Phloretin attenuates STAT-3 activity and overcomes sorafenib resistance targeting SHP-1-mediated inhibition of STAT3 and Akt/VEGFR2 pathway in hepatocellular carcinoma

Sarita Saraswati, Abdulqader Alhaider, Abdelgalil Mohamed Abdelgadir, Pooja Tanwer, Hesham M Korashy, Sarita Saraswati, Abdulqader Alhaider, Abdelgalil Mohamed Abdelgadir, Pooja Tanwer, Hesham M Korashy

Abstract

Background: Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. Phloretin (PH) possesses anticancer, antitumor, and hepatoprotective effects, however, the effects and potential mechanisms of phloretin remain elusive.

Methods: Five HCC cells were tested in vitro for sensitivity to PH, Sorafenib (Sor) or both and the apoptosis, signal transduction and phosphatase activity were analyzed. To validate the role of SHP-1, we used PTP inhibitor III and SHP-1 siRNA. Further, we used purified SHP-1 proteins or HCC cells expressing deletion N-SH2 domain or D61A point mutants to study the PH efficacy on SHP-1. The `in vivo studies were conducted using HepG2 and SK-Hep1 and Sor resistant HepG2SR and Huh7SR xenografts. Molecular docking was done with Swiss dock and Auto Dock Vina.

Results: PH inhibited cell growth and induced apoptosis in all HCC cells by upregulating SHP-1 expression and downregulating STAT3 expression and further inhibited pAKT/pERK signaling. PH activated SHP-1 by disruption of autoinhibition of SHP-1, leading to reduced p-STAT3Tyr705 level. PH induced apoptosis in two Sor-resistant cell lines and overcome STAT3, AKT, MAPK and VEGFR2 dependent Sor resistance in HCCs. PH potently inhibited tumor growth in both Sor-sensitive and Sor-resistant xenografts in vivo by impairing angiogenesis, cell proliferation and inducing apoptosis via targeting the SHP-1/STAT3 signaling pathway.

Conclusion: Our data suggest that PH inhibits STAT3 activity in Sor-sensitive and -resistant HCCs via SHP-1-mediated inhibition of STAT3 and AKT/mTOR/JAK2/VEGFR2 pathway. Our results clearly indicate that PH may be a potent reagent for hepatocellular carcinoma and a noveltargeted therapy for further clinical investigations.

Keywords: Phloretin; SHP-1; STAT3; Sorafenib; hepatocellular carcinoma.

Conflict of interest statement

There are no financial or other interests with regard to this manuscript that might be construed as a conflict of interest. All of the authors are aware of and agree to the content of the manuscript and their being listed as an author on the manuscript.

Figures

Fig. 1
Fig. 1
PH inhibits cell proliferation and induces apoptosis in HCCs. a Sor and (b) PH structure. c Cell viability by MTT assay. d DNA fragmentation assay. e Apoptosis was analyzed by annexin V, FACS analysis. Annexin V (+) cells were quantified. f The protein levels of caspase-3 and PARP were determined by Western blot after exposing HCCs to PH for 48 h. Experiments were conducted in triplicate and mean values ± SD (bars) are shown. *p < 0.05, and **p < 0.01 compared to control
Fig. 2
Fig. 2
PH inhibits STAT3, AKT/mTOR and RAS/MAPK signaling in HCCs. a Cells were treated for 48h with indicated concentrations of PH and phosphorylated and total protein levels of the target proteins were evaluated by Western blotting. b pSTAT-3 activity was measured by ELISA (c) PH inhibits cytoplasmic, nuclear STAT3 phosphorylation in HCCs at 50uM. d Cells (wild-type or ectopic expression of STAT3) were exposed to PH at 50uM for 24 hours. Percentage of apoptotic cells was analyzed by flow cytometry. e Representative images from two patients with double immunostaing of CD31/SHP1 and pSTAT3. Experiments were conducted in triplicate and mean values ± SD (bars) are shown. *p<0.05, and **p<0.01 compared to control
Fig. 3
Fig. 3
PH enhances SHP-1 tyrosine phosphatase activity. a SHP-1 phosphatase activity. b The SHP-1-containing lysates of HCCs were collected by SHP-1 antibody and incubated with PH for 30 min. c PH enhanced SHP-1 activity in cell-free SHP-1 protein. d HCCcells were pre-treated with 25 μM specific SHP-1 inhibitor (PTPIII) for 30 min and then co-incubated with PH 50 μM for additional 48 h. e Knockdown of SHP-1 reversed the biological effects of PH on p-STAT3 and apoptosis. f PH reinforced apoptosis in stably expressing SHP-1 HCCs. g Purified dN1 and D61A mutants of SHP-1 were insensitive to PH treatment. h Percentage of apoptotic cells was analyzed by flow cytometry. i Effect of dN1 and D61A mutants on STAT3 expression. j Molecular model of PH. Experiments were conducted in triplicate and mean values ± SD (bars) are shown. *p < 0.05, and **p < 0.01 compared to control
Fig. 4
Fig. 4
PH overcomes Sor resistance in HepG2SR and Huh7SR cells in vitro. a PH inhibited cell growth in Sor resistant HepG2SR and Huh7SR cells. Cell viability was assessed by MTT assay. b PH enhanced DNA fragmentation in SR-HCCs. c The protein levels of caspase-3, caspase-9 and PARP after exposing SR-HCCs to PH. d PH inhibited STAT3, ERK, AKT/mTOR signaling in HCC cells. e pSTAT-3 activity was measured by ELISA. f SHP-1 phosphatase activity in HepG2SR and Huh7SR. g SHP-1 mRNA levels were analyzed by qPCR. h SR-HCC cells were transfected with control siRNA or SHP-1 siRNA for 48 h there exposed to PH and subjected to Western blot assay of p-STAT3 and SHP-1 or seeded on a 6-well plate for the colony forming assay. Experiments were conducted in triplicate and mean values ± SD (bars) are shown. *p < 0.05, and **p < 0.01 compared to control
Fig. 5
Fig. 5
PH potentiates the effect of Sor in HepG2SR and Huh7SR cells in vitro. a Effect of PH (50 μM), Sor (10 μM) or both on p-STAT3 and its downstream proteins in SR-HCCs. b SHP-1 phosphatase activity in SR-HCCs exposed to PH, Sor or both for 48 h. c pSTAT3 activity was measured by ELISA. d Colony formation assay. e The protein levels of cleaved caspase-3 and -9 were determined by Western blot assay (f) DNA fragmentation assay for cells exposed to PH, Sor or both for 48 h. Experiments were conducted in triplicate and mean values ± SD (bars) are shown. *p < 0.05, and **p < 0.01 compared to control
Fig. 6
Fig. 6
PH inhibits tumor growth via downregulating STAT3-related signaling pathway. a PH significantly inhibited tumor growth in HepG2 and SK-Hep1 tumor-bearing mice. b Tumor weight. c The in vivo SHP-1 phosphatase activity. d The protein levels of p-STAT3 and its downstream proteins were determined by Western blot assay. e STAT3 and related mRNA levels were analyzed by qPCR. f Kaplan–Meier plot showing animal survival after treatment with PH at indicated doses (n = 8). g Immunohistochemical staining (Left panel) of CD31, pSTAT3, cleaved caspase-3, Ki67 and TUNEL in tumor xenografts. Magnification: ×200. Data represents mean values from five random fields per tumor section. Scale bar, 50 μm. Mean values ± SD (bars) are shown. *p < 0.05, and **p < 0.01 compared to control
Fig. 7
Fig. 7
PH overcomes the Sor resistance in HepG2SR and Huh7SR xenografts in vivo. a PH significantly reduced tumor growth in SR-HCCs xenografts. When tumors reached 100 mm3, the mice were treated with PH, Sor or both and then tumor growth was measured every 3 days. b Tumor weight was measured on day 30 after tumor excision. c The protein levels of p-STAT3 and its downstream proteins were determined by Western blot. d The in vivo SHP-1 phosphatase activity. e Immunohistochemical staining of CD31, p-STAT3, cleaved caspase-3, Ki67 and TUNEL in HepG2SR and Huh7SR xenografts. Magnification: ×200. Data represents mean values from five random fields per tumor section. Scale bar, 50 μm. Mean values ± SD (bars) are shown. *p < 0.05, and **p < 0.01 compared to control
Fig. 8
Fig. 8
Molecular Docking. a PH shows 3 BS of protein with 3H-bond, Sor shows binding near to active site (with 2-H bond). b N-Sh2, C-Sh2, and PTP domains of Shp1 protein (2B3O) structure. The four binding sites (BS) identified from Swiss dock models are marked in the imaged along with the predicted binding affinities for Sor (SFB) and PH (PHL). c Docking of PH in ATP binding site of AKT1 protein (PDB id: 4EJN). PH and 0R4 are in rosy brown and sea green respectively (Left)
Fig. 9
Fig. 9
Graphical abstract for the proposed mechanism of action of PH in HCC

References

    1. Llovet JM, Di Bisceglie AM, Bruix J, Kramer BS, Lencioni R, Zhu AX, et al. Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst. 2008;100:698–711. doi: 10.1093/jnci/djn134.
    1. Villanueva A, Llovet JM. Targeted therapies for hepatocellular carcinoma. Gastroenterology. 2011;140:1410–1426. doi: 10.1053/j.gastro.2011.03.006.
    1. Niu L, Liu L, Yang S, Ren J, Lai PBS, Chen GC. New insights into sorafenib resistance in hepatocellular carcinoma: Responsible mechanisms and promising strategies. Biochim Biophys Acta. 2017;1868:564–570.
    1. Tai WT, Cheng AL, Shiau CW, Huang HP, Huang JW, Chen PJ, et al. Signal transducer and activator of transcription 3 is a major kinase-independent target of sorafenib in hepatocellular carcinoma. J Hepatol. 2011;55:1041–1048. doi: 10.1016/j.jhep.2011.01.047.
    1. He G, Karin M. NF-kappaB and STAT3 – key players in liver inflammation and cancer. Cell Res. 2011;21:159–168. doi: 10.1038/cr.2010.183.
    1. Brantley EC, Nabors LB, Gillespie GY, Choi YH, Palmer CA, Harrison K, et al. Loss of protein inhibitors of activated STAT-3 expression in glioblastoma multiforme tumors: implications for STAT-3 activation and gene expression. Clin Cancer Res. 2008;14:4694–4704. doi: 10.1158/1078-0432.CCR-08-0618.
    1. Xu E, Charbonneau A, Rolland Y, Xu E, Charbonneau A, Rolland Y, Bellmann K, Pao L, Siminovitch KA, et al. Hepatocyte-specific Ptpn6 deletion protects from obesity-linked hepatic insulin resistance. Diabetes. 2012;61:1949–1958. doi: 10.2337/db11-1502.
    1. Xu E, Forest MP, Schwab M, Avramoglu RK, St-Amand E, Caron AZ, et al. Hepatocyte-specific Ptpn6 deletion promotes hepatic lipid accretion, but reduces NAFLD in diet-induced obesity: potential role of PPARgamma. Hepatology. 2014;59:1803–1815. doi: 10.1002/hep.26957.
    1. Ostman A, Hellberg C, Bohmer FD. Protein-tyrosine phosphatases and cancer. Nat Rev Cancer. 2006;6:307–320. doi: 10.1038/nrc1837.
    1. David M, Chen HE, Goelz S, Larner AC, Neel BG. Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol Cell Biol. 1995;15:7050–7058. doi: 10.1128/MCB.15.12.7050.
    1. Tai WT, Cheng AL, Shiau CW, Liu CY, Ko CH, Lin MW, et al. Dovitinib induces apoptosis and overcomes sorafenib resistance in hepatocellular carcinoma through SHP-1-mediated inhibition of STAT3. Mol Cancer Ther. 2012;11:452–463. doi: 10.1158/1535-7163.MCT-11-0412.
    1. Thangaraju M, Sharma K, Liu D, Shen SH, Srikant CB. Interdependent regulation of intracellular acidification and SHP-1 in apoptosis. Cancer Res. 1999;59:1649–1654.
    1. Lopez F, Estève JP, Buscail L, Delesque N, Saint-Laurent N, Théveniau M, Nahmias C, et al. The tyrosine phosphatase SHP-1 associates with the sst2 somatostatin receptor and is an essential component of sst2-mediated inhibitory growth signaling. J Biol Chem. 1997;272:24448–24454. doi: 10.1074/jbc.272.39.24448.
    1. Tai WT, Shiau CW, Chen PJ, Chu PY, Huang HP, Liu CY, et al. Discovery of novel Src homology region 2 domain-containing phosphatase 1 agonists from sorafenib for the treatment of hepatocellular carcinoma. Hepatology. 2014;59:190–201. doi: 10.1002/hep.26640.
    1. Han T, Xiang DM, Sun W, Liu N, Sun HL, Wen W, et al. PTPN11/Shp2 overexpression enhances liver cancer progression and predicts poor prognosis of patients. J Hepatol. 2015;63:651–660. doi: 10.1016/j.jhep.2015.03.036.
    1. Page BD, Ball DP, Gunning PT. Signal transducer and activator of transcription 3 inhibitors: a patent review. Expert Opin Ther Pat. 2011;21:65–83. doi: 10.1517/13543776.2011.539205.
    1. Yue P, Turkson J. Targeting STAT3 in cancer: how successful are we? Expert Opin Investig Drugs. 2009;18:45–56. doi: 10.1517/13543780802565791.
    1. Wu CH, Ho YS, Tsai CY, Wang YJ, Tseng H, Wei PL, et al. In vitro and in vivo study of phloretin-induced apoptosis in human liver cancer cells involving inhibition of type II glucose transporter. Int J Cancer. 2009;124:2210–2219. doi: 10.1002/ijc.24189.
    1. Pawłowska-Góral K, Kimsa-Dudek M, Synowiec-Wojtarowicz A, Orchel J, Glinka M, Gawron S. Effect of static magnetic fields and phloretin on antioxidant defense system of human fibroblasts. Environ Sci Pollut Res Int. 2016;23:14989–14996. doi: 10.1007/s11356-016-6653-x.
    1. de Oliveira MR. Phloretin-induced cytoprotective effects on mammalian cells: A mechanistic view and future directions. Biofactors. 2016;42:13–40.
    1. Natanzi ARE, Mahmoudian S, Bagher Minaeie B, Sabzevari O. Hepatoprotective activity of phloretin and hydroxychalcones against Acetaminophen Induced hepatotoxicity in mice. Iranian Jof pharmaceutical Sci. 2011;7:89.
    1. Xintaropoulou C, Ward C, Wise A, Marston H, Turnbull A, Langdon SP, et al. A comparative analysis of inhibitors of the glycolysis pathway in breast and ovarian cancer cell line models. Oncotarget. 2015;22(6):25677–26595.
    1. Min J, Huang K, Tang H, Ding X, Qi C, Qin X, et al. Phloretin induces apoptosis of non-small cell lung carcinoma A549 cells via JNK1/2 and p38 MAPK pathways. Oncol Rep. 2015;34:2871–2879. doi: 10.3892/or.2015.4325.
    1. Abkin SV, Ostroumova OS, Komarova EY, Meshalkina DA, Shevtsov MA, Margulis BA, et al. Phloretin increases the anti-tumor efficacy of intratumorally delivered heat-shock protein 70 kDa (HSP70) in a murine model of melanoma. Cancer Immunol Immunother. 2016;65:83–92. doi: 10.1007/s00262-015-1778-1.
    1. Zuo AR, Yu YY, Shu QL, Zheng LX, Wang XM, Peng SH, et al. Hepatoprotective effects and antioxidant, antityrosinase activities of phloretin and phloretin isonicotinyl hydrazine. J Chin Med Assoc. 2014;77:290–301. doi: 10.1016/j.jcma.2014.01.007.
    1. Zhai B, Hu FL, Jiang X, Xu J, Zhao D, Liu B, et al. Inhibition of Akt reverses the acquired resistance to sorafenib by switching protective autophagy to autophagic cell death in hepatocellular carcinoma. Mol Cancer Ther. 2014;13:1589–1598. doi: 10.1158/1535-7163.MCT-13-1043.
    1. Chen KF, Chen HL, Tai WT, Feng WC, Hsu CH, Chen PJ, et al. Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. J Pharmacol Exp Ther. 2011;337:155–161. doi: 10.1124/jpet.110.175786.
    1. Ye QH, Zhu WW, Zhang JB, Qin Y, Lu M, Lin GL, et al. GOLM1 modulates EGFR/RTK cell-surface recycling to drive hepatocellular carcinoma metastasis. Cancer Cell. 2016;30:444–458. doi: 10.1016/j.ccell.2016.07.017.
    1. Han P, Li H, Jiang X, Zhai B, Tan G, Zhao D, et al. Dual inhibition of Akt and c-Met as a second-line therapy following acquired resistance to sorafenib in hepatocellular carcinoma cells. Mol Oncol. 2017;11:320–334. doi: 10.1002/1878-0261.12039.
    1. Singh SS, Mehedint DC, Ford OH, Jeyaraj DA, Pop EA, Maygarden SJ, et al. Comparison of ACINUS, caspase-3, and TUNEL as apoptotic markers in determination of tumor growth rates of clinically localized prostate cancer using image analysis. Prostate. 2009;69:1603–1610. doi: 10.1002/pros.21019.
    1. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010;30(31):455–461.
    1. Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ. Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc. 2016;11:905–919. doi: 10.1038/nprot.2016.051.
    1. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity. J Comput Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256.
    1. Hopkins AL, Keserü GM, Leeson PD, Rees DC, Reynolds CH. The role of ligand efficiency metrics in drug discovery. Nat Rev Drug Discov. 2014;13:105–121. doi: 10.1038/nrd4163.
    1. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084.
    1. Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1996;8:127–134. doi: 10.1093/protein/8.2.127.
    1. Fan LC, Teng HW, Shiau CW, Tai WT, Hung MH, Yang SH, et al. Pharmacological Targeting SHP-1-STAT3 Signaling Is a Promising Therapeutic Approach for the Treatment of Colorectal Cancer. Neoplasia. 2015;17:687–696. doi: 10.1016/j.neo.2015.08.007.
    1. Looyenga BD, Hutchings D, Cherni I, Kingsley C, Weiss GJ, Mackeigan JP. STAT3 Is Activated by JAK2 Independent of Key Oncogenic Driver Mutations in Non-Small Cell Lung Carcinoma. PLoS One. 2012;7:e30820. doi: 10.1371/journal.pone.0030820.
    1. Bielenberg DR, Zettr BR. The Contribution of Angiogenesis to the Process of Metastasis. Cancer J. 2015;21:267–273. doi: 10.1097/PPO.0000000000000138.
    1. Huang TT, Su JC, Liu CY, Shiau CW, Chen KF. Alteration of SHP-1/p-STAT3 Signaling: A Potential Target for Anticancer Therapy. Int J Mol Sci. 2017;8:18.
    1. Zhang J, Somani AK, Siminovitch KA. Roles of the SHP-1 tyrosine phosphatase in the negative regulation of cell signalling. Semin Immunol. 2000;12:361–378. doi: 10.1006/smim.2000.0223.
    1. Zhai B, Sun XY. Mechanisms of resistance to sorafenib and the corresponding strategies in hepatocellular carcinoma. World J Hepatol. 2013;275:345–352. doi: 10.4254/wjh.v5.i7.345.
    1. Zhu YJ, Zheng B, Wang HY, Chen L. New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin. 2017;38:614–622. doi: 10.1038/aps.2017.5.

Source: PubMed

3
購読する