Persistent Plasmodium falciparum and Plasmodium vivax infections in a western Cambodian population: implications for prevention, treatment and elimination strategies

Rupam Tripura, Thomas J Peto, Jeremy Chalk, Sue J Lee, Pasathorn Sirithiranont, Chea Nguon, Mehul Dhorda, Lorenz von Seidlein, Richard J Maude, Nicholas P J Day, Mallika Imwong, Nicholas J White, Arjen M Dondorp, Rupam Tripura, Thomas J Peto, Jeremy Chalk, Sue J Lee, Pasathorn Sirithiranont, Chea Nguon, Mehul Dhorda, Lorenz von Seidlein, Richard J Maude, Nicholas P J Day, Mallika Imwong, Nicholas J White, Arjen M Dondorp

Abstract

Background: Subclinical Plasmodium parasitaemia is an important reservoir for the transmission and persistence of malaria, particularly in low transmission areas.

Methods: Using ultrasensitive quantitative PCR (uPCR) for the detection of parasitaemia, the entire population of three Cambodian villages in Pailin province were followed for 1 year at three-monthly intervals. A cohort of adult participants found initially to have asymptomatic malaria parasitaemia was followed monthly over the same period.

Results: The initial cross sectional survey in June 2013 (M0) of 1447 asymptomatic residents found that 32 (2.2%) had Plasmodium falciparum, 48 (3.3%) had P. vivax, 4 (0.3%) had mixed infections and in 142/1447 (9.8%) malaria was detected but there was insufficient DNA to identify the species (Plasmodium. species). Polymorphisms in the 'K13-propeller' associated with reduced susceptibility to artemisinin derivatives (C580Y) were found in 17/32 (51%) P. falciparum strains. Monthly follow-up without treatment of 24 adult participants with asymptomatic mono or mixed P. falciparum infections found that 3/24 (13%) remained parasitaemic for 2-4 months, whereas the remaining 21/24 (87%) participants had cleared their parasitaemia after 1 month. In contrast, 12/34 (35%) adult participants with P. vivax mono-infection at M0 had malaria parasites (P. vivax or P. sp.) during four or more of the following 11 monthly surveys.

Conclusions: This longitudinal survey in a low transmission setting shows limited duration of P. falciparum carriage, but prolonged carriage of P. vivax infections. Radical treatment of P. vivax infections by 8-aminoquinoline regimens may be required to eliminate all malaria from Cambodia. Trial registration ClinicalTrials.gov NCT01872702.

Keywords: Artemisinins; Cambodia; Clearance; Cohort; Falciparum; Malaria; PCR; Pailin; Persistence; Plasmodium; Resistance; Vivax.

Figures

Fig. 1
Fig. 1
Parasite prevalence at 3-monthly surveys of the entire village
Fig. 2
Fig. 2
a, b, and c represent the prevalence of Plasmodium falciparum or mixed infections (a), Plasmodium vivax or mixed infections (b), and all species, including Plasmodium species which could not be determined (c). The figures represent a composite of uPCR data from cross-sectional surveys, clinical data collected by village malaria workers, and meteorological data collected by the Department of Meteorology, Ministry of Water Resources and Meteorology, Cambodia. The percentage of specimens found to be positive by uPCR is indicate by diamonds. The ambient min/max temperature range is indicated by dots. The daily rainfall in mm is shown as a blue line. uPCR data were collected during the study period June 2013 and June 2014 indicated by the red arrow. The clinical and meteorological data were collected between January 2013 and December 2014. Information on malaria episodes were collected by village malaria (VMW), mobile malaria workers (MMW) and primary health centres for 2013–14
Fig. 3
Fig. 3
The persistence and transitions of Plasmodium falciparum infections in an adult cohort (ordered by number of episodes)
Fig. 4
Fig. 4
The persistence and transitions of Plasmodium vivax infections in an adult cohort (ordered by number of episodes)
Fig. 5
Fig. 5
Log parasite densities (log parasites/mL) in three participants with persistent Plasmodium vivax infections

References

    1. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371:411–423. doi: 10.1056/NEJMoa1314981.
    1. Tun KM, Imwong M, Lwin KM, Win AA, Hlaing TM, Hlaing T, et al. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect Dis. 2015;15:415–421. doi: 10.1016/S1473-3099(15)70032-0.
    1. Warrell DA, Gilles HM. Essential malariology. 4. Abingdon: Taylor & Francis; 2002.
    1. Okell LC, Bousema T, Griffin JT, Ouedraogo AL, Ghani AC, Drakeley CJ. Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat Commun. 2012;3:1237. doi: 10.1038/ncomms2241.
    1. Okell LC, Ghani AC, Lyons E, Drakeley CJ. Submicroscopic infection in Plasmodium falciparum-endemic populations: a systematic review and meta-analysis. J Infect Dis. 2009;200:1509–1517. doi: 10.1086/644781.
    1. Ashley EA, White NJ. The duration of Plasmodium falciparum infections. Malar J. 2014;13:500. doi: 10.1186/1475-2875-13-500.
    1. Lowe J. Studies in untreated malaria. Indian Med Gazette. 1934;69:16–23.
    1. Hill RB, Cambournac FJC, Simoes MP. Observations on the course of malaria in children in an endemic region. Am J Trop Med Hyg. 1943;23:147–162.
    1. Earle WC, Perez M, Del Rio J, Arzola C. Observations on the course of naturally acquired malaria in Puerto Rico. Puerto Rican J Public Health Trop Med. 1939;14:391–406.
    1. Gilles HM, Warrell DA. Bruce-Chwatt’s essential malariology. 3. London: Hodder Arnold Publishers; 1993.
    1. Bruce-Chwatt LJ. A longitudinal survey of natural malaria infection in a group of West African adults. I. West Afr Med J. 1963;12:141–173.
    1. Bruce MC, Donnelly CA, Packer M, Lagog M, Gibson N, Narara A, et al. Age- and species-specific duration of infection in asymptomatic malaria infections in Papua New Guinea. Parasitology. 2000;121:247–256. doi: 10.1017/S0031182099006344.
    1. Collins WE, Jeffery GM. A retrospective examination of the patterns of recrudescence in patients infected with Plasmodium falciparum. Am J Trop Med Hyg. 1999;61(1 Suppl):44–48. doi: 10.4269/tropmed.1999.61-044.
    1. McKenzie FE, Jeffery GM, Collins WE. Plasmodium vivax blood-stage dynamics. J Parasitol. 2002;88:521–535. doi: 10.1645/0022-3395(2002)088[0521:PVBSD];2.
    1. Eyles DE, Young MD. The duration of untreated or inadequately treated Plasmodium falciparum infections in the human host. J Natl Malar Soc. 1951;10:327–336.
    1. Collins WE, Jeffery GM. A retrospective examination of sporozoite-induced and trophozoite-induced infections with Plasmodium ovale: development of parasitologic and clinical immunity during primary infection. Am J Trop Med Hyg. 2002;66:492–502.
    1. Imwong M, Hanchana S, Malleret B, Renia L, Day NP, Dondorp A, et al. High throughput ultra-sensitive molecular techniques to quantify low density malaria parasitaemias. J Clin Microbiol. 2014;9:3003–3009.
    1. Maude RJ, Nguon C, Ly P, Bunkea T, Ngor P, Canavati de la Torre SE, et al. Spatial and temporal epidemiology of clinical malaria in Cambodia 2004–2013. Malar J. 2014;13:385. doi: 10.1186/1475-2875-13-385.
    1. Durnez L, Mao S, Denis L, Roelants P, Sochantha T, Coosemans M. Outdoor malaria transmission in forested villages of Cambodia. Malar J. 2013;12:329. doi: 10.1186/1475-2875-12-329.
    1. WHO. World Malaria Report 2014. Geneva: World Health Organization, 2015. .
    1. Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med. 2008;359:2619–2620. doi: 10.1056/NEJMc0805011.
    1. Leang R, Taylor WR, Bouth DM, Song L, Tarning J, Char MC, et al. Evidence of Plasmodium falciparum malaria multidrug resistance to artemisinin and piperaquine in Western Cambodia: dihydroartemisinin-piperaquine open-label multicenter clinical assessment. Antimicrob Agents Chemother. 2015;59:4719–4726. doi: 10.1128/AAC.00835-15.
    1. Chaorattanakawee S, Saunders DL, Sea D, Chanarat N, Yingyuen K, Sundrakes S, et al. Ex vivo drug susceptibility testing and molecular profiling of clinical Plasmodium falciparum isolates from Cambodia from 2008 to 2013 suggest emerging piperaquine resistance. Antimicrob Agents Chemother. 2015;59:4631–4643. doi: 10.1128/AAC.00366-15.
    1. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–467. doi: 10.1056/NEJMoa0808859.
    1. Eyles D, Hoo C, Warren M, Sandosham A. Plasmodium falciparum resistant to chloroquine in Cambodia. Am J Trop Med Hyg. 1963;12:840–843.
    1. Bjorkman A, Phillips-Howard PA. The epidemiology of drug-resistant malaria. Trans R Soc Trop Med Hyg. 1990;84:177–180. doi: 10.1016/0035-9203(90)90246-B.
    1. CNM. 2012. .
    1. Kamau E, Tolbert LS, Kortepeter L, Pratt M, Nyakoe N, Muringo L, et al. Development of a highly sensitive genus-specific quantitative reverse transcriptase real-time PCR assay for detection and quantitation of Plasmodium by amplifying RNA and DNA of the 18S rRNA genes. J Clin Microbiol. 2011;49:2946–2953. doi: 10.1128/JCM.00276-11.
    1. Imwong M, Hanchana S, Malleret B, Rénia L, Day NP, Dondorp A, et al. High throughput ultra-sensitive molecular techniques to quantity low density malaria parasitaemias. J Clin Microbiol. 2014;52:3303–3309. doi: 10.1128/JCM.01057-14.
    1. Imwong M, Snounou G, Pukrittayakamee S, Tanomsing N, Kim JR, Nandy A, et al. Relapses of Plasmodium vivax infection usually result from activation of heterologous hypnozoites. J Infect Dis. 2007;195:927–933. doi: 10.1086/512241.
    1. Snounou G. Detection and identification of the four malaria parasite species infecting humans by PCR amplification. Methods Mol Biol. 1996;50:263–291.
    1. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–55. doi: 10.1038/nature12876.
    1. Manske M, Miotto O, Campino S, Auburn S, Almagro-Garcia J, Maslen G, et al. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing. Nature. 2012;487:375–379. doi: 10.1038/nature11174.
    1. . Accessed 4 Mar 2016.
    1. OpenClinica. 2016. . Accessed 4 Mar 2016.
    1. Imwong M, Nguyen TN, Tripura R, Peto TJ, Lee SJ, Lwin KM, et al. The epidemiology of subclinical malaria infections in South-East Asia: findings from cross-sectional surveys in Thailand-Myanmar border areas, Cambodia, and Vietnam. Malar J. 2015;14:381. doi: 10.1186/s12936-015-0906-x.
    1. Imwong M, Stepniewska K, Tripura R, Peto TJ, Lwin KM, Vihokhern B, et al. Numerical distributions of parasite densities during asymptomatic malaria. J Infect Dis. 2016
    1. Cairns ME, Walker PG, Okell LC, Griffin JT, Garske T, Asante KP, et al. Seasonality in malaria transmission: implications for case-management with long-acting artemisinin combination therapy in sub-Saharan Africa. Malar J. 2015;14:321. doi: 10.1186/s12936-015-0839-4.
    1. Cairns M, Roca-Feltrer A, Garske T, Wilson AL, Diallo D, Milligan PJ, et al. Estimating the potential public health impact of seasonal malaria chemoprevention in African children. Nat Comm. 2012;3:881. doi: 10.1038/ncomms1879.
    1. Ouedraogo AL, Schneider P, de Kruijf M, Nebie I, Verhave JP, Cuzin-Ouattara N, et al. Age-dependent distribution of Plasmodium falciparum gametocytes quantified by Pfs25 real-time QT-NASBA in a cross-sectional study in Burkina Faso. Am J Trop Med Hyg. 2007;76:626–630.
    1. Schneider P, Bousema JT, Gouagna LC, Otieno S, van de Vegte-Bolmer M, Omar SA, et al. Submicroscopic Plasmodium falciparum gametocyte densities frequently result in mosquito infection. Am J Trop Med Hyg. 2007;76:470–474.
    1. Coleman RE, Kumpitak C, Ponlawat A, Maneechai N, Phunkitchar V, Rachapaew N, et al. Infectivity of asymptomatic Plasmodium-infected human populations to Anopheles dirus mosquitoes in western Thailand. J Med Entomol. 2004;41:201–208. doi: 10.1603/0022-2585-41.2.201.
    1. Sattabongkot J, Maneechai N, Rosenberg R. Plasmodium vivax: gametocyte infectivity of naturally infected Thai adults. Parasitology. 1991;102(Pt 1):27–31. doi: 10.1017/S0031182000060303.
    1. Sattabongkot J, Maneechai N, Phunkitchar V, Eikarat N, Khuntirat B, Sirichaisinthop J, et al. Comparison of artificial membrane feeding with direct skin feeding to estimate the infectiousness of Plasmodium vivax gametocyte carriers to mosquitoes. Am J Trop Med Hyg. 2003;69:529–535.
    1. Gamage-Mendis AC, Rajakaruna J, Carter R, Mendis KN. Infectious reservoir of Plasmodium vivax and Plasmodium falciparum malaria in an endemic region of Sri Lanka. Am J Trop Med Hyg. 1991;45:479–487.
    1. Bharti AR, Chuquiyauri R, Brouwer KC, Stancil J, Lin J, Llanos-Cuentas A, et al. Experimental infection of the neotropical malaria vector Anopheles darlingi by human patient-derived Plasmodium vivax in the Peruvian Amazon. Am J Trop Med Hyg. 2006;75:610–616.
    1. Graves PM, Burkot TR, Carter R, Cattani JA, Lagog M, Parker J, et al. Measurement of malarial infectivity of human populations to mosquitoes in the Madang area, Papua, New Guinea. Parasitology. 1988;96:251–263. doi: 10.1017/S003118200005825X.
    1. Koepfli C, Robinson LJ, Rarau P, Salib M, Sambale N, Wampfler R, et al. Blood-Stage parasitaemia and age determine Plasmodium falciparum and P. vivax gametocytaemia in Papua New Guinea. PLoS One. 2015;10:e0126747. doi: 10.1371/journal.pone.0126747.
    1. Molineaux L, Trauble M, Collins WE, Jeffery GM, Dietz K. Malaria therapy reinoculation data suggest individual variation of an innate immune response and independent acquisition of antiparasitic and antitoxic immunities. Trans R Soc Trop Med Hyg. 2002;96:205–209. doi: 10.1016/S0035-9203(02)90308-1.
    1. White NJ, Chapman D, Watt G. The effects of multiplication and synchronicity on the vascular distribution of parasites in falciparum malaria. Trans R Soc Trop Med Hyg. 1992;86:590–597. doi: 10.1016/0035-9203(92)90141-X.
    1. Färnert A, Snounou G, Rooth I, Bjorkman A. Daily dynamics of Plasmodium falciparum subpopulations in asymptomatic children in a holoendemic area. Am J Trop Med Hyg. 1997;56:538–547.
    1. Barry AE, Leliwa-Sytek A, Tavul L, Imrie H, Migot-Nabias F, Brown SM, et al. Population genomics of the immune evasion (var) genes of Plasmodium falciparum. PLoS Pathog. 2007;3:e34. doi: 10.1371/journal.ppat.0030034.
    1. Crompton PD, Moebius J, Portugal S, Waisberg M, Hart G, Garver LS, et al. Malaria immunity in man and mosquito: insights into unsolved mysteries of a deadly infectious disease. Annu Rev Immunol. 2014;32:157–187. doi: 10.1146/annurev-immunol-032713-120220.
    1. Spring MD, Lin JT, Manning JE, Vanachayangkul P, Somethy S, Bun R, et al. Dihydroartemisinin-piperaquine failure associated with a triple mutant including kelch13 C580Y in Cambodia: an observational cohort study. Lancet Infect Dis. 2015;15:683–691. doi: 10.1016/S1473-3099(15)70049-6.
    1. Lwin KM, Imwong M, Suangkanarat P, Jeeyapant A, Vihokhern B, Wongsaen K, et al. Elimination of Plasmodium falciparum in an area of multi-drug resistance. Malar J. 2015;14:319. doi: 10.1186/s12936-015-0838-5.
    1. von Seidlein L, Dondorp A. Fighting fire with fire: mass antimalarial drug administrations in an era of antimalarial resistance. Expert Rev Anti Infect Ther. 2015;13:715–730. doi: 10.1586/14787210.2015.1031744.

Source: PubMed

3
購読する