich A., Pallett L.J., Jajbhay D., Wijngaarden J., Otano I., Gill U.S., Hansi N., Kennedy P.T., Nastouli E., Gilson R., et al. Distinct Metabolic Requirements of Exhausted and Functional Virus-Specific CD8 T Cells in the Same Host. Cell Rep. 2016;16:1243–1252. doi: 10.1016/j.celrep.2016.06.078.
    1. Schurich A., Pallett L.J., Lubowiecki M., Singh H.D., Gill U.S., Kennedy P.T., Nastouli E., Tanwar S., Rosenberg W., Maini M.K. The third signal cytokine IL-12 rescues the anti-viral function of exhausted HBV-specific CD8 T cells. PLoS Pathog. 2013;9:e1003208. doi: 10.1371/journal.ppat.1003208.
    1. Swadling L., Pallett L.J., Diniz M.O., Baker J.M., Amin O.E., Stegmann K.A., Burton A.R., Schmidt N.M., Jeffery-Smith A., Zakeri N., et al. Human Liver Memory CD8(+) T Cells Use Autophagy for Tissue Residence. Cell Rep. 2020;30:687–698. doi: 10.1016/j.celrep.2019.12.050.
    1. Bénéchet A.P., De Simone G., Di Lucia P., Cilenti F., Barbiera G., Le Bert N., Fumagalli V., Lusito E., Moalli F., Bianchessi V., et al. Dynamics and genomic landscape of CD8(+) T cells undergoing hepatic priming. Nature. 2019;574:200–205. doi: 10.1038/s41586-019-1620-6.
    1. Acerbi G., Montali I., Ferrigno G.D., Barili V., Schivazappa S., Alfieri A., Laccabue D., Loglio A., Borghi M., Massari M., et al. Functional reconstitution of HBV-specific CD8 T cells by in vitro polyphenol treatment in chronic hepatitis B. J. Hepatol. 2021;74:783–793. doi: 10.1016/j.jhep.2020.10.034.
    1. Amin O.E., Colbeck E.J., Daffis S., Khan S., Ramakrishnan D., Pattabiraman D., Chu R., Micolochick Steuer H., Lehar S., Peiser L., et al. Therapeutic potential of TLR8 agonist GS-9688 (selgantolimod) in chronic hepatitis B: Re-modelling of antiviral and regulatory mediators. Hepatology. 2020 doi: 10.1002/hep.31695.
    1. Aregay A., Owusu Sekyere S., Deterding K., Port K., Dietz J., Berkowski C., Sarrazin C., Manns M.P., Cornberg M., Wedemeyer H. Elimination of hepatitis C virus has limited impact on the functional and mitochondrial impairment of HCV-specific CD8+ T cell responses. J. Hepatol. 2019;71:889–899. doi: 10.1016/j.jhep.2019.06.025.
    1. Barber D.L., Wherry E.J., Masopust D., Zhu B., Allison J.P., Sharpe A.H., Freeman G.J., Ahmed R. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006;439:682–687. doi: 10.1038/nature04444.
    1. McMahan R.H., Golden-Mason L., Nishimura M.I., McMahon B.J., Kemper M., Allen T.M., Gretch D.R., Rosen H.R. Tim-3 expression on PD-1+ HCV-specific human CTLs is associated with viral persistence, and its blockade restores hepatocyte-directed in vitro cytotoxicity. J. Clin. Investig. 2010;120:4546–4557. doi: 10.1172/JCI43127.
    1. Radziewicz H., Ibegbu C.C., Fernandez M.L., Workowski K.A., Obideen K., Wehbi M., Hanson H.L., Steinberg J.P., Masopust D., Wherry E.J., et al. Liver-Infiltrating Lymphocytes in Chronic Human Hepatitis C Virus Infection Display an Exhausted Phenotype with High Levels of PD-1 and Low Levels of CD127 Expression. J. Virol. 2007;81:2545–2553. doi: 10.1128/JVI.02021-06.
    1. Blackburn S.D., Shin H., Haining W.N., Zou T., Workman C.J., Polley A., Betts M.R., Freeman G.J., Vignali D.A.A., Wherry E.J. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 2009;10:29–37. doi: 10.1038/ni.1679.
    1. Kubes P., Jenne C. Immune Responses in the Liver. Annu. Rev. Immunol. 2018;36:247–277. doi: 10.1146/annurev-immunol-051116-052415.
    1. Heymann F., Tacke F. Immunology in the liver--from homeostasis to disease. Nat. Rev. Gastroenterol. Hepatol. 2016;13:88–110. doi: 10.1038/nrgastro.2015.200.
    1. Makarova-Rusher O.V., Medina-Echeverz J., Duffy A.G., Greten T.F. The yin and yang of evasion and immune activation in HCC. J. Hepatol. 2015;62:1420–1429. doi: 10.1016/j.jhep.2015.02.038.
    1. Morvan M.G., Lanier L.L. NK cells and cancer: You can teach innate cells new tricks. Nat. Rev. Cancer. 2016;16:7–19. doi: 10.1038/nrc.2015.5.
    1. Jenne C.N., Kubes P. Immune surveillance by the liver. Nat. Immunol. 2013;14:996–1006. doi: 10.1038/ni.2691.
    1. Mikulak J., Bruni E., Oriolo F., Di Vito C., Mavilio D. Hepatic Natural Killer Cells: Organ-Specific Sentinels of Liver Immune Homeostasis and Physiopathology. Front. Immunol. 2019;10:946. doi: 10.3389/fimmu.2019.00946.
    1. Li J., Tao L., Wang X. Cytotoxic immune cell-based immunotherapy for hepatocellular carcinoma. Hepatoma Res. 2020;6:15. doi: 10.20517/2394-5079.2019.34.
    1. Chiossone L., Dumas P.Y., Vienne M., Vivier E. Natural killer cells and other innate lymphoid cells in cancer. Nat. Rev. Immunol. 2018;18:671–688. doi: 10.1038/s41577-018-0061-z.
    1. Vivier E., Raulet D.H., Moretta A., Caligiuri M.A., Zitvogel L., Lanier L.L., Yokoyama W.M., Ugolini S. Innate or Adaptive Immunity? The Example of Natural Killer Cells. Science. 2011;331:44–49. doi: 10.1126/science.1198687.
    1. Waldhauer I., Steinle A. NK cells and cancer immunosurveillance. Oncogene. 2008;27:5932–5943. doi: 10.1038/onc.2008.267.
    1. Martinet L., Smyth M.J. Balancing natural killer cell activation through paired receptors. Nat. Rev. Immunol. 2015;15:243–254. doi: 10.1038/nri3799.
    1. Pegram H.J., Andrews D.M., Smyth M.J., Darcy P.K., Kershaw M.H. Activating and inhibitory receptors of natural killer cells. Immunol. Cell Biol. 2011;89:216–224. doi: 10.1038/icb.2010.78.
    1. Cooper M.A., Fehniger T.A., Caligiuri M.A. The biology of human natural killer-cell subsets. Trends Immunol. 2001;22:633–640. doi: 10.1016/S1471-4906(01)02060-9.
    1. Cooper M.A. Natural killer cells might adapt their inhibitory receptors for memory. Proc. Natl. Acad. Sci. USA. 2018;115:11357–11359. doi: 10.1073/pnas.1815756115.
    1. De Maria A., Bozzano F., Cantoni C., Moretta L. Revisiting human natural killer cell subset function revealed cytolytic CD56dimCD16+ NK cells as rapid producers of abundant IFN-γ on activation. Proc. Natl. Acad. Sci. USA. 2011;108:728–732. doi: 10.1073/pnas.1012356108.
    1. Sung P.S., Jang J.W. Natural Killer Cell Dysfunction in Hepatocellular Carcinoma: Pathogenesis and Clinical Implications. Int. J. Mol. Sci. 2018;19:3648. doi: 10.3390/ijms19113648.
    1. Imai K., Matsuyama S., Miyake S., Suga K., Nakachi K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: An 11-year follow-up study of a general population. Lancet. 2000;356:1795–1799. doi: 10.1016/S0140-6736(00)03231-1.
    1. Wang L., Yang Z., Cao Y. Regulatory T cell and activated natural killer cell infiltration in hepatocellular carcinoma: Immune cell profiling using the CIBERSORT. Ann. Transl. Med. 2020;8:1483. doi: 10.21037/atm-20-5830.
    1. Ravindranath M.H., Filippone E.J., Devarajan A., Asgharzadeh S. Enhancing Natural Killer and CD8(+) T Cell-Mediated Anticancer Cytotoxicity and Proliferation of CD8(+) T Cells with HLA-E Monospecific Monoclonal Antibodies. Monoclon. Antibodies Immunodiagn. Immunother. 2019;38:38–59. doi: 10.1089/mab.2018.0043.
    1. Kärre K. Natural killer cell recognition of missing self. Nat. Immunol. 2008;9:477–480. doi: 10.1038/ni0508-477.
    1. Sun H., Huang Q., Huang M., Wen H., Lin R., Zheng M., Qu K., Li K., Wei H., Xiao W., et al. Human CD96 Correlates to Natural Killer Cell Exhaustion and Predicts the Prognosis of Human Hepatocellular Carcinoma. Hepatology. 2019;70:168–183. doi: 10.1002/hep.30347.
    1. Mantovani S., Oliviero B., Lombardi A., Varchetta S., Mele D., Sangiovanni A., Rossi G., Donadon M., Torzilli G., Soldani C., et al. Deficient Natural Killer Cell NKp30-Mediated Function and Altered NCR3 Splice Variants in Hepatocellular Carcinoma. Hepatology. 2019;69:1165–1179. doi: 10.1002/hep.30235.
    1. Gong J., Fang L., Liu R., Wang Y., Xing J., Chen Y., Zhuang R., Zhang Y., Zhang C., Yang A., et al. UPR decreases CD226 ligand CD155 expression and sensitivity to NK cell-mediated cytotoxicity in hepatoma cells. Eur. J. Immunol. 2014;44:3758–3767. doi: 10.1002/eji.201444574.
    1. Lanier L.L. NKG2D Receptor and Its Ligands in Host Defense. Cancer Immunol. Res. 2015;3:575–582. doi: 10.1158/2326-6066.CIR-15-0098.
    1. Cacalano N.A. Regulation of Natural Killer Cell Function by STAT3. Front. Immunol. 2016;7:128. doi: 10.3389/fimmu.2016.00128.
    1. Lazarova M., Steinle A. Impairment of NKG2D-Mediated Tumor Immunity by TGF-β. Front. Immunol. 2019;10:2689. doi: 10.3389/fimmu.2019.02689.
    1. Zhang J., Xu Z., Zhou X., Zhang H., Yang N., Wu Y., Chen Y., Yang G., Ren T. Loss of expression of MHC class I-related chain A (MICA) is a frequent event and predicts poor survival in patients with hepatocellular carcinoma. Int. J. Clin. Exp. Pathol. 2014;7:3123–3131.
    1. Hwang S., Han J., Baek J.S., Tak E., Song G.W., Lee S.G., Jung D.H., Park G.C., Ahn C.S., Kim N. Cytotoxicity of Human Hepatic Intrasinusoidal CD56(bright) Natural Killer Cells against Hepatocellular Carcinoma Cells. Int. J. Mol. Sci. 2019;20:1564. doi: 10.3390/ijms20071564.
    1. Easom N.J.W., Stegmann K.A., Swadling L., Pallett L.J., Burton A.R., Odera D., Schmidt N., Huang W.C., Fusai G., Davidson B., et al. IL-15 Overcomes Hepatocellular Carcinoma-Induced NK Cell Dysfunction. Front. Immunol. 2018;9:1009. doi: 10.3389/fimmu.2018.01009.
    1. Sun H., Liu L., Huang Q., Liu H., Huang M., Wang J., Wen H., Lin R., Qu K., Li K., et al. Accumulation of Tumor-Infiltrating CD49a+ NK Cells Correlates with Poor Prognosis for Human Hepatocellular Carcinoma. Cancer Immunol. Res. 2019;7:1535–1546. doi: 10.1158/2326-6066.CIR-18-0757.
    1. Nomura M., Tsuge M., Uchida T., Hiraga N., Kurihara M., Tsushima K., Fujino H., Nakahara T., Murakami E., Abe-Chayama H., et al. CTL-associated and NK cell-associated immune responses induce different HBV DNA reduction patterns in chronic hepatitis B patients. J. Viral Hepat. 2018;25:1555–1564. doi: 10.1111/jvh.12970.
    1. Mantovani S., Oliviero B., Varchetta S., Mele D., Mondelli M.U. Natural Killer Cell Responses in Hepatocellular Carcinoma: Implications for Novel Immunotherapeutic Approaches. Cancers. 2020;12:926. doi: 10.3390/cancers12040926.
    1. Kamiya T., Chang Y.H., Campana D. Expanded and Activated Natural Killer Cells for Immunotherapy of Hepatocellular Carcinoma. Cancer Immunol. Res. 2016;4:574–581. doi: 10.1158/2326-6066.CIR-15-0229.
    1. Lin M., Liang S., Wang X., Liang Y., Zhang M., Chen J., Niu L., Xu K. Cryoablation combined with allogenic natural killer cell immunotherapy improves the curative effect in patients with advanced hepatocellular cancer. Oncotarget. 2017;8:81967–81977. doi: 10.18632/oncotarget.17804.
    1. Tan S., Xu Y., Wang Z., Wang T., Du X., Song X., Guo X., Peng J., Zhang J., Liang Y., et al. Tim-3 Hampers Tumor Surveillance of Liver-Resident and Conventional NK Cells by Disrupting PI3K Signaling. Cancer Res. 2020;80:1130–1142. doi: 10.1158/0008-5472.CAN-19-2332.
    1. Alnaggar M., Lin M., Mesmar A., Liang S., Qaid A., Xu K., Chen J., Niu L., Yin Z. Allogenic Natural Killer Cell Immunotherapy Combined with Irreversible Electroporation for Stage IV Hepatocellular Carcinoma: Survival Outcome. Cell. Physiol. Biochem. 2018;48:1882–1893. doi: 10.1159/000492509.
    1. Hosseinzadeh F., Verdi J., Ai J., Hajighasemlou S., Seyhoun I., Parvizpour F., Hosseinzadeh F., Iranikhah A., Shirian S. Combinational immune-cell therapy of natural killer cells and sorafenib for advanced hepatocellular carcinoma: A review. Cancer Cell Int. 2018;18:133. doi: 10.1186/s12935-018-0624-x.
    1. Gauthier L., Morel A., Anceriz N., Rossi B., Blanchard-Alvarez A., Grondin G., Trichard S., Cesari C., Sapet M., Bosco F., et al. Multifunctional Natural Killer Cell Engagers Targeting NKp46 Trigger Protective Tumor Immunity. Cell. 2019;177:1701–1713. doi: 10.1016/j.cell.2019.04.041.
    1. André P., Denis C., Soulas C., Bourbon-Caillet C., Lopez J., Arnoux T., Bléry M., Bonnafous C., Gauthier L., Morel A., et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell. 2018;175:1731–1743. doi: 10.1016/j.cell.2018.10.014.
    1. Kamiya T., Seow S.V., Wong D., Robinson M., Campana D. Blocking expression of inhibitory receptor NKG2A overcomes tumor resistance to NK cells. J. Clin. Investig. 2019;129:2094–2106. doi: 10.1172/JCI123955.
    1. Ruth J.H., Gurrea-Rubio M., Athukorala K.S., Rasmussen S.M., Weber D.P., Randon P.M., Gedert R.J., Lind M.E., Amin M.A., Campbell P.L., et al. CD6 is a target for cancer immunotherapy. JCI Insight. 2021;6:e145662. doi: 10.1172/jci.insight.145662.
    1. Zecca A., Barili V., Rizzo D., Olivani A., Biasini E., Laccabue D., Dalla Valle R., Ferrari C., Cariani E., Missale G. Intratumor Regulatory Noncytotoxic NK Cells in Patients with Hepatocellular Carcinoma. Cells. 2021;10:614. doi: 10.3390/cells10030614.
    1. Zheng X., Qian Y., Fu B., Jiao D., Jiang Y., Chen P., Shen Y., Zhang H., Sun R., Tian Z., et al. Mitochondrial fragmentation limits NK cell-based tumor immunosurveillance. Nat. Immunol. 2019;20:1656–1667. doi: 10.1038/s41590-019-0511-1.
    1. Harmon C., Robinson M.W., Hand F., Almuaili D., Mentor K., Houlihan D.D., Hoti E., Lynch L., Geoghegan J., O’Farrelly C. Lactate-Mediated Acidification of Tumor Microenvironment Induces Apoptosis of Liver-Resident NK Cells in Colorectal Liver Metastasis. Cancer Immunol. Res. 2019;7:335–346. doi: 10.1158/2326-6066.CIR-18-0481.
    1. Zecca A., Barili V., Canetti D., Regina V., Olivani A., Carone C., Capizzuto V., Zerbato B., Trenti T., Dalla Valle R., et al. Energy metabolism and cell motility defect in NK-cells from patients with hepatocellular carcinoma. Cancer Immunol. Immunother. CII. 2020;69:1589–1603. doi: 10.1007/s00262-020-02561-4.
    1. Myers J.A., Miller J.S. Exploring the NK cell platform for cancer immunotherapy. Nat. Rev. Clin. Oncol. 2021;18:85–100. doi: 10.1038/s41571-020-0426-7.
    1. Mizukoshi E., Kaneko S. Immune cell therapy for hepatocellular carcinoma. J. Hematol. Oncol. 2019;12:52. doi: 10.1186/s13045-019-0742-5.
    1. Nowakowska P., Romanski A., Miller N., Odendahl M., Bonig H., Zhang C., Seifried E., Wels W.S., Tonn T. Clinical grade manufacturing of genetically modified, CAR-expressing NK-92 cells for the treatment of ErbB2-positive malignancies. Cancer Immunol. Immunother. Cii. 2018;67:25–38. doi: 10.1007/s00262-017-2055-2.
    1. Klingemann H. Are natural killer cells superior CAR drivers? Oncoimmunology. 2014;3:e28147. doi: 10.4161/onci.28147.
    1. Tonn T., Schwabe D., Klingemann H.G., Becker S., Esser R., Koehl U., Suttorp M., Seifried E., Ottmann O.G., Bug G. Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy. 2013;15:1563–1570. doi: 10.1016/j.jcyt.2013.06.017.
    1. Yu M., Luo H., Fan M., Wu X., Shi B., Di S., Liu Y., Pan Z., Jiang H., Li Z. Development of GPC3-Specific Chimeric Antigen Receptor-Engineered Natural Killer Cells for the Treatment of Hepatocellular Carcinoma. Mol. J. Am. Soc. Gene. 2018;26:366–378. doi: 10.1016/j.ymthe.2017.12.012.
    1. Eitler J., Wotschel N., Miller N., Boissel L., Klingemann H.G., Wels W., Tonn T. Inability of granule polarization by NK cells defines tumor resistance and can be overcome by CAR or ADCC mediated targeting. J. Immunother. Cancer. 2021;9:e001334. doi: 10.1136/jitc-2020-001334.
    1. Wada Y., Nakashima O., Kutami R., Yamamoto O., Kojiro M. Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatology. 1998;27:407–414. doi: 10.1002/hep.510270214.
    1. Mizukoshi E., Yamashita T., Arai K., Sunagozaka H., Ueda T., Arihara F., Kagaya T., Yamashita T., Fushimi K., Kaneko S. Enhancement of tumor-associated antigen-specific T cell responses by radiofrequency ablation of hepatocellular carcinoma. Hepatology. 2013;57:1448–1457. doi: 10.1002/hep.26153.
    1. Bricard G., Bouzourene H., Martinet O., Rimoldi D., Halkic N., Gillet M., Chaubert P., Macdonald H.R., Romero P., Cerottini J.C., et al. Naturally acquired MAGE-A10- and SSX-2-specific CD8+ T cell responses in patients with hepatocellular carcinoma. J. Immunol. 2005;174:1709–1716. doi: 10.4049/jimmunol.174.3.1709.
    1. Mizukoshi E., Nakamoto Y., Tsuji H., Yamashita T., Kaneko S. Identification of alpha-fetoprotein-derived peptides recognized by cytotoxic T lymphocytes in HLA-A24+ patients with hepatocellular carcinoma. Int. J. Cancer. 2006;118:1194–1204. doi: 10.1002/ijc.21468.
    1. Mizukoshi E., Nakamoto Y., Marukawa Y., Arai K., Yamashita T., Tsuji H., Kuzushima K., Takiguchi M., Kaneko S. Cytotoxic T cell responses to human telomerase reverse transcriptase in patients with hepatocellular carcinoma. Hepatology. 2006;43:1284–1294. doi: 10.1002/hep.21203.
    1. Komori H., Nakatsura T., Senju S., Yoshitake Y., Motomura Y., Ikuta Y., Fukuma D., Yokomine K., Harao M., Beppu T., et al. Identification of HLA-A2- or HLA-A24-restricted CTL epitopes possibly useful for glypican-3-specific immunotherapy of hepatocellular carcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2006;12:2689–2697. doi: 10.1158/1078-0432.CCR-05-2267.
    1. Xing Q., Pang X.W., Peng J.R., Yin Y.H., Li Y., Yu X., Zhou S.P., Zhang Y., Chen W.F. Identification of new cytotoxic T-lymphocyte epitopes from cancer testis antigen HCA587. Biochem. Biophys. Res. Commun. 2008;372:331–335. doi: 10.1016/j.bbrc.2008.05.049.
    1. Kaji K., Mizukoshi E., Yamashita T., Arai K., Sunagozaka H., Fushimi K., Nakagawa H., Yamada K., Terashima T., Kitahara M., et al. Cellular Immune Responses for Squamous Cell Carcinoma Antigen Recognized by T Cells 3 in Patients with Hepatocellular Carcinoma. PLoS ONE. 2017;12:e0170291.
    1. Thimme R., Neagu M., Boettler T., Neumann-Haefelin C., Kersting N., Geissler M., Makowiec F., Obermaier R., Hopt U.T., Blum H.E., et al. Comprehensive analysis of the alpha-fetoprotein-specific CD8+ T cell responses in patients with hepatocellular carcinoma. Hepatology. 2008;48:1821–1833. doi: 10.1002/hep.22535.
    1. Butterfield L.H., Koh A., Meng W., Vollmer C.M., Ribas A., Dissette V., Lee E., Glaspy J.A., McBride W.H., Economou J.S. Generation of human T-cell responses to an HLA-A2.1-restricted peptide epitope derived from alpha-fetoprotein. Cancer Res. 1999;59:3134–3142.
    1. Zhu W., Peng Y., Wang L., Hong Y., Jiang X., Li Q., Liu H., Huang L., Wu J., Celis E., et al. Identification of α-fetoprotein-specific T-cell receptors for hepatocellular carcinoma immunotherapy. Hepatology. 2018;68:574–589. doi: 10.1002/hep.29844.
    1. Li Z., Gong H., Liu Q., Wu W., Cheng J., Mei Y., Chen Y., Zheng H., Yu X., Zhong S., et al. Identification of an HLA-A*24:02-restricted α-fetoprotein signal peptide-derived antigen and its specific T-cell receptor for T-cell immunotherapy. Immunology. 2020;159:384–392. doi: 10.1111/imm.13168.
    1. Zhai B., Shi D., Gao H., Qi X., Jiang H., Zhang Y., Chi J., Ruan H., Wang H., Ru Q.C., et al. A phase I study of anti-GPC3 chimeric antigen receptor modified T cells (GPC3 CAR-T) in Chinese patients with refractory or relapsed GPC3+ hepatocellular carcinoma (r/r GPC3+ HCC) J. Clin. Oncol. 2017;35:3049. doi: 10.1200/JCO.2017.35.15_suppl.3049.
    1. Sun L., Guo H., Jiang R., Lu L., Liu T., He X. Engineered cytotoxic T lymphocytes with AFP-specific TCR gene for adoptive immunotherapy in hepatocellular carcinoma. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 2016;37:799–806. doi: 10.1007/s13277-015-3845-9.
    1. Flecken T., Schmidt N., Hild S., Gostick E., Drognitz O., Zeiser R., Schemmer P., Bruns H., Eiermann T., Price D.A., et al. Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology. 2014;59:1415–1426. doi: 10.1002/hep.26731.
    1. Korangy F., Ormandy L.A., Bleck J.S., Klempnauer J., Wilkens L., Manns M.P., Greten T.F. Spontaneous tumor-specific humoral and cellular immune responses to NY-ESO-1 in hepatocellular carcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2004;10:4332–4341. doi: 10.1158/1078-0432.CCR-04-0181.
    1. Mizukoshi E., Nakamoto Y., Arai K., Yamashita T., Sakai A., Sakai Y., Kagaya T., Yamashita T., Honda M., Kaneko S. Comparative analysis of various tumor-associated antigen-specific t-cell responses in patients with hepatocellular carcinoma. Hepatology. 2011;53:1206–1216. doi: 10.1002/hep.24149.
    1. Zhang Y., Kong D., Wang H. Mucosal-Associated Invariant T cell in liver diseases. Int. J. Biol. Sci. 2020;16:460–470. doi: 10.7150/ijbs.39016.
    1. Zheng C., Zheng L., Yoo J.-K., Guo H., Zhang Y., Guo X., Kang B., Hu R., Huang J.Y., Zhang Q., et al. Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell. 2017;169:1342–1356. doi: 10.1016/j.cell.2017.05.035.
    1. Haruta I., Yamauchi K., Aruga A., Komatsu T., Takasaki K., Hayashi N., Hanyu F. Analytical study of the clinical response to two distinct adoptive immunotherapies for advanced hepatocellular carcinoma: Comparison between LAK cell and CTL therapy. J. Immunother. Emphas. Tumor Immunol. Off. J. Soc. Biol. 1996;19:218–223. doi: 10.1097/00002371-199605000-00006.
    1. Takayama T., Sekine T., Makuuchi M., Yamasaki S., Kosuge T., Yamamoto J., Shimada K., Sakamoto M., Hirohashi S., Ohashi Y., et al. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: A randomised trial. Lancet. 2000;356:802–807. doi: 10.1016/S0140-6736(00)02654-4.
    1. Lee J.H., Lee J.H., Lim Y.S., Yeon J.E., Song T.J., Yu S.J., Gwak G.Y., Kim K.M., Kim Y.J., Lee J.W., et al. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. Gastroenterology. 2015;148:1383–1391. doi: 10.1053/j.gastro.2015.02.055.
    1. Lee J.H., Lee J.H., Lim Y.S., Yeon J.E., Song T.J., Yu S.J., Gwak G.Y., Kim K.M., Kim Y.J., Lee J.W., et al. Sustained efficacy of adjuvant immunotherapy with cytokine-induced killer cells for hepatocellular carcinoma: An extended 5-year follow-up. Cancer Immunol. Immunother. CII. 2019;68:23–32. doi: 10.1007/s00262-018-2247-4.
    1. Duffy A.G., Ulahannan S.V., Makorova-Rusher O., Rahma O., Wedemeyer H., Pratt D., Davis J.L., Hughes M.S., Heller T., ElGindi M., et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J. Hepatol. 2017;66:545–551. doi: 10.1016/j.jhep.2016.10.029.
    1. Leuchte K., Staib E., Thelen M., Gödel P., Lechner A., Zentis P., Garcia-Marquez M., Waldschmidt D., Datta R.R., Wahba R., et al. Microwave ablation enhances tumor-specific immune response in patients with hepatocellular carcinoma. Cancer Immunol. Immunother. 2021;70:893–907. doi: 10.1007/s00262-020-02734-1.
    1. Kalathil S., Lugade A.A., Miller A., Iyer R., Thanavala Y. Higher frequencies of GARP(+)CTLA-4(+)Foxp3(+) T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality. Cancer Res. 2013;73:2435–2444. doi: 10.1158/0008-5472.CAN-12-3381.
    1. Kalathil S.G., Thanavala Y. High immunosuppressive burden in cancer patients: A major hurdle for cancer immunotherapy. Cancer Immunol. Immunother. CII. 2016;65:813–819. doi: 10.1007/s00262-016-1810-0.
    1. Kalathil S.G., Lugade A.A., Miller A., Iyer R., Thanavala Y. PD-1(+) and Foxp3(+) T cell reduction correlates with survival of HCC patients after sorafenib therapy. JCI Insight. 2016;1:e86182. doi: 10.1172/jci.insight.86182.
    1. Bian J., Lin J., Long J., Yang X., Yang X., Lu X., Sang X., Zhao H. T lymphocytes in hepatocellular carcinoma immune microenvironment: Insights into human immunology and immunotherapy. Am. J. Cancer Res. 2020;10:4585–4606.
    1. Xia Y., Chen R., Ye S.L., Sun R., Chen J., Zhao Y. Inhibition of T-cell responses by intratumoral hepatic stellate cells contribute to migration and invasion of hepatocellular carcinoma. Clin. Exp. Metastasis. 2011;28:661–674. doi: 10.1007/s10585-011-9399-3.
    1. He G., Zhang H., Zhou J., Wang B., Chen Y., Kong Y., Xie X., Wang X., Fei R., Wei L., et al. Peritumoural neutrophils negatively regulate adaptive immunity via the PD-L1/PD-1 signalling pathway in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. Cr. 2015;34:141. doi: 10.1186/s13046-015-0256-0.
    1. El-Khoueiry A.B., Sangro B., Yau T., Crocenzi T.S., Kudo M., Hsu C., Kim T.-Y., Choo S.-P., Trojan J., Welling T.H.R., et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389:2492–2502. doi: 10.1016/S0140-6736(17)31046-2.
    1. Zhu A.X., Finn R.S., Edeline J., Cattan S., Ogasawara S., Palmer D., Verslype C., Zagonel V., Fartoux L., Vogel A., et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19:940–952. doi: 10.1016/S1470-2045(18)30351-6.
    1. Huppert L.A., Gordan J.D., Kelley R.K. Checkpoint Inhibitors for the Treatment of Advanced Hepatocellular Carcinoma. Clin. Liver Dis. 2020;15:53–58. doi: 10.1002/cld.879.
    1. Finn R.S., Ryoo B.Y., Merle P., Kudo M., Bouattour M., Lim H.Y., Breder V., Edeline J., Chao Y., Ogasawara S., et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020;38:193–202. doi: 10.1200/JCO.19.01307.
    1. Floudas C.S., Brar G., Greten T.F. Immunotherapy: Current Status and Future Perspectives. Dig. Dis. Sci. 2019;64:1030–1040. doi: 10.1007/s10620-019-05516-7.
    1. Armstrong S., Prins P., He A.R. Immunotherapy and immunotherapy biomarkers for hepatocellular carcinoma. Hepatoma Res. 2021;7:18.
    1. Finn R.S., Qin S., Ikeda M. Atezolizumab puls bevacizumab in unresectable hepatocellular carcinoma. N. Engl. J. Med. 2020;382:1894. doi: 10.1056/NEJMoa1915745.
    1. Lee B.M., Seong J. Radiotherapy as an immune checkpoint blockade combination strategy for hepatocellular carcinoma. World J. Gastroenterol. 2021;27:919–927. doi: 10.3748/wjg.v27.i10.919.
    1. Ge Z., Zhou G., Carrascosa L.C., Gausvik E., Boor P.P.C., Noordam L., Douka M., Polak W.G., Terkivatan T., Pan Q., et al. TIGIT and PD1 Co-blockade Restores ex vivo Functions of Human Tumor-Infiltrating CD8+ T Cells in Hepatocellular Carcinoma. Cell. Mol. Gastroenterol. Hepatol. 2021 doi: 10.1016/j.jcmgh.2021.03.003.
    1. Qasim W., Brunetto M., Gehring A.J., Xue S.A., Schurich A., Khakpoor A., Zhan H., Ciccorossi P., Gilmour K., Cavallone D., et al. Immunotherapy of HCC metastases with autologous T cell receptor redirected T cells, targeting HBsAg in a liver transplant patient. J. Hepatol. 2015;62:486–491. doi: 10.1016/j.jhep.2014.10.001.
    1. Gao H., Li K., Tu H., Pan X., Jiang H., Shi B., Kong J., Wang H., Yang S., Gu J., et al. Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014;20:6418–6428. doi: 10.1158/1078-0432.CCR-14-1170.
    1. Chen C., Li K., Jiang H., Song F., Gao H., Pan X., Shi B., Bi Y., Wang H., Wang H., et al. Development of T cells carrying two complementary chimeric antigen receptors against glypican-3 and asialoglycoprotein receptor 1 for the treatment of hepatocellular carcinoma. Cancer Immunol. Immunother. CII. 2017;66:475–489. doi: 10.1007/s00262-016-1949-8.
    1. Guo X., Jiang H., Shi B., Zhou M., Zhang H., Shi Z., Du G., Luo H., Wu X., Wang Y., et al. Disruption of PD-1 Enhanced the Anti-tumor Activity of Chimeric Antigen Receptor T Cells Against Hepatocellular Carcinoma. Front. Pharm. 2018;9:1118. doi: 10.3389/fphar.2018.01118.
    1. Hu W., Huang X., Huang X., Chen W., Hao L., Chen Z. Chimeric antigen receptor modified T cell (CAR-T) co-expressed with ICOSL-41BB promote CAR-T proliferation and tumor rejection. Biomed. Pharm. = Biomed. Pharm. 2019;118:109333. doi: 10.1016/j.biopha.2019.109333.
    1. Sun B., Yang D., Dai H., Liu X., Jia R., Cui X., Li W., Cai C., Xu J., Zhao X. Eradication of Hepatocellular Carcinoma by NKG2D-Based CAR-T Cells. Cancer Immunol. Res. 2019;7:1813–1823. doi: 10.1158/2326-6066.CIR-19-0026.
    1. Liu Y., Di S., Shi B., Zhang H., Wang Y., Wu X., Luo H., Wang H., Li Z., Jiang H. Armored Inducible Expression of IL-12 Enhances Antitumor Activity of Glypican-3-Targeted Chimeric Antigen Receptor-Engineered T Cells in Hepatocellular Carcinoma. J. Immunol. 2019;203:198–207. doi: 10.4049/jimmunol.1800033.
    1. Liu H., Xu Y., Xiang J., Long L., Green S., Yang Z., Zimdahl B., Lu J., Cheng N., Horan L.H., et al. Targeting Alpha-Fetoprotein (AFP)-MHC Complex with CAR T-Cell Therapy for Liver Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017;23:478–488. doi: 10.1158/1078-0432.CCR-16-1203.
    1. Chen Y., E C.Y., Gong Z.W., Liu S., Wang Z.X., Yang Y.S., Zhang X.W. Chimeric antigen receptor-engineered T-cell therapy for liver cancer. Hepatobiliary Pancreat. Dis. Int. 2018;17:301–309. doi: 10.1016/j.hbpd.2018.05.005.
    1. Qin L., Zhao R., Chen D., Wei X., Wu Q., Long Y., Jiang Z., Li Y., Wu H., Zhang X., et al. Chimeric antigen receptor T cells targeting PD-L1 suppress tumor growth. Biomark. Res. 2020;8:19. doi: 10.1186/s40364-020-00198-0.

Source: PubMed

3
購読する