Diaphragm weakness in mechanically ventilated critically ill patients

Gerald S Supinski, Leigh Ann Callahan, Gerald S Supinski, Leigh Ann Callahan

Abstract

Introduction: Studies indicate that mechanically ventilated patients develop significant diaphragm muscle weakness, but the etiology of weakness and its clinical impact remain incompletely understood. We assessed diaphragm strength in mechanically ventilated medical ICU patients, correlated the development of diaphragm weakness with multiple clinical parameters, and examined the relationship between the level of diaphragm weakness and patient outcomes.

Methods: Transdiaphragmatic twitch pressure (PdiTw) in response to bilateral magnetic stimulation of the phrenic nerves was measured. Diaphragm weakness was correlated with the presence of infection, blood urea nitrogen, albumin, and glucose levels. The relationship of diaphragm strength to patient outcomes, including mortality and the duration of mechanical ventilation for successfully weaned patients, was also assessed.

Results: We found that infection is a major risk factor for diaphragm weakness in mechanically ventilated medical ICU patients. Outcomes for patients with severe diaphragm weakness (PdiTw<10 cmH2O) were poor, with a markedly increased mortality (49%) compared to patients with PdiTw≥10 cmH2O (7% mortality, P=0.022). In addition, survivors with PdiTw<10 cmH2O required a significantly longer duration of mechanical ventilation (12.3±1.7 days) than those with PdiTw≥10 cmH2O (5.5±2.0 days, P=0.016).

Conclusions: Infection is a major cause of severe diaphragm weakness in mechanically ventilated patients. Moreover, diaphragm weakness is an important determinant of poor outcomes in this patient population.

Figures

Figure 1
Figure 1
Transdiaphragmatic twitch pressure: measured levels and physician estimates. (A) Transdiaphragmatic twitch pressure (PdiTw) levels for the 57 subjects included in the analysis. Each symbol represents a single subject and plots the PdiTw level obtained in response to stimulation of the phrenic nerves with 95% of maximum magnetic field strength (y axis) against the PdiTw obtained in response to stimulation of the phrenic nerves with 100% of maximum magnetic field strength (x axis). All data cluster along the line of identity, indicating that supramaximal stimulation was achieved during 100% magnetic field stimulation. If supramaximal conditions had not been achieved, data points would have fallen to the right of the line of identity. (B) Measured PdiTw levels compared with levels predicted for each subject by their attending physicians; each symbol represents data from a single patient. Red symbols below the line (46 out of 51 determinations) indicate determinations for which physicians overestimated diaphragm strength (that is, PdiTw).
Figure 2
Figure 2
Infection and diaphragm weakness. (A) Transdiaphragmatic twitch pressure (PdiTw) measurements for non-infected and infected patients. Data from individual patients are shown for each group on the right, while plots on the left for each group show mean (filled squares), median levels (middle line of box), 25% and 75% confidence intervals (upper and lower borders of the box) and 1% and 99% intervals (whiskers above and below the box). Infection was associated with significant lower Pdi Twitch values (*statistical significance). (B) respiratory system (RS) static compliance and (C) inspiratory airway resistance for non-infected and infected patients; there was no difference in these indices of lung function between non-infected and infected groups.
Figure 3
Figure 3
Correlation of transdiaphragmatic twitch pressure to blood urea nitrogen, albumin, and glucose levels. Transdiaphragmatic twitch pressure (PdiTw) as a function of (A) blood urea nitrogen (BUN), (B) albumin, and (C) glucose levels. There was no significant correlation between any these parameters and PdiTw. Specifically, correlation coefficients and P values for regression of PdiTw to parameters were, respectively, 0.146 and 0.277 for BUN, 0.072 and 0.596 for albumin, and 0.032 and 0.815 for glucose levels (all nonsignificant).
Figure 4
Figure 4
Relationship of prior duration of mechanical ventilation and ventilator triggering to diaphragm strength. (A) Transdiaphragmatic twitch pressure (PdiTw) as a function of the duration of mechanical ventilation prior to measurement of PdiTw. There was no statistically significant correlation of PdiTw to duration of ventilation prior to measurement, with a correlation coefficient of 0.020 and P = 0.881 for this assessment (nonsignificant). (B) The majority of subjects actively initiated (that is, triggered) ventilator breaths more than 75% of the time. (C) The level of diaphragm strength (PdiTw) did not correlate with the level of triggering, with the same PdiTw observed at all triggering levels.
Figure 5
Figure 5
Relationship of diaphragm strength to survival. (A) Survival of patients (days after measurement, x axis) as a function of transdiaphragmatic twitch pressure (PdiTw) level (y axis). Patients that died had low average PdiTw levels (6.3 ± 0.6 cmH2O) while survivors had higher PdiTw levels (8.9 ± 0.9 cmH2O, P = 0.044). (B) Survival curves for subjects with PdiTw ≥10 cmH2O (n = 15) and PdiTw <10 cmH2O (n = 42). Weak subjects had a significantly higher mortality (49%) than strong subjects (7%, P = 0.022). To exclude the possibility that the greater mortality in the weakest patients may have been due to the presence of more severe lung dysfunction, we also examined (C) respiratory system (RS) static compliance and (D) airway resistance. There was no significant difference in RS static compliance or airway resistance for patients with PdiTw ≥10 cmH2O and PdiTw <10 cmH2O, indicating that the greater mortality ion the weakest patients was not due to concomitant lung dysfunction.
Figure 6
Figure 6
Relationship of diaphragm strength to ventilator weaning duration. (A) Duration of mechanical ventilation after measurement of transdiaphragmatic twitch pressure (PdiTw) as a function of the level of PdiTw; each symbol represents data from a single subject. Patients with PdiTw ≥10 cmH2O required significantly shorter times to wean from mechanical ventilation when compared with patients with PdiTw <10 cmH2O (P = 0.016). The time required to wean from mechanical ventilation bore no relationship, however, to (B) the respiratory system (RS) static compliance or (C) the airway resistance.

References

    1. Wunsch H, Linde-Zwirble WT, Angus DC, Hartman ME, Milbrandt EB, Kahn JM. The epidemiology of mechanical ventilation use in the United States. Crit Care Med. 2010;38:1947–1953.
    1. Luhr OR, Karlsson M, Thorsteinsson A, Rylander C, Frostell CG. The impact of respiratory variables on mortality in non-ARDS and ARDS patients requiring mechanical ventilation. Intensive Care Med. 2000;26:508–517. doi: 10.1007/s001340051197.
    1. Dasta JF, McLaughlin TP, Mody SH, Piech CT. Daily cost of an intensive care unit day: the contribution of mechanical ventilation. Crit Care Med. 2005;33:1266–1271. doi: 10.1097/01.CCM.0000164543.14619.00.
    1. Laghi F, Cattapan SE, Jubran A, Parthasarathy S, Warshawsky P, Choi YS, Tobin MJ. Is weaning failure caused by low-frequency fatigue of the diaphragm? Am J Respir Crit Care Med. 2003;167:120–127. doi: 10.1164/rccm.200210-1246OC.
    1. Watson AC, Hughes PD, Louise Harris M, Hart N, Ware RJ, Wendon J, Green M, Moxham J. Measurement of twitch transdiaphragmatic, esophageal, and endotracheal tube pressure with bilateral anterolateral magnetic phrenic nerve stimulation in patients in the intensive care unit. Crit Care Med. 2001;29:1325–1331. doi: 10.1097/00003246-200107000-00005.
    1. Hermans G, Agten A, Testelmans D, Decramer M, Gayan-Ramirez G. Increased duration of mechanical ventilation is associated with decreased diaphragmatic force: a prospective observational study. Crit Care. 2010;14:R127. doi: 10.1186/cc9094.
    1. Jaber S, Jung B, Matecki S, Petrof BJ. Clinical review: ventilator-induced diaphragmatic dysfunction - human studies confirm animal model findings! Crit Care. 2011;15:206. doi: 10.1186/cc10023.
    1. Petrof BJ, Jaber S, Matecki S. Ventilator-induced diaphragmatic dysfunction. Curr Opin Crit Care. 2010;16:19–25. doi: 10.1097/MCC.0b013e328334b166.
    1. Callahan LA, Supinski GS. Sepsis-induced myopathy. Crit Care Med. 2009;37:S354–S367.
    1. Barreiro E, Comtois AS, Mohammed S, Lands LC, Hussain SN. Role of heme oxygenases in sepsis-induced diaphragmatic contractile dysfunction and oxidative stress. Am J Physiol Lung Cell Mol Physiol. 2002;283:L476–L484.
    1. Modawal A, Candadai NP, Mandell KM, Moore ES, Hornung RW, Ho ML, Tsevat J. Weaning success among ventilator-dependent patients in a rehabilitation facility. Arch Phys Med Rehabil. 2002;83:154–157. doi: 10.1053/apmr.2002.29614.
    1. Hermans G, Wilmer A, Meersseman W, Milants I, Wouters PJ, Bobbaers H, Bruyninckx F, Van den Berghe G. Impact of intensive insulin therapy on neuromuscular complications and ventilator dependency in the medical intensive care unit. Am J Respir Crit Care Med. 2007;175:480–489. doi: 10.1164/rccm.200605-665OC.
    1. Wu YK, Kao KC, Hsu KH, Hsieh MJ, Tsai YH. Predictors of successful weaning from prolonged mechanical ventilation in Taiwan. Respir Med. 2009;103:1189–1195. doi: 10.1016/j.rmed.2009.02.005.
    1. Luo YM, Hart N, Mustfa N, Man WD, Rafferty GF, Polkey MI, Moxham J. Reproducibility of twitch and sniff transdiaphragmatic pressures. Respir Physiol Neurobiol. 2002;132:301–306. doi: 10.1016/S1569-9048(02)00115-5.
    1. Topeli A, Laghi F, Tobin MJ. Can diaphragmatic contractility be assessed by twitch airway pressures in patients with chronic obstructive pulmonary disease? Am J Respir Crit Care Med. 1999;160:1369–1374. doi: 10.1164/ajrccm.160.4.9806041.
    1. Aubier M, Murciano D, Lecocguic Y, Viires N, Jacquens Y, Squara P, Pariente R. Effect of hypophosphatemia on diaphragmatic contractility in patients with acute respiratory failure. N Engl J Med. 1985;313:420–424. doi: 10.1056/NEJM198508153130705.
    1. De Muth JE. Overview of biostatistics used in clinical research. Am J Health Syst Pharm. 2009;66:70–81. doi: 10.2146/ajhp070006.
    1. Jaber S, Petrof BJ, Jung B, Chanques G, Berthet JP, Rabuel C, Bouyabrine H, Courouble P, Koechlin-Ramonatxo C, Sebbane M, Similowski T, Scheuermann V, Mebazaa A, Capdevila X, Mornet D, Mercier J, Lacampagne A, Philips A, Matecki S. Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med. 2011;183:364–371. doi: 10.1164/rccm.201004-0670OC.
    1. Schonhofer B, Euteneuer S, Nava S, Suchi S, Kohler D. Survival of mechanically ventilated patients admitted to a specialised weaning centre. Intensive Care Med. 2002;28:908–916. doi: 10.1007/s00134-002-1287-5.
    1. Supinski GS, Wang W, Callahan LA. Caspase and calpain activation both contribute to sepsis-induced diaphragmatic weakness. J Appl Physiol. 2009;107:1389–1396. doi: 10.1152/japplphysiol.00341.2009.
    1. Callahan LA, Supinski GS. Sepsis induces diaphragm electron transport chain dysfunction and protein depletion. Am J Respir Crit Care Med. 2005;172:861–868. doi: 10.1164/rccm.200410-1344OC.
    1. Callahan LA, Nethery D, Stofan D, DiMarco A, Supinski G. Free radical-induced contractile protein dysfunction in endotoxin-induced sepsis. Am J Respir Cell Mol Biol. 2001;24:210–217. doi: 10.1165/ajrcmb.24.2.4075.
    1. van Hees HW, Schellekens WJ, Linkels M, Leenders F, Zoll J, Donders R, Dekhuijzen PN, van der Hoeven JG, Heunks LM. Plasma from septic shock patients induces loss of muscle protein. Crit Care. 2011;15:R233. doi: 10.1186/cc10475.
    1. Mofarrahi M, Sigala I, Guo Y, Godin R, Davis EC, Petrof B, Sandri M, Burelle Y, Hussain SN. Autophagy and skeletal muscles in sepsis. PLoS ONE. 2012;7:e47265. doi: 10.1371/journal.pone.0047265.
    1. Peruchi BB, Petronilho F, Rojas HA, Constantino L, Mina F, Vuolo F, Cardoso MR, Goncalves CL, Rezin GT, Streck EL, Dal-Pizzol F. Skeletal muscle electron transport chain dysfunction after sepsis in rats. J Surg Res. 2011;167:e333–e338. doi: 10.1016/j.jss.2010.11.893.
    1. Supinski GS, Callahan LA. Caspase activation contributes to endotoxin-induced diaphragm weakness. J Appl Physiol. 2006;100:1770–1777. doi: 10.1152/japplphysiol.01288.2005.
    1. Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, Zhu J, Sachdeva R, Sonnad S, Kaiser LR, Rubinstein NA, Powers SK, Shrager JB. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358:1327–1335. doi: 10.1056/NEJMoa070447.
    1. Hudson MB, Smuder AJ, Nelson WB, Bruells CS, Levine S, Powers SK. Both high level pressure support ventilation and controlled mechanical ventilation induce diaphragm dysfunction and atrophy. Crit Care Med. 2012;40:1254–1260. doi: 10.1097/CCM.0b013e31823c8cc9.
    1. Maes K, Testelmans D, Powers S, Decramer M, Gayan-Ramirez G. Leupeptin inhibits ventilator-induced diaphragm dysfunction in rats. Am J Respir Crit Care Med. 2007;175:1134–1138. doi: 10.1164/rccm.200609-1342OC.
    1. DeRuisseau KC, Kavazis AN, Deering MA, Falk DJ, Van Gammeren D, Yimlamai T, Ordway GA, Powers SK. Mechanical ventilation induces alterations of the ubiquitin-proteasome pathway in the diaphragm. J Appl Physiol. 2005;98:1314–1321. doi: 10.1152/japplphysiol.00993.2004.
    1. Supinski GS, Vanags J, Callahan LA. Eicosapentaenoic acid preserves diaphragm force generation following endotoxin administration. Crit Care. 2010;14:R35. doi: 10.1186/cc8913.
    1. Supinski GS, Callahan LA. Calpain activation contributes to endotoxin-induced diaphragmatic dysfunction. Am J Respir Cell Mol Biol. 2010;42:80–87. doi: 10.1165/rcmb.2008-0275OC.

Source: PubMed

3
購読する