Isolation and characterization of diverse microbial representatives from the human skin microbiome

Collin M Timm, Kristin Loomis, William Stone, Thomas Mehoke, Bryan Brensinger, Matthew Pellicore, Phillip P A Staniczenko, Curtisha Charles, Seema Nayak, David K Karig, Collin M Timm, Kristin Loomis, William Stone, Thomas Mehoke, Bryan Brensinger, Matthew Pellicore, Phillip P A Staniczenko, Curtisha Charles, Seema Nayak, David K Karig

Abstract

Background: The skin micro-environment varies across the body, but all sites are host to microorganisms that can impact skin health. Some of these organisms are true commensals which colonize a unique niche on the skin, while open exposure of the skin to the environment also results in the transient presence of diverse microbes with unknown influences on skin health. Culture-based studies of skin microbiota suggest that skin microbes can affect skin properties, immune responses, pathogen growth, and wound healing.

Results: In this work, we greatly expanded the diversity of available commensal organisms by collecting > 800 organisms from 3 body sites of 17 individuals. Our collection includes > 30 bacterial genera and 14 fungal genera, with Staphylococcus and Micrococcus as the most prevalent isolates. We characterized a subset of skin isolates for the utilization of carbon compounds found on the skin surface. We observed that members of the skin microbiota have the capacity to metabolize amino acids, steroids, lipids, and sugars, as well as compounds originating from personal care products.

Conclusions: This collection is a resource that will support skin microbiome research with the potential for discovery of novel small molecules, development of novel therapeutics, and insight into the metabolic activities of the skin microbiota. We believe this unique resource will inform skin microbiome management to benefit skin health. Video abstract.

Keywords: Carbon source utilization; Isolate collection; Skin microbiome.

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Summary of isolation sites and conditions. a Research participants metadata includes age, gender, trans-epidermal water loss, and sebum content. b Example blood agar plate showing colony morphologies. c Total number of isolates by site. d Isolate counts from growth conditions, not including the standard condition of room temperature (RT), blood agar. e Total number of isolates by research participant. Black bars signify research participants for which multiple isolation conditions were performed. See Table S1 for additional metadata
Fig. 2
Fig. 2
Phylogenetic tree of bacterial isolates. 16S tree for bacterial isolates. Sequences with 99% similarity are collapsed into a single node. Concentric columns indicate number of 99% similar 16S sequences by color-coded site. Pop-out tables indicate number of isolates by research participants/site that map to common S. epidermidis strains
Fig. 3
Fig. 3
Bacterial diversity between subjects/sites. Correlation between number of genera by site (raw data shown in a for b antecubital fossa (AF) vs. forearm (AM), c antecubital fossa (AF) vs forehead (FM), and d forearm (AM) vs. forehead (FM). p values were calculated from Pearson correlation with 17 pairs. Outlined bars and points indicate subjects with multiple isolation conditions
Fig. 4
Fig. 4
Fungal isolates. a ITS tree. Blue branches are Ascomycota and orange branches are Basidiomycota. b Isolate FM062_001 identified as Cladosporium caldospoiroides. c Isolate AF056_018 identified as Penicillium dipodomyicola. d Isolate AF064_005 identified as Epicoccum nigrum. e Isolate AF069_007 identified as Naganishia liquefaciens. f Isolate AM063_501 identified as Naganishia liquefaciens. g Isolate AF054_013 identified as Rhodotorula mucilaginosa
Fig. 5
Fig. 5
Skin resource utilization by skin microbiota isolates. a Resource utilization screen. Blue cells indicate a significant color change by the reduction-reporting dye; white cells indicate no significant color change not observed. b Scatterplot of the number of resources found to be utilized by each organism. c Carbon source utilization for generalists across skin isolates is positively related to phylogenetic similarity (four or more carbon sources R2 = 0.169; p = 0.003)

References

    1. Meisel JS, et al. Commensal microbiota modulate gene expression in the skin. Microbiome. 2018;6:20. doi: 10.1186/s40168-018-0404-9.
    1. Lai Y, et al. Commensal bacteria regulate toll-like receptor 3-dependent inflammation after skin injury. Nat Med. 2009;15:1377–1382. doi: 10.1038/nm.2062.
    1. Lai Y, et al. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J. Invest. Dermatol. 2010;130:2211–2221. doi: 10.1038/jid.2010.123.
    1. Nakatsuji T, et al. Antimicrobials from human skin commensal bacteria protect against <em>Staphylococcus aureus</em> and are deficient in atopic dermatitis. Sci. Transl. Med. 2017;9.
    1. Grice EA, et al. Longitudinal shift in diabetic wound microbiota correlates with prolonged skin defense response. Proc. Natl. Acad. Sci. 2010;107:14799–14804. doi: 10.1073/pnas.1004204107.
    1. Busula AO, et al. Variation in host preferences of malaria mosquitoes is mediated by skin bacterial volatiles. Med. Vet. Entomol. 2017;31:320–6.
    1. SanMiguel A, Grice EA. Interactions between host factors and the skin microbiome. Cell. Mol. Life Sci. 2015;72:1499–1515. doi: 10.1007/s00018-014-1812-z.
    1. Grice EA, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324:1190–1192. doi: 10.1126/science.1171700.
    1. Mathieu A, et al. Life on human surfaces: skin metagenomics. PLoS One. 2013;8:e65288. doi: 10.1371/journal.pone.0065288.
    1. Bouslimani A, et al. Molecular cartography of the human skin surface in 3D. Proc. Natl. Acad. Sci. 2015;112:E2120. doi: 10.1073/pnas.1424409112.
    1. Bouslimani A, et al. The impact of skin care products on skin chemistry and microbiome dynamics. BMC Biol. 2019;17:47. doi: 10.1186/s12915-019-0660-6.
    1. Kong HH, Segre JA. Skin microbiome: looking back to move forward. J. Invest. Dermatol. 2012;132:933–939. doi: 10.1038/jid.2011.417.
    1. Rhoads DD, Cox SB, Rees EJ, Sun Y, Wolcott RD. Clinical identification of bacteria in human chronic wound infections: culturing vs. 16S ribosomal DNA sequencing. BMC Infect. Dis. 2012;12(321).
    1. Salter SJ, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87. doi: 10.1186/s12915-014-0087-z.
    1. Kong HH, et al. Performing skin microbiome research: a method to the madness. J. Invest. Dermatol. 2017;137:561–568. doi: 10.1016/j.jid.2016.10.033.
    1. Edgar, R. C. UNBIAS: An attempt to correct abundance bias in 16S sequencing, with limited success. bioRxiv 124149 (2017) 10.1101/124149.
    1. Oh J, et al. Temporal stability of the human skin microbiome. Cell. 2016;165:854–866. doi: 10.1016/j.cell.2016.04.008.
    1. Franzosa, E. A. et al. Identifying personal microbiomes using metagenomic codes. Proc. Natl. Acad. Sci.112, E2930 LP-E2938 (2015).
    1. Costello EK, et al. Bacterial community variation in human body habitats across space and time. Sci. (New York, NY), 1697. 2009;326:1694.
    1. Zeeuwen PLJM, et al. Microbiome dynamics of human epidermis following skin barrier disruption. Genome Biol. 2012;13:R101. doi: 10.1186/gb-2012-13-11-r101.
    1. Marx V. Microbiology: the return of culture. Nat. Methods. 2016;14:37. doi: 10.1038/nmeth.4107.
    1. Saulnier DM, et al. Exploring metabolic pathway reconstruction and genome-wide expression profiling in Lactobacillus reuteri to define functional probiotic features. PLoS One. 2011;6:e18783. doi: 10.1371/journal.pone.0018783.
    1. Laparra JM, Sanz Y. Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium. Lett. Appl. Microbiol. 2009;49:695–701. doi: 10.1111/j.1472-765X.2009.02729.x.
    1. Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, Goodman AL. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature. 2019;570:462–467. doi: 10.1038/s41586-019-1291-3.
    1. Grimm V, Gleinser M, Neu C, Zhurina D, Riedel CU. Expression of fluorescent proteins in Bifidobacteria for analysis of host-microbe interactions. Appl. Environ. Microbiol. 2014;80:2842 LP–2842850. doi: 10.1128/AEM.04261-13.
    1. Timm CM, et al. Two poplar-associated bacterial isolates induce additive favorable responses in a constructed plant-microbiome system. Frontiers in Plant Science. 2016;7.
    1. Timm CM, Lloyd EP, Egan A, Mariner R, Karig D. Direct growth of bacteria in headspace vials allows for screening of volatiles by gas chromatography mass spectrometry. Frontiers in Microbiology. 2018;9:491. doi: 10.3389/fmicb.2018.00491.
    1. Aryal, S. Potato Dextrose Agar (PDA)- Principle, uses, composition, procedure and colony characteristics. (2019).
    1. Chaudhary DK, Khulan A, Kim J. Development of a novel cultivation technique for uncultured soil bacteria. Sci. Rep. 2019;9:6666. doi: 10.1038/s41598-019-43182-x.
    1. Scholz, C. F. P. & Kilian, M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int. J. Syst. Evol. Microbiol.66, 4422–4432 (2016).
    1. Jagielski T, et al. Distribution of Malassezia species on the skin of patients with atopic dermatitis, psoriasis, and healthy volunteers assessed by conventional and molecular identification methods. BMC Dermatol. 2014;14:3. doi: 10.1186/1471-5945-14-3.
    1. Rittenour WR, et al. Internal transcribed spacer rRNA gene sequencing analysis of fungal diversity in Kansas City indoor environments. Environ. Sci. Process. Impacts. 2014;16:33–43. doi: 10.1039/C3EM00441D.
    1. Langille MGI, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 2013;31:814–821. doi: 10.1038/nbt.2676.
    1. Fodor AA, et al. The “Most Wanted” Taxa from the Human Microbiome for Whole Genome Sequencing. PLoS One. 2012;7:e41294. doi: 10.1371/journal.pone.0041294.
    1. Browne HP, et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature. 2016;533:543. doi: 10.1038/nature17645.
    1. Bewick S, et al. Trait-based analysis of the human skin microbiome. Microbiome. 2019;7:101. doi: 10.1186/s40168-019-0698-2.
    1. DSMZ. .
    1. Rice P, Longden I, Bleasby A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000;16:276–277. doi: 10.1016/S0168-9525(00)02024-2.
    1. Pruesse E, Glöckner FO, Peplies J. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–1829. doi: 10.1093/bioinformatics/bts252.
    1. Katoh K, Standley DM. MAFFT Multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010.
    1. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 1978;75:4801–4805. doi: 10.1073/pnas.75.10.4801.
    1. Van de Peer Y, Chapelle S, De Wachter R. A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res. 1996;24:3381–3391. doi: 10.1093/nar/24.17.3381.
    1. Chakravorty S, Helb D, Burday M, Connell N, Alland D. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods. 2007;69:330–339. doi: 10.1016/j.mimet.2007.02.005.
    1. Nawrocki E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29:2933–2935. doi: 10.1093/bioinformatics/btt509.
    1. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033.
    1. Findley K, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498:367. doi: 10.1038/nature12171.
    1. Bochner B, Gadzinski P, Panomitros E. Phenotype microarrays for high-throughput phenotypic testing and assay of gene unction. Genome Res. 2001;11:1246–1255. doi: 10.1101/gr.186501.
    1. Karp PD, et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief. Bioinform. 2017. 10.1093/bib/bbx085.
    1. Djoumbou Feunang Y, et al. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J. Cheminform. 2016;8:61. doi: 10.1186/s13321-016-0174-y.

Source: PubMed

3
購読する