Novel ITS1 Fungal Primers for Characterization of the Mycobiome

Mykhaylo Usyk, Christine P Zolnik, Hitesh Patel, Michael H Levi, Robert D Burk, Mykhaylo Usyk, Christine P Zolnik, Hitesh Patel, Michael H Levi, Robert D Burk

Abstract

Studies of the human microbiome frequently omit characterization of fungal communities (the mycobiome), which limits our ability to investigate how fungal communities influence human health. The internal transcribed spacer 1 (ITS1) region of the eukaryotic ribosomal cluster has features allowing for wide taxonomic coverage and has been recognized as a suitable barcode region for species-level identification of fungal organisms. We developed custom ITS1 primer sets using iterative alignment refinement. Primer performance was evaluated using in silico testing and experimental testing of fungal cultures and human samples. Using an expanded novel reference database, SIS (18S-ITS1-5.8S), the newly designed primers showed an average in silico taxonomic coverage of 79.9% ± 7.1% compared to a coverage of 44.6% ± 13.2% using previously published primers (P = 0.05). The newly described primer sets recovered an average of 21,830 ± 225 fungal reads from fungal isolate culture samples, whereas the previously published primers had an average of 3,305 ± 1,621 reads (P = 0.03). Of note was an increase in the taxonomic coverage of the Candida genus, which went from a mean coverage of 59.5% ± 13% to 100.0% ± 0.0% (P = 0.0015) comparing the previously described primers to the new primers, respectively. The newly developed ITS1 primer sets significantly improve general taxonomic coverage of fungal communities infecting humans and increased read depth by an order of magnitude over the best-performing published primer set tested. The overall best-performing primer pair in terms of taxonomic coverage and read recovery, ITS1-30F/ITS1-217R, will aid in advancing research in the area of the human mycobiome. IMPORTANCE The mycobiome constitutes all the fungal organisms within an environment or biological niche. The fungi are eukaryotes, are extremely heterogeneous, and include yeasts and molds that colonize humans as part of the microbiome. In addition, fungi can also infect humans and cause disease. Characterization of the bacterial component of the microbiome was revolutionized by 16S rRNA gene fragment amplification, next-generation sequencing technologies, and bioinformatics pipelines. Characterization of the mycobiome has often not been included in microbiome studies because of limitations in amplification systems. This report revisited the selection of PCR primers that amplify the fungal ITS1 region. We have identified primers with superior identification of fungi present in the database. We have compared the new primer sets against those previously used in the literature and show a significant improvement in read count and taxon identification. These primers should facilitate the study of fungi in human physiology and disease states.

Keywords: ITS1; fungi; mycobiome; oral; primer design; yeast.

Figures

FIG 1
FIG 1
ITS rRNA gene locus. Schematic of the eukaryotic ribosomal gene cluster. The SILVA database contains sequences of the 18S gene, while the UNITE database contains sequences from the ITS1-5.8S-ITS2-25S rRNA gene cluster (not to scale). For development of our custom primers, we created a merged SILVA and UNITE database to simulate the 18S-ITS1-5.8S region. A 250-bp region at the 3′ end of the 18S gene was individually isolated when designing the forward primers.
FIG 2
FIG 2
In silico coverage across fungal phyla. Predicted taxonomic coverage was assessed using PrimerProspector. (A) The forward literature fungal primers ITS1 (L), ITS1-F (L), and ITS5 (L) had significantly lower overall taxonomic coverage than the (B) newly created forward primers ITS1-27F (N), ITS1-30F (N), ITS1-34F (N), and ITS1-48F (N). The custom-designed reverse primer ITS1-217R (N) and the published reverse primer ITS2 (L) both demonstrated high predicted taxonomic coverage across the phyla.
FIG 3
FIG 3
In silico taxon coverage. The average in silico taxonomic coverage estimates obtained with PrimerProspector for the selected forward primers from the literature [designated “(L)”] and newly designed forward primers [designated “(N)”]. The published ITS1 (L) primer was recommended by UNITE and is therefore shown in this figure despite the low coverage performance. Coverage estimates are based on 5,789 simulated species in the SIS database. Coverage estimates are based on the default alignment criteria of PrimerProspector.
FIG 4
FIG 4
Experimental NGS read recovery. Average read recovery for the selected newly designed [designated “(N)”] and published forward primers from the literature [designated “(L)”] is shown at the top of each colored bar. Error bars show the standard error of the mean. The names of the primer pairs are indicated on the x axis.
FIG 5
FIG 5
Shannon rarefaction analysis. Shown is Shannon alpha rarefaction analysis across three body sites for seven clinical samples using four newly designed primer pairs. Amplified samples were evaluated at depths of 1, 10, 100, 500, and 1,000 reads, with 100 replicates at each subsampling depth. Results for each primer pair with the samples were averaged and plotted by anatomic site. The primer pairs associated with each colored line are indicated in the key to the right of the figure.

References

    1. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516–4522. doi:10.1073/pnas.1000080107.
    1. Sexton AC, Howlett BJ. 2006. Parallels in fungal pathogenesis on plant and animal hosts. Eukaryot Cell 5:1941–1949. doi:10.1128/EC.00277-06.
    1. Huffnagle GB, Noverr MC. 2013. The emerging world of the fungal microbiome. Trends Microbiol 21:334–341. doi:10.1016/j.tim.2013.04.002.
    1. Seifert KA. 2009. Progress towards DNA barcoding of fungi. Mol Ecol Resour 9:83–89. doi:10.1111/j.1755-0998.2009.02635.x.
    1. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, Karlebach S, Gorle R, Russell J, Tacket CO, Brotman RM, Davis CC, Ault K, Peralta L, Forney LJ. 2011. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci U S A 108:4680–4687. doi:10.1073/pnas.1002611107.
    1. Webster J. 1992. Anamorph-teleomorph relationships, p 99–117. In Barlocher F (ed), The ecology of aquatic hyphomycetes. Springer, Berlin, Germany.
    1. Seifert KA, Samson RA, Dewaard JR, Houbraken J, Lévesque CA, Moncalvo JM, Louis-Seize G, Hebert PD. 2007. Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci U S A 104:3901–3906. doi:10.1073/pnas.0611691104.
    1. Rossman A. 2007. Report of the planning workshop for all fungi DNA barcoding. Inoculum 58:1–5.
    1. Iwen PC, Hinrichs SH, Rupp ME. 2002. Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens. Med Mycol 40:87–109. doi:10.1080/mmy.40.1.87.109.
    1. Kõljalg U, Larsson KH, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AF, Tedersoo L, Vrålstad T, Ursing BM. 2005. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068. doi:10.1111/j.1469-8137.2005.01376.x.
    1. White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, p 315–322. In Innis MA, Gelfand DH, Sninsky JJ, White TJ (ed), PCR protocols: a guide to methods and applications, vol 18 Academic Press, London, United Kingdom.
    1. Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246. doi:10.1128/jb.172.8.4238-4246.1990.
    1. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. 2007. Development of the human infant intestinal microbiota. PLoS Biol 5:e177. doi:10.1371/journal.pbio.0050177.
    1. Glass NL, Donaldson GC. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330.
    1. Chao A, Colwell RK, Lin CW, Gotelli NJ. 2009. Sufficient sampling for asymptotic minimum species richness estimators. Ecology 90:1125–1133. doi:10.1890/07-2147.1.
    1. Abarenkov K, Henrik Nilsson R, Larsson KH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AF, Tedersoo L, Ursing BM, Vrålstad T, Liimatainen K, Peintner U, Kõljalg U. 2010. The UNITE database for molecular identification of fungi—recent updates and future perspectives. New Phytol 186:281–285. doi:10.1111/j.1469-8137.2009.03160.x.
    1. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. doi:10.1093/nar/gks1219.
    1. Marsland BJ, Gollwitzer ES. 2014. Host-microorganism interactions in lung diseases. Nat Rev Immunol 14:827–835. doi:10.1038/nri3769.
    1. Underhill DM, Iliev ID. 2014. The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol 14:405–416. doi:10.1038/nri3684.
    1. Cui L, Morris A, Ghedin E. 2013. The human mycobiome in health and disease. Genome Med 5:63. doi:10.1186/gm467.
    1. Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. doi:10.1111/j.1365-294X.1993.tb00005.x.
    1. Martin KJ, Rygiewicz PT. 2005. Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 5:28. doi:10.1186/1471-2180-5-28.
    1. Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, Gillevet PM. 2010. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog 6:e1000713. doi:10.1371/journal.ppat.1000713.
    1. Taylor DL, McCormick MK. 2008. Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytol 177:1020–1033. doi:10.1111/j.1469-8137.2007.02320.x.
    1. Tedersoo L, Anslan S, Bahram M, Põlme S, Riit T, Liiv I, Kõljalg U, Kisand V, Nilsson H, Hildebrand F, Bork P, Abarenkov K. 2015. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10:1–43. doi:10.3897/mycokeys.10.4852.
    1. Lennon NJ, Lintner RE, Anderson S, Alvarez P, Barry A, Brockman W, Daza R, Erlich RL, Giannoukos G, Green L, Hollinger A, Hoover CA, Jaffe DB, Juhn F, McCarthy D, Perrin D, Ponchner K, Powers TL, Rizzolo K, Robbins D, Ryan E, Russ C, Sparrow T, Stalker J, Steelman S, Weiand M, Zimmer A, Henn MR, Nusbaum C, Nicol R. 2010. A scalable, fully automated process for construction of sequence-ready barcoded libraries for 454. Genome Biol 11:R15. doi:10.1186/gb-2010-11-2-r15.
    1. Willger SD, Grim SL, Dolben EL, Shipunova A, Hampton TH, Morrison HG, Filkins LM, O’Toole GA, Moulton LA, Ashare A, Sogin ML, Hogan DA. 2014. Characterization and quantification of the fungal microbiome in serial samples from individuals with cystic fibrosis. Microbiome 2:40. doi:10.1186/2049-2618-2-40.
    1. Op De Beeck MO, Lievens B, Busschaert P, Declerck S, Vangronsveld J, Colpaert JV. 2014. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS One 9:e97629. doi:10.1371/journal.pone.0097629.
    1. Drell T, Lillsaar T, Tummeleht L, Simm J, Aaspõllu A, Väin E, Saarma I, Salumets A, Donders GG, Metsis M. 2013. Characterization of the vaginal micro- and mycobiome in asymptomatic reproductive-age Estonian women. PLoS One 8:e54379. doi:10.1371/journal.pone.0054379.
    1. Dupuy AK, David MS, Li L, Heider TN, Peterson JD, Montano EA, Dongari-Bagtzoglou A, Diaz PI, Strausbaugh LD. 2014. Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal. PLoS One 9:e90899. doi:10.1371/journal.pone.0090899.
    1. Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, Wu GD, Lewis JD, Bushman FD. 2013. Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 8:e66019. doi:10.1371/journal.pone.0066019.
    1. Mukherjee PK, Chandra J, Retuerto M, Sikaroodi M, Brown RE, Jurevic R, Salata RA, Lederman MM, Gillevet PM, Ghannoum MA. 2014. Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog 10:e1003996. doi:10.1371/journal.ppat.1003996.
    1. Orgiazzi A, Bianciotto V, Bonfante P, Daghino S, Ghignone S, Lazzari A, Lumini E, Mello A, Napoli C, Perotto S, Vizzini A, Bagella S, Murat C, Girlanda M. 2013. 454 pyrosequencing analysis of fungal assemblages from geographically distant, disparate soils reveals spatial patterning and a core mycobiome. Diversity 5:73–98. doi:10.3390/d5010073.
    1. Tang J, Iliev ID, Brown J, Underhill DM, Funari VA. 2015. Mycobiome: approaches to analysis of intestinal fungi. J Immunol Methods 421:112–121. doi:10.1016/j.jim.2015.04.004.
    1. Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H. 2010. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10:189. doi:10.1186/1471-2180-10-189.
    1. Sapkota R, Knorr K, Jørgensen LN, O’Hanlon KA, Nicolaisen M. 2015. Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytol 207:1134–1144. doi:10.1111/nph.13418.
    1. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010.
    1. Walters WA, Caporaso JG, Lauber CL, Berg-Lyons D, Fierer N, Knight R. 2011. PrimerProspector: de novo design and taxonomic analysis of barcoded polymerase chain reaction primers. Bioinformatics 27:1159–1161. doi:10.1093/bioinformatics/btr087.
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi:10.1038/nmeth.f.303.
    1. Thompson K. 1968. Programming techniques: regular expression search algorithm. Commun ACM 11:419–422. doi:10.1145/363347.363387.
    1. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List . 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A 109:6241–6246. doi:10.1073/pnas.1117018109.
    1. Kibbe WA. 2007. OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35:W43–W46. doi:10.1093/nar/gkm234.
    1. Schlecht NF, Burk RD, Nucci-Sack A, Shankar V, Peake K, Lorde-Rollins E, Porter R, Linares LO, Rojas M, Strickler HD, Diaz A. 2012. Cervical, anal and oral HPV in an adolescent inner-city health clinic providing free vaccinations. PLoS One 7:e37419. doi:10.1371/journal.pone.0037419.
    1. Smith BC, Zolnik CP, Usyk M, Chen Z, Kaiser K, Nucci-Sack A, Peake K, Diaz A, Viswanathan S, Strickler HD, Schlecht NF, Burk RD. 2016. Distinct ecological niche of anal, oral, and cervical mucosal microbiomes in adolescent women. Yale J Biol Med 89:277–284.
    1. Hercus C. 2009. Novocraft short read alignment package. Novocraft Technologies, Pataling Jaya, Selangor, Malaysia: .
    1. Schmieder R, Edwards R. 2011. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864. doi:10.1093/bioinformatics/btr026.
    1. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. 2012. PANDAseq: paired-end assembler for Illumina sequences. BMC Bioinformatics 13:31. doi:10.1186/1471-2105-13-31.
    1. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. doi:10.7717/peerj.2584.
    1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410. doi:10.1016/S0022-2836(05)80360-2.
    1. Team RC. 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria: .
    1. McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi:10.1371/journal.pone.0061217.
    1. Oksanen J, Kindt R, Legendre P, O’Hara B, Henry M, Stevens H. 2007. The vegan package. Community ecology package 10:631–637. R Foundation for Statistical Computing, Vienna, Austria: .
    1. Batdorf CS. January 1903. Coin-package. US patent US717964 A.
    1. Wickham H. 2012. reshape2: flexibly reshape data: a reboot of the reshape package. R package version 1. R Foundation for Statistical Computing, Vienna, Austria: .
    1. Wickham H, Chang W. 2013. An implementation of the Grammar of Graphics. R package version. R Foundation for Statistical Computing, Vienna, Austria: .

Source: PubMed

3
購読する