Photodynamic disinfection of SARS-CoV-2 clinical samples using a methylene blue formulation

Catarina S Lobo, Paulo Rodrigues-Santos, Dina Pereira, Jisette Núñez, João C D Trêpa, David Lopes Sousa, Jorge Vaz Lourenço, Maria Filomena Coelho, Luis Pereira de Almeida, José Saraiva da Cunha, Luis G Arnaut, Catarina S Lobo, Paulo Rodrigues-Santos, Dina Pereira, Jisette Núñez, João C D Trêpa, David Lopes Sousa, Jorge Vaz Lourenço, Maria Filomena Coelho, Luis Pereira de Almeida, José Saraiva da Cunha, Luis G Arnaut

Abstract

The amplitude of the coronavirus disease 2019 (COVID-19) pandemic motivated global efforts to find therapeutics that avert severe forms of this illness. The urgency of the medical needs privileged repositioning of approved medicines. Methylene blue (MB) has been in clinical use for a century and proved especially useful as a photosensitizer for photodynamic disinfection (PDI). We describe the use of MB to photo-inactivate SARS-CoV-2 in samples collected from COVID-19 patients. One minute of treatment can reduce the percentage inhibition of amplification by 99.99% under conditions of low cytotoxicity. We employed a pseudotyped lentiviral vector (LVs) encoding the luciferase reporter gene and exhibiting the S protein of SARS-CoV-2 at its surface, to infect human ACE2-expressing HEK293T cells. Pre-treatment of LVs with MB-PDI prevented infection at low micromolar MB concentrations and 1 min of illumination. These results reveal the potential of MB-PDI to reduce viral loads in the nasal cavity and oropharynx in the early stages of COVID-19, which may be employed to curb the transmission and severity of the disease.

Trial registration: ClinicalTrials.gov NCT04615936.

Keywords: Antimicrobial photodynamic disinfection; Methylene blue; Photodisinfection; Photodynamic inactivation; Pseudotyped lentiviral vector; SARS-CoV-2.

Conflict of interest statement

On behalf of all authors, the corresponding author states that there is no conflict of interest.

© 2022. The Author(s), under exclusive licence to European Photochemistry Association, European Society for Photobiology.

Figures

Fig. 1
Fig. 1
Design of the PDI of virus. a SARS-CoV-2 in clinical samples. b SARS-CoV-2 pseudotyped lentiviral vectors (LVs) encoding for luciferase and exhibiting the S protein at the surface. VTM viral transport medium
Fig. 2
Fig. 2
PDI of three independent clinical samples. a MB-1:20 and 103.2 J (i.e., 4 min illumination); b MB-1:20 and 25.8 J (i.e., 1 min illumination); c MB-1:100 and 25.8 J (i.e., 1 min illumination). V = virus only; V + L = virus and light for 4 or 8 min; V + MB1:20 = virus and MB-1:20; V + L + MB1:20 = virus and light and MB-1:20; V + L + MB1:100 = virus and light and MB-1:100; Controls: virus alone or in the presence of MB without light, or in the presence of light but without MB
Fig. 3
Fig. 3
Toxicity of the MB formulation towards HaCaT cells after 5 min of incubation, in the dark or exposed to 25.8 J at 670 nm. CTR untreated cells, L light
Fig. 4
Fig. 4
Infection of HEK-293 T-hACE2 cells with SARS-CoV-2 pseudotyped lentivirus (LV). a Cell viability. b Ratio between chemiluminescence intensity and cell viability in %. C: cells with the addition of PBS; V: addition of LVs; MB1: [MB] = 3.2 µM; MB2: [MB] = 16 µM; L: light of 25 J

References

    1. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the sars-CoV-2 spike glycoprotein. Cell. 2020;181:281–292. doi: 10.1016/j.cell.2020.02.058.
    1. Sungnak W, Huang N, Bécavin C, Berg M, Queen R, Litvinukova M, Talavera-López C, Maatz H, Reichart D, Sampaziotis F, Worlock KB, Yoshida M, Barnes JL, Banovich NE, Barbry P, Brazma A, Collin J, Desai TJ, Duong TE, Eickelberg O, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature Medicine. 2020;26:651–687. doi: 10.1038/s41591-020-0868-6.
    1. Liu F, Li L, Xu M, Wu J, Luo D, Zhu Y, Li B, Song X, Zhou X. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. Journal of Clinical Virology. 2020;127:104370. doi: 10.1016/j.jcv.2020.104370.
    1. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–1034. doi: 10.1016/S0140-6736(20)30628-0.
    1. Stebbing J, Nievas GS, Falcone M, Youhanna S, Richardson P, Ottaviani S, Shen JX, Sommerauer C, Tiseo G, Ghiadoni L, Virdis A, Monzani F, Rizos LR, Forfori F, Céspedes AA, De Marco S, Carrossi L, Lena F, Sánchez-Jurado PM, Lacerenza LG, et al. JAK inhibition reduces SARS-CoV-2 liver infectivity and modulates inflammatory responses to reduce morbidity and mortality. Science Advances. 2021;7:eabe4724. doi: 10.1126/sciadv.abe4724.
    1. Kalil AC, Patterson TF, Mehta AK, Tomashek KM, Wolfe CR, Ghazaryan V, Marconi VC, Ruiz-Palacios GM, Hsieh L, Kline S, Tapson V, Iovine NM, Members A-SG. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. New England Journal of Medicine. 2021;384:795–807. doi: 10.1056/NEJMoa2031994.
    1. RECOVERY trial. (2020).
    1. The RECOVERY Collaborative Group Dexamethasone in hospitalized patients with covid-19. New England Journal of Medicine. 2021;384:693–704. doi: 10.1056/NEJMoa2021436.
    1. Wang C, Wang Z, Wang G, Lau JY-N, Zhang K, Li W. COVID-19 in early 2021: Current status and looking forward. Sig. Transduct. Target. Ther. 2021;6:114. doi: 10.1038/s41392-021-00527-1.
    1. Jimenez-Aleman GH, Castro V, Londaitsbehere A, Gutierrez-Rodriguez M, Garaigorta U, Solano R, Gastaminza P. SARS-CoV-2 fears green: the chlorophyll catabolite pheophorbide A is a potent antiviral. Pharmaceuticals. 2021;14:1048. doi: 10.3390/ph14101048.
    1. Bojadzic D, Alcazar O, Buchwald P. Methylene blue inhibits the SARS-CoV-2 spike–ACE2 protein-protein interaction–a mechanism that can contribute to its antiviral activity against COVID-19. Frontiers in Pharmacology. 2021;11:600372. doi: 10.3389/fphar.2020.600372.
    1. Gendrot M, Andreani J, Duflot I, Boxberger M, Le Bideau M, Mosnier J, Jardot P, Fonta I, Rolland C, Bogreau H, Hutter S, La Scola B, Pradines B. Methylene blue inhibits replication of SARS-CoV-2 in vitro. International Journal of Antimicrobial Agent. 2020;56:106202. doi: 10.1016/j.ijantimicag.2020.106202.
    1. Choy KT, Wong AYL, Kaewpreedee P, Sia SF, Chen DM, Hui KPY, Chu DKW, Chan MCW, Cheung PP-H, Huang X, Peiris M, Yen H-L. Remdesivir, Iopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Research. 2020;178:104786. doi: 10.1016/j.antiviral.2020.104786.
    1. Wainwright M, Crossley KB. Methyelene blue—a therapeutic dye for all seasons? Journal of Chemotherapy. 2013;14:431–443. doi: 10.1179/joc.2002.14.5.431.
    1. Aroso RT, Schaberle FA, Arnaut LG, Pereira MM. Photodynamic disinfection and its role in controlling infectious diseases. Photochemical & Photobiological Sciences. 2021;20:1497–1545. doi: 10.1007/s43630-021-00102-1.
    1. Henry M, Summa M, Patrick L, Schwartz L. A cohort of cancer patients with no reported cases of SARS-CoV-2 infection: The possible preventive role of methylene blue. Substantia. 2020;4:888.
    1. Dias LD, Bagnato VS. An update on clinical photodynamic therapy for fighting respiratory tract infections: a promising tool against COVID-19 and its co-infections. Laser Physics Letters. 2020;17:083001. doi: 10.1088/1612-202X/ab95a9.
    1. Dias LD, Blanco KC, Bagnato VS. COVID-19: Beyond the virus. The use of photodynamic therapy for the treatment of infections in the respiratory tract. Photodiagnosis and Photodynamic Therapy. 2020;31:101804. doi: 10.1016/j.pdpdt.2020.101804.
    1. Almeida A, Faustino MAF, Neves MGPMS. Antimicrobial photodynamic therapy in the control of COVID-19. Antibiotics. 2020;9:320. doi: 10.3390/antibiotics9060320.
    1. Sabino CP, Ball AR, Baptista MS, Dai T, Hamblin MA, Ribeiro MS, Santos AL, Sellera FP, Tegos GP, Wainwright M. Light-based technologies for management of COVID-19 pandemic crisis. Journal of Photochemistry and Photobiology B: Biology. 2020;212:111999. doi: 10.1016/j.jphotobiol.2020.111999.
    1. Kipshidze N, Yeo N, Kipshidze N. Photodynamic therapy for COVID-19. Nature Photonics. 2020;14:651–652. doi: 10.1038/s41566-020-00703-9.
    1. Weber HB, Mehran YZ, Orthaber A, Saadat HH, Weber R, Wojcik M. Successful reduction of SARS-CoV-2 viral load by photodynamic therapy (PDT) verified by QPCR—a novel approach in treating patients in early infection stages. Medical Clinical Research. 2020;5:311–325.
    1. Schikora D, Hepburn J, Plavin SR. Reduction of the viral load by non-invasive photodynamic therapy in early stages of COVID-19 infection. American Journal Virology Disease. 2020;2:01–05.
    1. Dabrowski JM, Arnaut LG. Photodynamic therapy (PDT) of cancer: From a local to a systemic treatment. Photochemical & Photobiological Sciences. 2015;14:1765–1780. doi: 10.1039/C5PP00132C.
    1. Donohoe C, Senge MO, Arnaut LG, Gomes-da-Silva LC. Cell death in photodynamic therapy: From oxidative stress to anti-tumor immunity. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2019;1872:188308. doi: 10.1016/j.bbcan.2019.07.003.
    1. Wiehe A, O’Brien JM, Senge MO. Trends and targets in antiviral phototherapy. Photochemical & Photobiological Sciences. 2019;18:2565–2612. doi: 10.1039/C9PP00211A.
    1. Schneider JE, Jr, Tabatabaie T, Maidt L, Smith RH, Nguyen X, Pye Q, Floyd RA. Potential mechanisms of photodynamic inactivation of virys by methylene blue. I. RNA-protein crosslinks and other oxidative lesions in Qß bacteriophage. Photochemistry and Photobiology. 1998;67:350–357. doi: 10.1111/j.1751-1097.1998.tb05209.x.
    1. Zhang B, Zheng L, Huang Y-Y, Mo Q, Wang X, Qian K. Detection of nucleic acid lesions dirung photochemical inactivation of RNA viruses by treatment with methylene blue and light using real-time PCR. Photochemistry and Photobiology. 2011;87:365–369. doi: 10.1111/j.1751-1097.2010.00870.x.
    1. Svyatchenko VA, Nikolnov SD, Mayorov AP, Gelfond ML, Loktev VB. Antiviral photodynamic therapy: Inactivation and inhibition of SARS-CoV-2 in vitro using methylene blue and Radachlorin. Photodiagnosis and Photodynamic Therapy. 2020;33:102112. doi: 10.1016/j.pdpdt.2020.102112.
    1. Street CN, Pedigo L, Giggs A, Loebel NG. Antimicrobial photodynamic therapy for the decolonization of methicillin-resistant Staphylococcus aureus from the anterior nares. Proceedings of SPIE. 2009;7380:73803B. doi: 10.1117/12.828279.
    1. Cross J, Romo C, Andersen R, Loebel NG. Antimicrobial photodynamic therapy for rapid eradication of S Pyogenes. Journal of Antimicrobial Agents. 2020;6:187.
    1. Klein S, Cortese M, Winter SL, Wachsmuth-Melm M, Neufeldt CJ, Cerikan B, Stanifer ML, Boulant S, Bartenschlager R, Chlanda P. SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nature Communications. 2020;11:5885. doi: 10.1038/s41467-020-19619-7.
    1. Ye Y, Muller JG, Luo W, Mayne CL, Shallop AJ, Jones RA, Burrows CJ. Formation of 13C-, 15N-, and 18O-labeled guanidinohydantoin from guanosine oxidation with singlet oxygen. Implications for structure and mechanism. Journal of the American Chemical Society. 2003;125:13926–13927. doi: 10.1021/ja0378660.
    1. Li Q, Liu Q, Huang W, Li X, Wang Y. Current status on the development of pseudoviruses for enveloped viruses. Reviews in Medical Virology. 2017;28:e1963. doi: 10.1002/rmv.1963.
    1. de Almeida LP, Ross CA, Zala D, Aebischer P, Deglon N. Lentiviral-mediated delivery of mutant huntingtin in the striatum of rats induces a selective neuropathology modulated by polyglutamine repeat size, huntingtin expression levels, and protein length. Journal of Neuroscience. 2002;22:3473–3783. doi: 10.1523/JNEUROSCI.22-09-03473.2002.
    1. Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Quiao C, Hu Y, Yuen KY, Wang Q, Zhou H, Yan J, Qi J. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020;181:898–904.
    1. Nuñez SC, Yoshimura TM, Ribeiro MS, Junqueira HC, Maciel C, Coutinho-Neto MD, Baptista MS. Urea enhances the photodynamic efficiency of methylene blue. Journal of Photochemistry and Photobiology, B: Biology. 2015;150:31–37. doi: 10.1016/j.jphotobiol.2015.03.018.
    1. Fernández-Pérez A, Marbán G. Visible light spectroscopic analysis of methylene blue in water; what comes after dimer? ACS Omega. 2020;5:29801–29815. doi: 10.1021/acsomega.0c03830.
    1. Zou L, Ruan F, Huang M, Liang L, Hauang H, Hong Z, Yu J, Kang M, Song Y, Xia J, Guo Q, Song T, He J, Yen H-L, Peiris P, Wu J. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. New England Journal of Medicine. 2020;382:1177–1179. doi: 10.1056/NEJMc2001737.
    1. Rhee C, Kanjilal S, Baker M, Klompas M. Duration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity: When is it safe to discontinue isolation? Clinical Infectious Diseases. 2020;72:1467–1474. doi: 10.1093/cid/ciaa1249.

Source: PubMed

3
購読する