Oxidative Stress and Alterations of Paraoxonases in Atopic Dermatitis

Oriana Simonetti, Tiziana Bacchetti, Gianna Ferretti, Elisa Molinelli, Giulio Rizzetto, Luisa Bellachioma, Annamaria Offidani, Oriana Simonetti, Tiziana Bacchetti, Gianna Ferretti, Elisa Molinelli, Giulio Rizzetto, Luisa Bellachioma, Annamaria Offidani

Abstract

Background: previous studies reported the involvement of reactive oxygen species (ROS) and lipid peroxidation in the pathogenesis of inflammatory skin diseases. The aim of our study was to investigate the relationship between oxidative stress and inflammation in children affected by atopic dermatitis (AD), a chronic relapsing inflammatory skin disease.

Methods: levels of lipid hydroperoxides, total antioxidant capacity, and activities of the enzymes myeloperoxidase (MPO), PON1, and PON2/3 were investigated in 56 atopic pediatric patients, and compared with 48 sex-/age-matched healthy controls.

Results: significantly higher levels of lipid hydroperoxides and lower values of total antioxidant potential were observed in the serum of AD children compared to that of the controls. Significant lower PON1 activities, and a significant increase in levels of MPO were observed in serum of patients, with a higher serum MPO level/PON1 paraoxonase activity ratio in patients compared to that in the controls. Significantly lower lactonase activity of PON enzymes was observed in polymorphonuclear cells isolated from AD patients. Statistically negative correlation was established between the activity of intracellular PON2/3 activity and ROS levels.

Conclusions: our data confirmed that AD is associated with higher oxidative damage and a decrease in antioxidant defense. Moreover, alterations of extracellular and intracellular PON activity can promote lipoprotein dysfunction in AD patients.

Keywords: atopic dermatitis; myeloperoxidase; oxidative stress; paraoxonases.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
PON2/3 lactonase activity (white bar) and intracellular ROS (grey bar) in peripheral blood mononuclear cells (PBMNCs) isolated from AD and control children. Results reported as mean ± SE. * p < 0.001 vs. PON2/3 activity in cells of control children; ** p < 0.001 vs. ROS levels in cells of control children.

References

    1. Naldi L., Parazzini F., Gallus S. GISED Study Centres. Prevalence of atopic dermatitis in Italian schoolchildren: Factors affecting its variation. Acta Derm. Venereol. 2009;89:122–125.
    1. Silverberg J.I., Simpson E.L. Association between severe eczema in children and multiple comorbid conditions and increased healthcare utilization. Pediatr. Allergy Immunol. 2013;24:476–486. doi: 10.1111/pai.12095.
    1. Bertino L., Guarneri F., Cannavo S.P., Casciaro M., Pioggia G., Gangemi S. Oxidative stress and atopic dermatitis. Antioxidants Basel. 2020;9:196. doi: 10.3390/antiox9030196.
    1. Ji H., Li X.K. Oxidative stress in atopic dermatitis. Oxid. Med. Cell Longev. 2016;2016:2721469. doi: 10.1155/2016/2721469.
    1. Omata N., Tsukahara H., Ito S., Ohshima Y., Yasutomi M., Yamada A., Jiang M., Hiraoka M., Nambu M., Deguchi Y., et al. Increased oxidative stress in childhood atopic dermatitis. Life Sci. 2001;69:223–228. doi: 10.1016/S0024-3205(01)01124-9.
    1. Sapuntsova S.G., Lebed’ko O.A., Shchetkina M.V., Fleyshman M.Y., Kozulin E.A., Timoshin S.S. Status of free-radical oxidation and proliferation processes in patients with atopic dermatitis and lichen planus. Bull. Exp. Biol. Med. 2011;150:690–692. doi: 10.1007/s10517-011-1224-0.
    1. Tsukahara H., Shibata R., Ohta N., Sato S., Hiraoka M., Ito S., Noiri E., Mayumi M. High levels of urinary pentosidine, an advanced glycation end product, in children with acute exacerbation of atopic dermatitis: Relationship with oxidative stress. Metabolism. 2003;52:1601–1605. doi: 10.1016/S0026-0495(03)00310-X.
    1. Tsuboi H., Kouda K., Takeuchi H., Takigawa M., Masamoto Y., Takeuchi M., Ochi H. 8-hydroxydeoxyguanosine in urine as an index of oxidative damage to DNA in the evaluation of atopic dermatitis. Br. J. Dermatol. 1998;138:1033–1035. doi: 10.1046/j.1365-2133.1998.02273.x.
    1. Nakai K., Yoneda K., Maeda R., Munehiro A., Fujita N., Yokoi I., Moriue J., Moriue T., Kosaka H., Kubota Y. Urinary biomarker of oxidative stress in patients with psoriasis vulgaris and atopic dermatitis. J. Eur. Acad. Dermatol. Venereol. 2009;23:1405–1408. doi: 10.1111/j.1468-3083.2009.03327.x.
    1. Sivaranjani N., Rao S.V., Rajeev G. Role of reactive oxygen species and antioxidants in atopic dermatitis. J. Clin. Diagn. Res. 2013;7:2683–2685. doi: 10.7860/JCDR/2013/6635.3732.
    1. Amin M.N., Liza K.F., Sarwar M.S., Ahmed J., Adnan M.T., Chowdhury M.I., Hossain M.Z., Islam M.S. Effect of lipid peroxidation, antioxidants, macro minerals and trace elements on eczema. Arch. Dermatol. Res. 2015;307:617–623. doi: 10.1007/s00403-015-1570-2.
    1. Sharifi-Rad M., Anil Kumar N.V., Zucca P., Varoni E.M., Dini L., Panzarini E., Rajkovic J., Tsouh Fokou P.V., Azzini E., Peluso I., et al. Lifestyle, Oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol. 2020;11:694. doi: 10.3389/fphys.2020.00694.
    1. Van der Veen B.S., de Winther M.P., Heeringa P. Myeloperoxidase: Molecular mechanisms of action and their relevance to human health and disease. Antioxid. Redox Signal. 2009;11:2899–2937. doi: 10.1089/ars.2009.2538.
    1. Podrez E.A., Schmitt D., Hoff H.F., Hazen S.L. Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J. Clin. Investig. 1999;103:1547–1560. doi: 10.1172/JCI5549.
    1. Bacchetti T., Ferretti G., Carbone F., Ministrini S., Montecucco F., Jamialahmadi T., Sahebkar A. Dysfunctional high-density lipoprotein: The role of myeloperoxidase and paraoxonase-1. Curr. Med. Chem. 2020 doi: 10.2174/0929867327999200716112353.
    1. Zheng L., Nukuna B., Brennan M.L., Sun M., Goormastic M., Settle M., Schmitt D., Fu X., Thomson L., Fox P.L., et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J. Clin. Investig. 2004;114:529–541. doi: 10.1172/JCI200421109.
    1. Undurti A., Huang Y., Lupica J.A., Smith J.D., DiDonato J.A., Hazen S.L. Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. J. Biol. Chem. 2009;284:30825–30835. doi: 10.1074/jbc.M109.047605.
    1. Zhang R., Brennan M.L., Fu X., Aviles R.J., Pearce G.L., Penn M.S., Topol E.J., Sprecher D.L., Hazen S.L. Association between myeloperoxidase levels and risk of coronary artery disease. JAMA. 2001;286:2136–2142. doi: 10.1001/jama.286.17.2136.
    1. Bacchetti T., Simonetti O., Ricotti F., Offidani A., Ferretti G. Plasma oxidation status and antioxidant capacity in psoriatic children. Arch. Dermatol. Res. 2020;312:33–39. doi: 10.1007/s00403-019-01976-z.
    1. He H., Li R., Choi S., Zhou L., Pavel A., Estrada Y.D., Krueger J.G., Guttman-Yassky E. Increased cardiovascular and atherosclerosis markers in blood of older patients with atopic dermatitis. Ann. Allergy Asthma Immunol. 2020;124:70–78. doi: 10.1016/j.anai.2019.10.013.
    1. Aviram M., Rosenblat M. Paraoxonases and cardiovascular diseases: Pharmacological and nutritional influences. Curr. Opin. Lipidol. 2005;16:393–399. doi: 10.1097/01.mol.0000174398.84185.0f.
    1. Ferretti G., Bacchetti T., Moroni C., Savino S., Liuzzi A., Balzola F., Bicchiega V. Paraoxonase activity in high-density lipoproteins: A comparison between healthy and obese females. J. Clin. Endocrinol Metab. 2005;90:1728–1733. doi: 10.1210/jc.2004-0486.
    1. Ferretti G., Bacchetti T., Busni D., Rabini R.A., Curatola G. Protective effect of paraoxonase activity in high-density lipoproteins against erythrocyte membranes peroxidation: A comparison between healthy subjects and type 1 diabetic patients. J. Clin. Endocrinol. Metab. 2004;89:2957–2962. doi: 10.1210/jc.2003-031897.
    1. Jaouad L., Milochevitch C., Khalil A. PON1 paraoxonase activity is reduced during HDL oxidation and is an indicator of HDL antioxidant capacity. Free Radic. Res. 2003;37:77–83. doi: 10.1080/1071576021000036614.
    1. Khalil A., Fulop T., Berrougui H. Role of Paraoxonase1 in the regulation of high-density lipoprotein functionality and in cardiovascular protection. Antioxid. Redox Signal. 2020 doi: 10.1089/ars.2019.7998.
    1. Horke S., Witte I., Wilgenbus P., Kruger M., Strand D., Forstermann U. Paraoxonase-2 reduces oxidative stress in vascular cells and decreases endoplasmic reticulum stress-induced caspase activation. Circulation. 2007;115:2055–2064. doi: 10.1161/CIRCULATIONAHA.106.681700.
    1. Ng C.J., Wadleigh D.J., Gangopadhyay A., Hama S., Grijalva V.R., Navab M., Fogelman A.M., Reddy S.T. Paraoxonase-2 is a ubiquitously expressed protein with antioxidant properties and is capable of preventing cell-mediated oxidative modification of low density lipoprotein. J. Biol. Chem. 2001;276:44444–44449. doi: 10.1074/jbc.M105660200.
    1. Hagmann H., Kuczkowski A., Ruehl M., Lamkemeyer T., Brodesser S., Horke S., Dryer S., Schermer B., Benzing T., Brinkkoetter P.T. Breaking the chain at the membrane: Paraoxonase 2 counteracts lipid peroxidation at the plasma membrane. FASEB J. 2014;28:1769–1779. doi: 10.1096/fj.13-240309.
    1. Priyanka K., Singh S., Gill K. Paraoxonase 3: Structure and its role in pathophysiology of coronary artery disease. Biomolecules. 2019;9:817. doi: 10.3390/biom9120817.
    1. Haraguchi Y., Toh R., Hasokawa M., Nakajima H., Honjo T., Otsui K., Mori K., Miyamoto-Sasaki M., Shinohara M., Nishimura K., et al. Serum myeloperoxidase/paraoxonase 1 ratio as potential indicator of dysfunctional high-density lipoprotein and risk stratification in coronary artery disease. Atherosclerosis. 2014;234:288–294. doi: 10.1016/j.atherosclerosis.2014.03.009.
    1. Hanifin J.M., Rajka G. Diagnostic features of atopic dermatitis. Acta Derm. Venereol. 1980;60:S44–S47.
    1. Severity scoring of atopic dermatitis: The SCORAD index Consensus report of the European Task Force on atopic dermatitis. Dermatology. 1993;186:23–31. doi: 10.1159/000247298.
    1. Ou B., Hampsch-Woodill M., Prior R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001;49:4619–4626. doi: 10.1021/jf010586o.
    1. Rosenblat M., Draganov D., Watson C.E., Bisgaier C.L., La Du B.N., Aviram M. Mouse macrophage paraoxonase 2 activity is increased whereas cellular paraoxonase 3 activity is decreased under oxidative stress. Arterioscler. Thromb. Vasc. Biol. 2003;23:468–474. doi: 10.1161/01.ATV.0000059385.95664.4D.
    1. Fernandes E.S., Machado Mde O., Becker A.M., de Andrade F., Maraschin M., da Silva E.L. Yerba mate (Ilex paraguariensis) enhances the gene modulation and activity of paraoxonase-2: In vitro and in vivo studies. Nutrition. 2012;28:1157–1164. doi: 10.1016/j.nut.2012.04.011.
    1. Okayama Y. Oxidative stress in allergic and inflammatory skin diseases. Curr. Drug Targets Inflamm. Allergy. 2005;4:517–519. doi: 10.2174/1568010054526386.
    1. Offidani A.M., Ferretti G., Taus M., Simonetti O., Dousset N., Valdiguie P., Curatola G., Bossi G. Lipoprotein peroxidation in adult psoriatic patients. Acta Derm. Venereol. Suppl. 1994;186:38–40.
    1. Bacchetti T., Campanati A., Ferretti G., Simonetti O., Liberati G., Offidani A.M. Oxidative stress and psoriasis: The effect of antitumour necrosis factor-alpha inhibitor treatment. Br. J. Dermatol. 2013;168:984–989. doi: 10.1111/bjd.12144.
    1. Ferretti G., Bacchetti T., Campanati A., Simonetti O., Liberati G., Offidani A. Correlation between lipoprotein(a) and lipid peroxidation in psoriasis: Role of the enzyme paraoxonase-1. Br. J. Dermatol. 2012;166:204–207. doi: 10.1111/j.1365-2133.2011.10539.x.
    1. Trieb M., Wolf P., Knuplez E., Weger W., Schuster C., Peinhaupt M., Holzer M., Trakaki A., Eichmann T., Lass A., et al. Abnormal composition and function of high-density lipoproteins in atopic dermatitis patients. Allergy. 2019;74:398–402. doi: 10.1111/all.13620.
    1. Trakaki A., Marsche G. High-Density Lipoprotein (HDL) in allergy and skin diseases: Focus on immunomodulating functions. Biomedicines. 2020;8 doi: 10.3390/biomedicines8120558.
    1. Simonetti O., Ferretti G., Salvi A., Offidani A.M., Bossi G. Plasma lipid changes in psoriatic children. Dermatology. 1992;185:96–100. doi: 10.1159/000247421.
    1. Ferretti G., Simonetti O., Offidani A.M., Messini L., Cinti B., Marshiseppe I., Bossi G., Curatola G. Changes of plasma lipids and erythrocyte membrane fluidity in psoriatic children. Pediatr. Res. 1993;33:506–509. doi: 10.1203/00006450-199305000-00017.
    1. Murphy A.J., Chin-Dusting J.P., Sviridov D., Woollard K.J. The anti inflammatory effects of high density lipoproteins. Curr. Med. Chem. 2009;16:667–675. doi: 10.2174/092986709787458425.
    1. Namiri-Kalantari R., Gao F., Chattopadhyay A., Wheeler A.A., Navab K.D., Farias-Eisner R., Reddy S.T. The dual nature of HDL: Anti-inflammatory and pro-inflammatory. Biofactors. 2015;41:153–159. doi: 10.1002/biof.1205.
    1. Fierro M.T., Banche G., Marenco F., Novelli M., Allizond V., Mandras N., Murabito P., Merlino C., Quaglino P., Bernengo M.G., et al. Functional and phenotypical impairment of polymorphonuclear cells in atopic dermatitis: An additional cause for the known susceptibility to infections? Dermatology. 2012;224:323–330. doi: 10.1159/000339180.
    1. Ternowitz T., Herlin T. Defective monocyte and polymorphonuclear leukocyte chemotaxis and clinical characteristics in atopic dermatitis. Arch. Dermatol. Res. 1986;278:454–459. doi: 10.1007/BF00455163.
    1. Ferretti G., Offidani A.M., Simonetti O., Valentino M., Curatola G., Bossi G. Changes in membrane properties of erythrocytes and polymorphonuclear cells in psoriasis. Biochem. Med. Metab. Biol. 1989;41:132–138. doi: 10.1016/0885-4505(89)90018-2.
    1. Precourt L.P., Amre D., Denis M.C., Lavoie J.C., Delvin E., Seidman E., Levy E. The three-gene paraoxonase family: Physiologic roles, actions and regulation. Atherosclerosis. 2011;214:20–36. doi: 10.1016/j.atherosclerosis.2010.08.076.
    1. Ng C.J., Bourquard N., Grijalva V., Hama S., Shih D.M., Navab M., Fogelman A.M., Lusis A.J., Young S., Reddy S.T. Paraoxonase-2 deficiency aggravates atherosclerosis in mice despite lower apolipoprotein-B-containing lipoproteins: Anti-atherogenic role for paraoxonase-2. J. Biol. Chem. 2006;281:29491–29500. doi: 10.1074/jbc.M605379200.
    1. El Hachem M., Gesualdo F., Ricci G., Diociaiuti A., Giraldi L., Ametrano O., Occella C., Fortina A.B., Milioto M., Arcangeli F., et al. Topical corticosteroid phobia in parents of pediatric patients with atopic dermatitis: A multicentre survey. Ital. J. Pediatr. 2017;43:22. doi: 10.1186/s13052-017-0330-7.
    1. Ogawa M., Saiki A., Matsui Y., Tsuchimoto N., Nakakita Y., Takata Y., Nakamura T. Effects of oral intake of heat-killed Lactobacillus brevis SBC8803 (SBL88™) on dry skin conditions: A randomized, double-blind, placebo-controlled study. Exp. Ther. Med. 2016;12:3863–3872. doi: 10.3892/etm.2016.3862.
    1. Sestito S., D’Auria E., Baldassarre M.E., Salvatore S., Tallarico V., Stefanelli E., Tarsitano F., Concolino D., Pensabene L. The role of prebiotics and probiotics in prevention of allergic diseases in infants. Front. Pediatr. 2020;22:583946. doi: 10.3389/fped.2020.583946.
    1. Trikamjee T., Comberiati P., D’Auria E., Peroni D., Zuccotti G.V. Nutritional factors in the prevention of atopic dermatitis in children. Front. Pediatr. 2021;12:577413. doi: 10.3389/fped.2020.577413.

Source: PubMed

3
購読する