Efficacy and Brain Imaging Correlates of an Immersive Motor Imagery BCI-Driven VR System for Upper Limb Motor Rehabilitation: A Clinical Case Report

Athanasios Vourvopoulos, Carolina Jorge, Rodolfo Abreu, Patrícia Figueiredo, Jean-Claude Fernandes, Sergi Bermúdez I Badia, Athanasios Vourvopoulos, Carolina Jorge, Rodolfo Abreu, Patrícia Figueiredo, Jean-Claude Fernandes, Sergi Bermúdez I Badia

Abstract

To maximize brain plasticity after stroke, a plethora of rehabilitation strategies have been explored. These include the use of intensive motor training, motor-imagery (MI), and action-observation (AO). Growing evidence of the positive impact of virtual reality (VR) techniques on recovery following stroke has been shown. However, most VR tools are designed to exploit active movement, and hence patients with low level of motor control cannot fully benefit from them. Consequently, the idea of directly training the central nervous system has been promoted by utilizing MI with electroencephalography (EEG)-based brain-computer interfaces (BCIs). To date, detailed information on which VR strategies lead to successful functional recovery is still largely missing and very little is known on how to optimally integrate EEG-based BCIs and VR paradigms for stroke rehabilitation. The purpose of this study was to examine the efficacy of an EEG-based BCI-VR system using a MI paradigm for post-stroke upper limb rehabilitation on functional assessments, and related changes in MI ability and brain imaging. To achieve this, a 60 years old male chronic stroke patient was recruited. The patient underwent a 3-week intervention in a clinical environment, resulting in 10 BCI-VR training sessions. The patient was assessed before and after intervention, as well as on a one-month follow-up, in terms of clinical scales and brain imaging using functional MRI (fMRI). Consistent with prior research, we found important improvements in upper extremity scores (Fugl-Meyer) and identified increases in brain activation measured by fMRI that suggest neuroplastic changes in brain motor networks. This study expands on the current body of evidence, as more data are needed on the effect of this type of interventions not only on functional improvement but also on the effect of the intervention on plasticity through brain imaging.

Keywords: EEG; brain-computer interface; fMRI; neurorehabilitation; virtual-reality.

Figures

FIGURE 1
FIGURE 1
Experimental setup, including: (A) the wireless EEG system; (B) the Oculus HMD, together with headphones reproducing the ambient sound from the virtual environment; (C) the vibrotactile modules supported by a custom-made table-tray, similar to the wheelchair trays used for support; (D) the visual feedback with NeuRow game. A written informed consent was obtained for the publication of this image.
FIGURE 2
FIGURE 2
BCI Protocol: (A) Intervention stages including the setup, training, resting period and finally the BCI task. (B) The training stages. (C) Training feedback distributed in 24 epochs per class (left|right)
FIGURE 3
FIGURE 3
fMRI protocol. (a) Motor-Execution feedback, (b) Motor-Imagery feedback with directional arrows, (c) Motor-Observation feedback of NeuRow.
FIGURE 4
FIGURE 4
VMIQ-2 subscales comparison of Pre, Post and Follow-up scores with healthy data
FIGURE 5
FIGURE 5
(i) LDA classification performance over time within 10 sessions, (ii) distribution of performance.
FIGURE 6
FIGURE 6
LDA Comparison with healthy. Statistically significant differences between Case-study, VR and non-VR groups has been observed (∗p < 0.05).
FIGURE 7
FIGURE 7
EEG spectral power comparison Pre-Post the intervention with healthy user data.
FIGURE 8
FIGURE 8
ERS/ERD during Left and Right MI for both Mu and Beta bands.
FIGURE 9
FIGURE 9
ERS/ERD activation maps during left (lesioned) hand motor-imagery. Significant ERD is illustrated with blue.
FIGURE 10
FIGURE 10
Lateralization index for Mu and Beta bands across all sessions.
FIGURE 11
FIGURE 11
fMRI activation maps of the motor imagery condition for the left and right hand, at the pre-intervention, post-intervention and follow-up recording sessions. The Nvox and Zmax values are associated with the hemisphere contralateral to the hand. All maps have a threshold at Z > 2.3, except for the one of the motor-imagery of the right hand at the post-intervention (Z > 4.0), because of the substantial higher Zmax.

References

    1. Ang K. K., Chua K. S. G., Phua K. S., Wang C., Chin Z. Y., Kuah C. W. K., et al. (2015). A randomized controlled trial of eeg-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clin. EEG Neurosci. 46 310–320. 10.1177/1550059414522229
    1. Ang K. K., Guan C., Phua K. S., Wang C., Zhou L., Tang K. Y., et al. (2014). Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke. Front. Neuroeng. 7:30. 10.3389/fneng.2014.00030
    1. Ansari N. N., Naghdi S., Arab T. K., Jalaie S. (2008). The interrater and intrarater reliability of the modified ashworth scale in the assessment of muscle spasticity: limb and muscle group effect. NeuroRehabilitation 23 231–237.
    1. Babiloni C., Carducci F., Del Gratta C., Demartin M., Romani G. L., Babiloni F., et al. (2003). Hemispherical asymmetry in human SMA during voluntary simple unilateral movements. An fMRI Study. Cortex 39 293–305. 10.1016/S0010-9452(08)70110-2
    1. Beckmann C. F., Smith S. M. (2004). Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23 137–152. 10.1109/TMI.2003.822821
    1. Bermúdez i Badia S., Fluet G. G., Llorens R., Deutsch J. E. (2016). “Virtual reality for sensorimotor rehabilitation post stroke: design principles and evidence,” in Neurorehabilitation Technology, eds Reinkensmeyer D. J., Dietz V. (Cham: Springer International Publishing; ), 573–603. 10.1007/978-3-319-28603-7_28
    1. Biasiucci A., Leeb R., Iturrate I., Perdikis S., Al-Khodairy A., Corbet T., et al. (2018). Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat. Commun. 9:2421. 10.1038/s41467-018-04673-z
    1. Bobath B. (1990). Adult Hemiplegia: Evaluation and Treatment. Oxford: Butterworth-Heinemann.
    1. Celnik P., Webster B., Glasser D., Cohen L. (2008). Effects of action observation on physical training after stroke. Stroke J. Cereb. Circ. 39 1814–1820. 10.1161/STROKEAHA.107.508184
    1. Cervera M. A., Soekadar S. R., Ushiba J., Millán J. D. R., Liu M., Birbaumer N., et al. (2018). Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann. Clin. Transl. Neurol. 5 651–663. 10.1002/acn3.544
    1. Chaudhary U., Birbaumer N., Ramos-Murguialday A. (2016). Brain–computer interfaces for communication and rehabilitation. Nat. Rev. Neurol. 12 513–525. 10.1038/nrneurol.2016.113
    1. Cicinelli P., Pasqualetti P., Zaccagnini M., Traversa R., Oliveri M., Rossini P. M. (2003). Interhemispheric asymmetries of motor cortex excitability in the postacute stroke stage. Stroke 34 2653–2658. 10.1161/01.STR.0000092122.96722.72
    1. Delorme A., Makeig S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134 9–21.
    1. Doyle L. M. F., Yarrow K., Brown P. (2005). Lateralization of event-related beta desynchronization in the EEG during pre-cued reaction time tasks. Clin. Neurophysiol. 116 1879–1888. 10.1016/j.clinph.2005.03.017
    1. Dubovik S., Pignat J.-M., Ptak R., Aboulafia T., Allet L., Gillabert N., et al. (2012). The behavioral significance of coherent resting-state oscillations after stroke. NeuroImage 61 249–257. 10.1016/j.neuroimage.2012.03.024
    1. Dubovik S., Ptak R., Aboulafia T., Magnin C., Gillabert N., Allet L., et al. (2013). EEG alpha band synchrony predicts cognitive and motor performance in patients with ischemic stroke. Behav. Neurol. 26 187–189. 10.3233/BEN-2012-129007
    1. Duncan P. W., Wallace D., Lai S. M., Johnson D., Embretson S., Laster L. J. (1999). The stroke impact scale version 2.0: evaluation of reliability. Validity Sensit. Change Stroke 30 2131–2140. 10.1161/01.STR.30.10.2131
    1. Ferreira A., Vourvopoulos A., Bermudez I Badia S. (2015). “Optimizing performance of non-expert users in brain-computer interaction by means of an adaptive performance engine,” in Lecture Notes in Computer Science/Artificial Intelligence (LNCS/LNAI), eds Guo Y., Friston K., Aldo F., Hill S., Peng H. (London: Springer; ).
    1. Friston K. J., Holmes A. P., Poline J. B., Grasby P. J., Williams S. C., Frackowiak R. S., et al. (1995). Analysis of fMRI time-series revisited. NeuroImage 2 45–53. 10.1006/nimg.1995.1007
    1. Frolov A. A., Mokienko O., Lyukmanov , Chernikova L. A., Kotov S. V., Turbina L. G., et al. (2016). Preliminary Results of a Controlled Study of BCI–Exoskeleton Technology Efficacy in Patients with Poststroke Arm Paresis. Available at: [accessed June 5, 2019].
    1. Fugl-Meyer A. R., Jääskö L., Leyman I., Olsson S., Steglind S. (1975). The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 7 13–31.
    1. Gandolla M., Ward N. S., Molteni F., Guanziroli E., Ferrigno G., Pedrocchi A. (2016). The neural correlates of long-term carryover following functional electrical stimulation for stroke. Neural. Plast 2016:4192718. 10.1155/2016/4192718
    1. Graimann B., Huggins J. E., Levine S. P., Pfurtscheller G. (2002). Visualization of significant ERD/ERS patterns in multichannel EEG and ECoG data. Clin. Neurophysiol. 113 43–47. 10.1016/S1388-2457(01)00697-6
    1. Holper L., Muehlemann T., Scholkmann F., Eng K., Kiper D., Wolf M. (2010). Testing the potential of a virtual reality neurorehabilitation system during performance of observation, imagery and imitation of motor actions recorded by wireless functional near-infrared spectroscopy (fNIRS). J. Neuroeng. Rehabil. 7:57. 10.1186/1743-0003-7-57
    1. Jeannerod M., Frak V. (1999). Mental imaging of motor activity in humans. Curr. Opin. Neurobiol. 9 735–739.
    1. Jenkinson M., Bannister P., Brady M., Smith S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17 825–841. 10.1006/nimg.2002.1132
    1. Kim T., Kim S., Lee B. (2016). Effects of action observational training plus brain-computer interface-based functional electrical stimulation on paretic arm motor recovery in patient with stroke: a randomized controlled trial. Occup. Ther. Int. 23 39–47. 10.1002/oti.1403
    1. Klem G. H., Lüders H. O., Jasper H. H., Elger C. (1999). The ten-twenty electrode system of the international federation. the international federation of clinical neurophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl. 52 3–6.
    1. Kropotov J. D. (2016). “Chapter 2.2 - Alpha Rhythms,” in Functional Neuromarkers for Psychiatry, ed. Kropotov J. D. (San Diego: Academic Press; ), 89–105.
    1. Leeb R., Biasiucci A., Schmidlin T., Corbet T., Vuadens P., Millán J. D. R. (2016). “BCI controlled neuromuscular electrical stimulation enables sustained motor recovery in chronic stroke victims,” in Proceedings of the 6th International Brain-Computer Interface Meeting. (Asilomar, CA: )
    1. Li M., Liu Y., Wu Y., Liu S., Jia J., Zhang L. (2014). Neurophysiological substrates of stroke patients with motor imagery-based brain-computer interface training. Int. J. Neurosci. 124 403–415. 10.3109/00207454.2013.850082
    1. Lotte F. (2014). A Tutorial on EEG Signal Processing Techniques for Mental State Recognition in Brain-Computer Interfaces. Available at: [accessed May 8, 2017].
    1. Makeig S. (1993). Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalogr. Clin. Neurophysiol. 86 283–293. 10.1016/0013-4694(93)90110-H
    1. Makeig S., Bell A. J., Jung T.-P., Sejnowski T. J. (1996). “Independent component analysis of electroencephalographic data,” in Proceedings of the NIPS’95 Proceedings of the 8th International Conference on Neural Information Processing Systems, (San Diego, CA: Naval Health Research Center; ), 145–151.
    1. McFarland D. J, Miner L. A, Vaughan T. M., Wolpaw J. R. (2000). Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr. 12 177–186. 10.1023/A:1023437823106
    1. Mihara M., Hattori N., Hatakenaka M., Yagura H., Kawano T., Hino T., et al. (2013). Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims: a pilot study. Stroke 44 1091–1098. 10.1161/STROKEAHA.111.674507
    1. Miller E. L., Murray L., Richards L., Zorowitz R. D., Bakas T., Clark P., et al. (2010). Comprehensive overview of nursing and interdisciplinary rehabilitation care of the stroke patient: a scientific statement from the American Heart Association. Stroke 41 2402–2448. 10.1161/STR.0b013e3181e7512b
    1. Mizuguchi N., Kanosue K. (2017). Changes in brain activity during action observation and motor imagery: their relationship with motor learning. Prog. Brain Res. 234 189–204. 10.1016/bs.pbr.2017.08.008
    1. Mozaffarian D., Benjamin E. J., Go A. S., Arnett D. K., Blaha M. J., Cushman M., et al. (2015). Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation 131 e29–e322. 10.1161/CIR.0000000000000152
    1. Nasreddine Z. S., Phillips N. A., Bédirian V., Charbonneau S., Whitehead V., Collin I., et al. (2005). The montreal cognitive assessment. MOCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53 695–699. 10.1111/j.1532-5415.2005.53221.x
    1. Neuper C., Scherer R., Wriessnegger S., Pfurtscheller G. (2009). Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Clin. Neurophysiol. 120 239–247. 10.1016/j.clinph.2008.11.015
    1. Page S. J., Fulk G. D., Boyne P. (2012). Clinically important differences for the upper-extremity fugl-meyer scale in people with minimal to moderate impairment due to chronic stroke. Phys. Ther. 92 791–798. 10.2522/ptj.20110009
    1. Page S. J., Gater D. R., Bach-Y-Rita P. (2004). Reconsidering the motor recovery plateau in stroke rehabilitation. Arch. Phys. Med. Rehabil. 85 1377–1381. 10.1016/j.apmr.2003.12.031
    1. Perrin F., Pernier J., Bertrand O., Echallier J. F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalogr. Clin. Neurophysiol. 72 184–187. 10.1016/0013-4694(89)90180-6
    1. Pfurtscheller G., Aranibar A. (1979). Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr. Clin. Neurophysiol. 46 138–146. 10.1016/0013-4694(79)90063-4
    1. Pfurtscheller G., Lopes da Silva F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 110 1842–1857.
    1. Pichiorri F., Morone G., Petti M., Toppi J., Pisotta I., Molinari M., et al. (2015). Brain-computer interface boosts motor imagery practice during stroke recovery. Ann. Neurol. 77 851–865. 10.1002/ana.24390
    1. Pimentel M. A. F., Vilela P., Sousa I., Figueiredo P. (2013). Localization of the hand motor area by arterial spin labeling and blood oxygen level-dependent functional magnetic resonance imaging. Hum. Brain Mapp. 34 96–108. 10.1002/hbm.21418
    1. Pion-Tonachini L., Makeig S., Kreutz-Delgado K. (2017). Crowd labeling latent Dirichlet allocation. Knowl. Inf. Syst. 53 749–765. 10.1007/s10115-017-1053-1
    1. Prasad G., Herman P., Coyle D., McDonough S., Crosbie J. (2010). Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study. J. NeuroEng. Rehabil. 7:60. 10.1186/1743-0003-7-60
    1. Ramos-Murguialday A., Broetz D., Rea M., Läer L., Yilmaz O., Brasil F. L., et al. (2013). Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. 74 100–108. 10.1002/ana.23879
    1. Ramos-Murguialday A., Curado M. R., Broetz D., Yilmaz Ö, Brasil F. L., Liberati G., et al. (2019). Brain-machine interface in chronic stroke: randomized trial long-term follow-up. Neurorehabil. Neural Repair 33 188–198. 10.1177/1545968319827573
    1. Rizzolatti G., Craighero L. (2004). The mirror-neuron system. Annu. Rev. Neurosci. 27 169–192. 10.1146/annurev.neuro.27.070203.144230
    1. Roberts R., Callow N., Hardy L., Markland D., Bringer J. (2008). Movement imagery ability: development and assessment of a revised version of the vividness of movement imagery questionnaire. J. Sport Exerc. Psychol. 30 200–221. 10.1123/jsep.30.2.200
    1. Salimi-Khorshidi G., Douaud G., Beckmann C. F., Glasser M. F., Griffanti L., Smith S. M. (2014). Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. NeuroImage 90 449–468. 10.1016/j.neuroimage.2013.11.046
    1. Sigrist R., Rauter G., Riener R., Wolf P. (2013). Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychon. Bull. Rev. 20 21–53. 10.3758/s13423-012-0333-8
    1. Silvoni S., Ramos-Murguialday A., Cavinato M., Volpato C., Cisotto G., Turolla A., et al. (2011). Brain-computer interface in stroke: a review of progress. Clin. EEG Neurosci. 42 245–252.
    1. Slater M. (2017). “Implicit learning through embodiment in immersive virtual reality,” in Virtual, Augmented, and Mixed Realities in Education Smart Computing and Intelligence, eds Liu D., Dede C., Huang R., Richards J. (Singapore: Springer; ), 19–33. 10.1007/978-981-10-5490-7_2
    1. Smith S. M. (2002). Fast robust automated brain extraction. Hum. Brain Mapp. 17 143–155. 10.1002/hbm.10062
    1. Sollfrank T., Ramsay A., Perdikis S., Williamson J., Murray-Smith R., Leeb R., et al. (2016). The effect of multimodal and enriched feedback on SMR-BCI performance. Clin. Neurophysiol. 127 490–498. 10.1016/j.clinph.2015.06.004
    1. Trompetto C., Marinelli L., Mori L., Pelosin E., Currà A., Molfetta L., et al. (2014). Pathophysiology of spasticity: implications for neurorehabilitation. BioMed Res. Int. 2014:8. 10.1155/2014/354906
    1. Várkuti B., Guan C., Pan Y., Phua K. S., Ang K. K., Kuah C. W. K., et al. (2013). Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke. Neurorehabil. Neural Repair 27 53–62. 10.1177/1545968312445910
    1. Vourvopoulos A., Bermúdez S. (2016a). Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis. J. NeuroEng. Rehabil. 13:69. 10.1186/s12984-016-0173-2
    1. Vourvopoulos A., Bermúdez S. (2016b). “Usability and cost-effectiveness in brain-computer interaction: is it user throughput or technology related?,” in Proceedings of the 7th Augmented Human International Conference AH ’16, (Geneva: ACM; ), 10.1145/2875194.2875244
    1. Vourvopoulos A., Bermudez i Badia S., Liarokapis F. (2016a). EEG correlates of video game experience and user profile in motor-imagery-based brain–computer interaction. Vis. Comput. 33 533–546. 10.1007/s00371-016-1304-2
    1. Vourvopoulos A., Ferreira A., Bermudez i Badia S. (2016b). “NeuRow: an immersive vr environment for motor-imagery training with the use of brain-computer interfaces and vibrotactile feedback,” in 3rd International Conference on Physiological Computing Systems, (Portugal: Science and Technology Publications; ), 43–53.
    1. Vourvopoulos A., Faria A. L., Cameirao M. S., Bermudez i Badia S. (2013). “RehabNet: A distributed architecture for motor and cognitive neuro-rehabilitation,” in Proceedings of the 2013 IEEE 15th International Conference on e-Health Networking, Applications Services (Healthcom), (Lisbon: ) 454–459.
    1. Welch P. D. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. Audio Electroacous. IEEE Trans. 15 70–73. 10.1109/TAU.1967.1161901
    1. Wolpaw J. R., Birbaumer N., McFarland D. J., Pfurtscheller G., Vaughan T. M. (2002). Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113:767.
    1. Woolrich M. W., Ripley B. D., Brady M., Smith S. M. (2001). Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage 14 1370–1386.

Source: PubMed

3
購読する