Prediction models for risk of developing type 2 diabetes: systematic literature search and independent external validation study

Ali Abbasi, Linda M Peelen, Eva Corpeleijn, Yvonne T van der Schouw, Ronald P Stolk, Annemieke M W Spijkerman, Daphne L van der A, Karel G M Moons, Gerjan Navis, Stephan J L Bakker, Joline W J Beulens, Ali Abbasi, Linda M Peelen, Eva Corpeleijn, Yvonne T van der Schouw, Ronald P Stolk, Annemieke M W Spijkerman, Daphne L van der A, Karel G M Moons, Gerjan Navis, Stephan J L Bakker, Joline W J Beulens

Abstract

Objective: To identify existing prediction models for the risk of development of type 2 diabetes and to externally validate them in a large independent cohort.

Data sources: Systematic search of English, German, and Dutch literature in PubMed until February 2011 to identify prediction models for diabetes.

Design: Performance of the models was assessed in terms of discrimination (C statistic) and calibration (calibration plots and Hosmer-Lemeshow test).The validation study was a prospective cohort study, with a case cohort study in a random subcohort.

Setting: Models were applied to the Dutch cohort of the European Prospective Investigation into Cancer and Nutrition cohort study (EPIC-NL).

Participants: 38,379 people aged 20-70 with no diabetes at baseline, 2506 of whom made up the random subcohort.

Outcome measure: Incident type 2 diabetes.

Results: The review identified 16 studies containing 25 prediction models. We considered 12 models as basic because they were based on variables that can be assessed non-invasively and 13 models as extended because they additionally included conventional biomarkers such as glucose concentration. During a median follow-up of 10.2 years there were 924 cases in the full EPIC-NL cohort and 79 in the random subcohort. The C statistic for the basic models ranged from 0.74 (95% confidence interval 0.73 to 0.75) to 0.84 (0.82 to 0.85) for risk at 7.5 years. For prediction models including biomarkers the C statistic ranged from 0.81 (0.80 to 0.83) to 0.93 (0.92 to 0.94). Most prediction models overestimated the observed risk of diabetes, particularly at higher observed risks. After adjustment for differences in incidence of diabetes, calibration improved considerably.

Conclusions: Most basic prediction models can identify people at high risk of developing diabetes in a time frame of five to 10 years. Models including biomarkers classified cases slightly better than basic ones. Most models overestimated the actual risk of diabetes. Existing prediction models therefore perform well to identify those at high risk, but cannot sufficiently quantify actual risk of future diabetes.

Conflict of interest statement

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Figures

https://www.ncbi.nlm.nih.gov/pmc/articles/instance/4790481/bin/abba006413.f1_default.jpg
Fig 1 Overview of systematic literature search of studies that derived prediction models for risk of type 2 diabetes
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/4790481/bin/abba006413.f2_default.jpg
Fig 2 Calibration plots for recalibrated basic models risk of diabetes at 7.5 years depicting predicted risk against observed risk of developing type 2 diabetes in validation dataset. Dashed line (45° line) from zero denotes ideal calibration line (slope=1, intercept=0) and other lines are smooth calibration curve for each model
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/4790481/bin/abba006413.f3_default.jpg
Fig 3 Calibration plots for recalibrated extended models risk of diabetes at 7.5 years depicting predicted risk against observed risk of developing type 2 diabetes in validation dataset. Dashed line (45° line) from zero denotes ideal calibration line (slope=1, intercept=0) and other lines are smooth calibration curve for each model

References

    1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004;27:1047-53.
    1. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002;346:393-403.
    1. Group DPPR, Fowler SE, Hamman RF, Christophi CA, Hoffman HJ, Brenneman AT, et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 2009;374:1677-86.
    1. American Diabetes Association. Standards of medical care in diabetes—2011. Diabetes Care 2011;34(suppl 1):S11-61.
    1. Paulweber B, Valensi P, Lindstrom J, Lalic NM, Greaves CJ, McKee M, et al. A European evidence-based guideline for the prevention of type 2 diabetes. Horm Metab Res 2010;42(suppl 1):S3-36.
    1. Alberti KG, Zimmet P, Shaw J. International Diabetes Federation: a consensus on type 2 diabetes prevention. Diabet Med 2007;24:451-63.
    1. Collins GS, Mallett S, Omar O, Yu LM. Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting. BMC Med 2011;9:103.
    1. Noble D, Mathur R, Dent T, Meads C, Greenhalgh T. Risk models and scores for type 2 diabetes: systematic review. BMJ 2011;343:d7163.
    1. Buijsse B, Simmons RK, Griffin SJ, Schulze MB. Risk assessment tools for identifying individuals at risk of developing type 2 diabetes. Epidemiol Rev 2011;33:46-62.
    1. Mann DM, Bertoni AG, Shimbo D, Carnethon MR, Chen H, Jenny NS, et al. Comparative validity of 3 diabetes mellitus risk prediction scoring models in a multiethnic US cohort: the Multi-Ethnic Study of Atherosclerosis. Am J Epidemiol 2010;171:980-8.
    1. Lin JW, Chang YC, Li HY, Chien YF, Wu MY, Tsai RY, et al. Cross-sectional validation of diabetes risk scores for predicting diabetes, metabolic syndrome, and chronic kidney disease in Taiwanese. Diabetes Care 2009;32:2294-6.
    1. Moons KG, Royston P, Vergouwe Y, Grobbee DE, Altman DG. Prognosis and prognostic research: what, why, and how? BMJ 2009;338:b375.
    1. Altman DG, Vergouwe Y, Royston P, Moons KG. Prognosis and prognostic research: validating a prognostic model. BMJ 2009;338:b605.
    1. Collins GS, Moons KG. Comparing risk prediction models. BMJ 2012;344:e3186.
    1. Siontis GC, Tzoulaki I, Siontis KC, Ioannidis JP. Comparisons of established risk prediction models for cardiovascular disease: systematic review. BMJ 2012;344:e3318.
    1. Reilly BM, Evans AT. Translating clinical research into clinical practice: impact of using prediction rules to make decisions. Ann Intern Med 2006;144:201-9.
    1. Schmid R, Vollenweider P, Bastardot F, Waeber G, Marques-Vidal P. Validation of 7 type 2 diabetes mellitus risk scores in a population-based cohort: CoLaus study. Arch Intern Med 2012;172:188-9.
    1. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 2010;21:128-38.
    1. Beulens JW, Monninkhof EM, Verschuren WM, van der Schouw YT, Smit J, Ocke MC, et al. Cohort profile: the EPIC-NL study. Int J Epidemiol 2010;39:1170-8.
    1. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009;339:b2700.
    1. Von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ 2007;335:806-8.
    1. Volovics A, van den Brandt P. Methods for the analysis of case-cohort studies. Biometric J 1997;39:195-214.
    1. Ocke MC, Bueno-de-Mesquita HB, Goddijn HE, Jansen A, Pols MA, van Staveren WA, et al. The Dutch EPIC food frequency questionnaire. I. Description of the questionnaire, and relative validity and reproducibility for food groups. Int J Epidemiol 1997;26(suppl 1):S37-48.
    1. Sluijs I, van der A D, Beulens JW, Spijkerman AM, Ros MM, Grobbee DE, et al. Ascertainment and verification of diabetes in the EPIC-NL study. Neth J Med 2010;68:333-9.
    1. Alssema M, Vistisen D, Heymans MW, Nijpels G, Glumer C, Zimmet PZ, et al. The Evaluation of Screening and Early Detection Strategies for Type 2 Diabetes and Impaired Glucose Tolerance (DETECT-2) update of the Finnish diabetes risk score for prediction of incident type 2 diabetes. Diabetologia 2011;54:1004-12.
    1. Kahn HS, Cheng YJ, Thompson TJ, Imperatore G, Gregg EW. Two risk-scoring systems for predicting incident diabetes mellitus in US adults age 45 to 64 years. Ann Intern Med 2009;150:741-51.
    1. Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996;15:361-87.
    1. Van Houwelingen HC. Validation, calibration, revision and combination of prognostic survival models. Stat Med 2000;19:3401-15.
    1. Liddell FD. Simple exact analysis of the standardised mortality ratio. J Epidemiol Community Health 1984;38:85-8.
    1. Vergouwe Y, Moons KG, Steyerberg EW. External validity of risk models: use of benchmark values to disentangle a case-mix effect from incorrect coefficients. Am J Epidemiol 2010;172:971-80.
    1. Janssen KJ, Moons KG, Kalkman CJ, Grobbee DE, Vergouwe Y. Updating methods improved the performance of a clinical prediction model in new patients. J Clin Epidemiol 2008;61:76-86.
    1. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ 2009;338:b2393.
    1. Donders AR, van der Heijden GJ, Stijnen T, Moons KG. Review: a gentle introduction to imputation of missing values. J Clin Epidemiol 2006;59:1087-91.
    1. Marshall A, Altman DG, Royston P, Holder RL. Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study. BMC Med Res Methodol 2010;10:7.
    1. Rathmann W, Kowall B, Heier M, Herder C, Holle R, Thorand B, et al. Prediction models for incident type 2 diabetes mellitus in the older population: KORA S4/F4 cohort study. Diabet Med 2010;27:1116-23.
    1. Chen L, Magliano DJ, Balkau B, Colagiuri S, Zimmet PZ, Tonkin AM, et al. AUSDRISK: an Australian Type 2 Diabetes Risk Assessment Tool based on demographic, lifestyle and simple anthropometric measures. Med J Aust 2010;192:197-202.
    1. Rosella LC, Manuel DG, Burchill C, Stukel TA. A population-based risk algorithm for the development of diabetes: development and validation of the Diabetes Population Risk Tool (DPoRT). J Epidemiol Community Health 2011;65:613-20.
    1. Hippisley-Cox J, Coupland C, Robson J, Sheikh A, Brindle P. Predicting risk of type 2 diabetes in England and Wales: prospective derivation and validation of QDScore. BMJ 2009;338:b880.
    1. Balkau B, Lange C, Fezeu L, Tichet J, de Lauzon-Guillain B, Czernichow S, et al. Predicting diabetes: clinical, biological, and genetic approaches: data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care 2008;31:2056-61.
    1. Schulze MB, Hoffmann K, Boeing H, Linseisen J, Rohrmann S, Mohlig M, et al. An accurate risk score based on anthropometric, dietary, and lifestyle factors to predict the development of type 2 diabetes. Diabetes Care 2007;30:510-5.
    1. Simmons RK, Harding AH, Wareham NJ, Griffin SJ. Do simple questions about diet and physical activity help to identify those at risk of type 2 diabetes? Diabet Med 2007;24:830-5.
    1. Wilson PW, Meigs JB, Sullivan L, Fox CS, Nathan DM, D’Agostino RB Sr. Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch Intern Med 2007;167:1068-74.
    1. Lindstrom J, Tuomilehto J. The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care 2003;26:725-31.
    1. Stern MP, Williams K, Haffner SM. Identification of persons at high risk for type 2 diabetes mellitus: do we need the oral glucose tolerance test? Ann Intern Med 2002;136:575-81.
    1. Stern MP, Morales PA, Valdez RA, Monterrosa A, Haffner SM, Mitchell BD, et al. Predicting diabetes. Moving beyond impaired glucose tolerance. Diabetes 1993;42:706-14.
    1. Wannamethee SG, Papacosta O, Whincup PH, Thomas MC, Carson C, Lawlor DA, et al. The potential for a two-stage diabetes risk algorithm combining non-laboratory-based scores with subsequent routine non-fasting blood tests: results from prospective studies in older men and women. Diabet Med 2011;28:23-30.
    1. Joseph J, Svartberg J, Njolstad I, Schirmer H. Incidence of and risk factors for type-2 diabetes in a general population: the Tromso Study. Scand J Public Health 2010;38:768-75.
    1. Von Eckardstein A, Schulte H, Assmann G. Risk for diabetes mellitus in middle-aged Caucasian male participants of the PROCAM study: implications for the definition of impaired fasting glucose by the American Diabetes Association. Prospective Cardiovascular Munster. J Clin Endocrinol Metab 2000;85:3101-8.
    1. D’Agostino RB Sr, Grundy S, Sullivan LM, Wilson P. Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. JAMA 2001;286:180-7.
    1. Van Loon AJ, Tijhuis M, Picavet HS, Surtees PG, Ormel J. Survey non-response in the Netherlands: effects on prevalence estimates and associations. Ann Epidemiol 2003;13:105-10.
    1. Herder C, Baumert J, Zierer A, Roden M, Meisinger C, Karakas M, et al. Immunological and cardiometabolic risk factors in the prediction of type 2 diabetes and coronary events: MONICA/KORA Augsburg case-cohort study. PLoS One 2011;6:e19852.
    1. Van Dieren S, Nothlings U, van der Schouw YT, Spijkerman AM, Rutten GE, van der AD, et al. Non-fasting lipids and risk of cardiovascular disease in patients with diabetes mellitus. Diabetologia 2011;54:73-7.
    1. Langenberg C, Sharp S, Forouhi NG, Franks PW, Schulze MB, Kerrison N, et al. Design and cohort description of the InterAct Project: an examination of the interaction of genetic and lifestyle factors on the incidence of type 2 diabetes in the EPIC Study. Diabetologia 2011;54:2272-82.
    1. Harrell FE Jr, Lee KL, Califf RM, Pryor DB, Rosati RA. Regression modelling strategies for improved prognostic prediction. Stat Med 1984;3:143-52.
    1. McGeechan K, Macaskill P, Irwig L, Liew G, Wong TY. Assessing new biomarkers and predictive models for use in clinical practice: a clinician’s guide. Arch Intern Med 2008;168:2304-10.
    1. Rathmann W, Martin S, Haastert B, Icks A, Holle R, Lowel H, et al. Performance of screening questionnaires and risk scores for undiagnosed diabetes: the KORA Survey 2000. Arch Intern Med 2005;165:436-41.
    1. Schmidt MI, Duncan BB, Bang H, Pankow JS, Ballantyne CM, Golden SH, et al. Identifying individuals at high risk for diabetes: the Atherosclerosis Risk in Communities study. Diabetes Care 2005;28:2013-8.
    1. Griffin SJ, Little PS, Hales CN, Kinmonth AL, Wareham NJ. Diabetes risk score: towards earlier detection of type 2 diabetes in general practice. Diabetes Metab Res Rev 2000;16:164-71.
    1. Rahman M, Simmons RK, Harding AH, Wareham NJ, Griffin SJ. A simple risk score identifies individuals at high risk of developing type 2 diabetes: a prospective cohort study. Fam Pract 2008;25:191-6.

Source: PubMed

3
購読する