A review of creatine supplementation in age-related diseases: more than a supplement for athletes

Rachel N Smith, Amruta S Agharkar, Eric B Gonzales, Rachel N Smith, Amruta S Agharkar, Eric B Gonzales

Abstract

Creatine is an endogenous compound synthesized from arginine, glycine and methionine. This dietary supplement can be acquired from food sources such as meat and fish, along with athlete supplement powders. Since the majority of creatine is stored in skeletal muscle, dietary creatine supplementation has traditionally been important for athletes and bodybuilders to increase the power, strength, and mass of the skeletal muscle. However, new uses for creatine have emerged suggesting that it may be important in preventing or delaying the onset of neurodegenerative diseases associated with aging. On average, 30% of muscle mass is lost by age 80, while muscular weakness remains a vital cause for loss of independence in the elderly population. In light of these new roles of creatine, the dietary supplement's usage has been studied to determine its efficacy in treating congestive heart failure, gyrate atrophy, insulin insensitivity, cancer, and high cholesterol. In relation to the brain, creatine has been shown to have antioxidant properties, reduce mental fatigue, protect the brain from neurotoxicity, and improve facets/components of neurological disorders like depression and bipolar disorder. The combination of these benefits has made creatine a leading candidate in the fight against age-related diseases, such as Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, long-term memory impairments associated with the progression of Alzheimer's disease, and stroke. In this review, we explore the normal mechanisms by which creatine is produced and its necessary physiology, while paying special attention to the importance of creatine supplementation in improving diseases and disorders associated with brain aging and outlining the clinical trials involving creatine to treat these diseases.

Keywords: Creatine; age-related diseases; central nervous system.

Conflict of interest statement

Competing interests: No competing interests were disclosed.

References

    1. Zeisel SH: Regulation of “nutraceuticals”. Science. 1999;285(5435):1853–1855. 10.1126/science.285.5435.1853
    1. Schnirring L: Creatine supplements face scrutiny: Will users pay later? Phys Sports Med. 1998;26:15–23.
    1. Bloch K, Schoenheimer R: The Biological Precursors Of Creatine. J Biol Chem. 1941;138(1):167–194
    1. Tarnopolsky MA, Beal MF: Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Ann Neurol. 2001;49(5):561–574. 10.1002/ana.1028
    1. Adhihetty PJ, Beal MF: Creatine and its potential therapeutic value for targeting cellular energy impairment in neurodegenerative diseases. Neuromolecular Med. 2008;10(4):275–290. 10.1007/s12017-008-8053-y
    1. Christie DL: Functional insights into the creatine transporter. In: Gajja S. Salomons, M Wyss, ed. Creatine and creatine kinase in health and disease Netherlands: Springer;2007; 46:99–118 10.1007/978-1-4020-6486-9_6
    1. Lowe MT, Faull RL, Christie DL, et al. : The distribution of the creatine transporter throughout the human brain reveals a spectrum of creatine transporter immunoreactivity. J Comp Neurol. 2014. 10.1002/cne.23667
    1. Walker JB: Creatine: biosynthesis, regulation, and function. Adv Enzymol Relat Areas Mol Biol. 1979;50:177–242. 10.1002/9780470122952.ch4
    1. Adhihetty PJ, Irrcher I, Joseph AM, et al. : Plasticity of skeletal muscle mitochondria in response to contractile activity. Exp Physiol. 2003;88(1):99–107. 10.1113/eph8802505
    1. Wallimann T, Wyss M, Brdiczka D, et al. : Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J. 1992;281(Pt 1):21–40.
    1. Peng TI, Greenamyre JT: Privileged access to mitochondria of calcium influx through N-methyl-D-aspartate receptors. Mol Pharmacol. 1998;53(6):974–980.
    1. Green DR, Reed JC: Mitochondria and apoptosis. Science. 1998;281(5381):1309–1312. 10.1126/science.281.5381.1309
    1. Steeghs K, Benders A, Oerlemans F, et al. : Altered Ca2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell. 1997;89(1):93–103. 10.1016/S0092-8674(00)80186-5
    1. Wyss M, Braissant O, Pischel I, et al. : Creatine and creatine kinase in health and disease--a bright future ahead? Subcell Biochem. 2007;46:309–334. 10.1007/978-1-4020-6486-9_16
    1. Xu CJ, Klunk WE, Kanfer JN, et al. : Phosphocreatine-dependent glutamate uptake by synaptic vesicles. A comparison with atp-dependent glutamate uptake. J Biol Chem. 1996;271(23):13435–13440. 10.1074/jbc.271.23.13435
    1. Lawler JM, Barnes WS, Wu G, et al. : Direct antioxidant properties of creatine. Biochem Biophys Res Commun. 2002;290(1):47–52. 10.1006/bbrc.2001.6164
    1. Dedeoglu A, Kubilus JK, Yang L, et al. : Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntington’s disease transgenic mice. J Neurochem. 2003;85(6):1359–1367. 10.1046/j.1471-4159.2003.01706.x
    1. Araujo MB, Moura LP, Junior RC, et al. : Creatine supplementation and oxidative stress in rat liver. J Int Soc Sports Nutr. 2013;10(1):54. 10.1186/1550-2783-10-54
    1. de Andrade RB, Gemelli T, Rojas DB, et al. : Creatine and Pyruvate Prevent the Alterations Caused by Tyrosine on Parameters of Oxidative Stress and Enzyme Activities of Phosphoryltransfer Network in Cerebral Cortex of Wistar Rats. Mol Neurobiol. 2014. 10.1007/s12035-014-8791-9
    1. Stefani GP, Nunes RB, Dornelles AZ, et al. : Effects of creatine supplementation associated with resistance training on oxidative stress in different tissues of rats. J Int Soc Sports Nutr. 2014;11(1):11. 10.1186/1550-2783-11-11
    1. Chevreul ME: Sur une nouvelle substance contenue dans la chair de boeuf. Paris Mus Hist Nat N Ann. 1832;I:306–316.
    1. Wyss M, Kaddurah-Daouk R: Creatine and creatinine metabolism. Physiol Rev. 2000;80(3):1107–1213.
    1. Harris RC, Soderlund K, Hultman E: Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond). 1992;83(3):367–374.
    1. Green AL, Simpson EJ, Littlewood JJ, et al. : Carbohydrate ingestion augments creatine retention during creatine feeding in humans. Acta Physiol Scand. 1996;158(2):195–202. 10.1046/j.1365-201X.1996.528300000.x
    1. Steenge GR, Simpson EJ, Greenhaff PL: Protein- and carbohydrate-induced augmentation of whole body creatine retention in humans. J Appl Physiol (1985). 2000;89(3):1165–1171.
    1. Burke DG, Chilibeck Pd, Parise GA, et al. : The effect of alpha lipoic acid supplementation on resting muscle creatine during acute creatine loading. FASEB J. 2001;15(5):A814.
    1. Greenwood M, Kreider RB, Almada AL, et al. : D-pinitol augments whole body creatine retention in man. J Exercise Physiol Online. 2001;4(4):41–47
    1. Persky AM, Brazeau GA: Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacol Rev. 2001;53(2):161–176.
    1. Izquierdo M, Ibanez J, Gonzalez-Badillo JJ, et al. : Effects of creatine supplementation on muscle power, endurance, and sprint performance. Med Sci Sports Exerc. 2002;34(2):332–343.
    1. Mujika I, Padilla S, Ibanez J, et al. : Creatine supplementation and sprint performance in soccer players. Med Sci Sports Exerc. 2000;32(2):518–525. 10.1097/00005768-200002000-00039
    1. Becque MD, Lochmann JD, Melrose DR: Effects of oral creatine supplementation on muscular strength and body composition. Med Sci Sports Exerc. 2000;32(3):654–658. 10.1097/00005768-200003000-00016
    1. Kreider RB, Ferreira M, Wilson M, et al. : Effects of creatine supplementation on body composition, strength, and sprint performance. Med Sci Sports Exerc. 1998;30(1):73–82. 10.1097/00005768-199801000-00011
    1. Vandenberghe K, Goris M, Van Hecke P, et al. : Long-term creatine intake is beneficial to muscle performance during resistance training. J Appl Physiol (1985). 1997;83(6):2055–2063.
    1. Volek JS, Boetes M, Bush JA, et al. : Response of testosterone and cortisol concentrations to high-intensity resistance exercise following creatine supplementation. J Strength Conditioning Res. 1997;11(3).
    1. Jacobs I, Bleue S, Goodman J: Creatine ingestion increases anaerobic capacity and maximum accumulated oxygen deficit. Can J Appl Physiol. 1997;22(3):231–243. 10.1139/h97-015
    1. Dawson B, Cutler M, Moody A, et al. : Effects of oral creatine loading on single and repeated maximal short sprints. Aust J Sci Med Sport. 1995;27(3):56–61.
    1. Meir R: Practical application of oral creatine supplementation in professional rugby league: A case study. Australian Strength and Conditioning Coach. 1995;3(3):6–10
    1. Antonio J, Ciccone V: The effects of pre versus post workout supplementation of creatine monohydrate on body composition and strength. J Int Soc Sports Nutr. 2013;10:36. 10.1186/1550-2783-10-36
    1. de Salles Painelli V, Alves VT, Ugrinowitsch C, et al. : Creatine supplementation prevents acute strength loss induced by concurrent exercise. Eur J Appl Physiol. 2014;114(8):1749–1755. 10.1007/s00421-014-2903-0
    1. Camic CL, Housh TJ, Zuniga JM, et al. : The effects of polyethylene glycosylated creatine supplementation on anaerobic performance measures and body composition. J Strength Cond Res. 2014;28(3):825–833. 10.1519/JSC.0b013e3182a361a5
    1. Mesa JL, Ruiz JR, Gonzalez-Gross MM, et al. : Oral creatine supplementation and skeletal muscle metabolism in physical exercise. Sports Med. 2002;32(14):903–944. 10.2165/00007256-200232140-00003
    1. Persky AM, Muller M, Derendorf H, et al. : Single- and multiple-dose pharmacokinetics of oral creatine. J Clin Pharmacol. 2003;43(1):29–37. 10.1177/0091270002239703
    1. Hall M, Trojian TH: Creatine supplementation. Curr Sports Med Rep. 2013;12(4):240–244. 10.1249/JSR.0b013e31829cdff2
    1. Anderson O: Creatine propels british athletes to olympic gold medals: Is creatine the one true ergogenic aid? Running Research News. 1993;9:1–5.
    1. Greenhaff PL, Casey A, Short AH, et al. : Influence of oral creatine supplementation of muscle torque during repeated bouts of maximal voluntary exercise in man. Clin Sci (Lond). 1993;84(5):565–571.
    1. Wyss M, Schulze A: Health implications of creatine: can oral creatine supplementation protect against neurological and atherosclerotic disease? Neuroscience. 2002;112(2):243–260. 10.1016/S0306-4522(02)00088-X
    1. Genc G, Okuyucu A, Meydan BC, et al. : Effect of free creatine therapy on cisplatin-induced renal damage. Ren Fail. 2014;36(7):1108–1113. 10.3109/0886022X.2014.917576
    1. Dickinson H, Ellery S, Ireland Z, et al. : Creatine supplementation during pregnancy: summary of experimental studies suggesting a treatment to improve fetal and neonatal morbidity and reduce mortality in high-risk human pregnancy. BMC Pregnancy Childbirth. 2014;14:150. 10.1186/1471-2393-14-150
    1. Leader A, Amital D, Rubinow A, et al. : An open-label study adding creatine monohydrate to ongoing medical regimens in patients with the fibromyalgia syndrome. Ann N Y Acad Sci. 2009;1173:829–836. 10.1111/j.1749-6632.2009.04811.x
    1. Kreider RB: Effects of creatine supplementation on performance and training adaptations. Mol Cell Biochem. 2003;244(1–2):89–94. 10.1007/978-1-4615-0247-0_13.
    1. Candow DG, Chilibeck PD, Forbes SC: Creatine supplementation and aging musculoskeletal health. Endocrine. 2014;45(3):354–361. 10.1007/s12020-013-0070-4
    1. Lang AE, Lozano AM: Parkinson’s disease. First of two parts. N Engl J Med. 1998;339(15):1044–1053. 10.1056/NEJM199810083391506
    1. Beal MF: Mitochondria, free radicals, and neurodegeneration. Curr Opin Neurobiol. 1996;6(5):661–666. 10.1016/S0959-4388(96)80100-0
    1. Thomas B, Beal MF: Parkinson’s disease. Hum Mol Genet. 2007;16(R2):R183–94 10.1093/hmg/ddm159
    1. Matthews RT, Ferrante RJ, Klivenyi P, et al. : Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol. 1999;157(1):142–149. 10.1006/exnr.1999.7049
    1. NINDS NET-PD Investigators. A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology. 2006;66(5):664–671. 10.1212/01.wnl.0000201252.57661.e1
    1. Hass CJ, Collins MA, Juncos JL: Resistance training with creatine monohydrate improves upper-body strength in patients with Parkinson disease: a randomized trial. Neurorehabil Neural Repair. 2007;21(2):107–115. 10.1177/1545968306293449
    1. Statement on the termination of NET-PD LS-1 study. NET-PD NIH Exploratory Trials in Parkinson’s Disease Web site.2013.
    1. Walker FO: Huntington’s disease. Lancet. 2007;369(9557):218–228. 10.1016/S0140-6736(07)60111-1
    1. Strong TV, Tagle DA, Valdes JM, et al. : Widespread expression of the human and rat Huntington’s disease gene in brain and nonneural tissues. Nat Genet. 1993;5(3):259–265. 10.1038/ng1193-259
    1. Landwehrmeyer GB, McNeil SM, Dure LS, 4th, et al. : Huntington’s disease gene: regional and cellular expression in brain of normal and affected individuals. Ann Neurol. 1995;37(2):218–230. 10.1002/ana.410370213
    1. Sharp AH, Loev SJ, Schilling G, et al. : Widespread expression of Huntington’s disease gene (IT15) protein product. Neuron. 1995;14(5):1065–1074. 10.1016/0896-6273(95)90345-3
    1. Ferrante RJ, Gutekunst CA, Persichetti F, et al. : Heterogeneous topographic and cellular distribution of huntingtin expression in the normal human neostriatum. J Neurosci. 1997;17(9):3052–3063.
    1. Ryu H, Ferrante RJ: Emerging chemotherapeutic strategies for Huntington’s disease. Expert Opin Emerg Drugs. 2005;10(2):345–363. 10.1517/14728214.10.2.345
    1. Koroshetz WJ, Jenkins BG, Rosen BR, et al. : Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Ann Neurol. 1997;41(2):160–165. 10.1002/ana.410410206
    1. Wallimann T, Hemmer W: Creatine kinase in non-muscle tissues and cells. Mol Cell Biochem. 1994;133–134:193–220. 10.1007/BF01267955
    1. O’Gorman E, Beutner G, Dolder M, et al. : The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Lett. 1997;414(2):253–257. 10.1016/S0014-5793(97)01045-4
    1. Matthews RT, Yang L, Jenkins BG, et al. : Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. J Neurosci. 1998;18(1):156–163.
    1. Ferrante RJ, Andreassen OA, Jenkins BG, et al. : Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. J Neurosci. 2000;20(12):4389–4397.
    1. Brouillet E, Jenkins BG, Hyman BT, et al. : Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. J Neurochem. 1993;60(1):356–359. 10.1111/j.1471-4159.1993.tb05859.x
    1. Beal MF, Brouillet E, Jenkins BG, et al. : Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci. 1993;13(10):4181–4192.
    1. Schulz JB, Beal MF: Neuroprotective effects of free radical scavengers and energy repletion in animal models of neurodegenerative disease. Ann N Y Acad Sci. 1995;765:100–10; discussion 116–8. 10.1111/j.1749-6632.1995.tb16565.x
    1. Browne SE, Ferrante RJ, Beal MF: Oxidative stress in Huntington’s disease. Brain Pathol. 1999;9(1):147–163. 10.1111/j.1750-3639.1999.tb00216.x
    1. Grunewald T, Beal MF: Bioenergetics in Huntington’s disease. Ann N Y Acad Sci. 1999;893:203–213. 10.1111/j.1749-6632.1999.tb07827.x
    1. Andreassen OA, Dedeoglu A, Ferrante RJ, et al. : Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington’s disease. Neurobiol Dis. 2001;8(3):479–491. 10.1006/nbdi.2001.0406
    1. Hersch SM, Gevorkian S, Marder K, et al. : Creatine in huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2’dG. Neurology. 2006;66(2):250–252. 10.1212/01.wnl.0000194318.74946.b6
    1. Kim J, Amante DJ, Moody JP, et al. : Reduced creatine kinase as a central and peripheral biomarker in Huntington’s disease. Biochim Biophys Acta. 2010;1802(7–8):673–681. 10.1016/j.bbadis.2010.05.001
    1. Walton JN: Brain’s diseases of the nervous system. 10th ed. New York: Oxford University Press,1993:443–449
    1. Dementia and motoneurone disease. Lancet. 1990;335(8700):1250–1252 10.1016/0140-6736(90)91308-W
    1. Hervias I, Beal MF, Manfredi G: Mitochondrial dysfunction and amyotrophic lateral sclerosis. Muscle Nerve. 2006;33(5):598–608. 10.1002/mus.20489
    1. Dugdale DC, Hoch DB, Zieve D: Amyotrophic lateral sclerosis. A D A M Medical Encyclopedia. 2010.
    1. Zoccolella S, Beghi E, Palagano G, et al. : Riluzole and amyotrophic lateral sclerosis survival: a population-based study in southern italy. Eur J Neurol. 2007;14(3):262–268. 10.1111/j.1468-1331.2006.01575.x
    1. Phukan J, Pender NP, Hardiman O: Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol. 2007;6(11):994–1003. 10.1016/S1474-4422(07)70265-X
    1. Strong M, Rosenfeld J: Amyotrophic lateral sclerosis: a review of current concepts. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003;4(3):136–143. 10.1080/14660820310011250
    1. Siklos L, Engelhardt J, Harati Y, et al. : Ultrastructural evidence for altered calcium in motor nerve terminals in amyotropic lateral sclerosis. Ann Neurol. 1996;39(2):203–216. 10.1002/ana.410390210
    1. Carri MT, Ferri A, Battistoni A, et al. : Expression of a Cu,Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis induces mitochondrial alteration and increase of cytosolic Ca2+ concentration in transfected neuroblastoma SH-SY5Y cells. FEBS Lett. 1997;414(2):365–368. 10.1016/S0014-5793(97)01051-X
    1. Kasarskis EJ, Berryman S, Vanderleest JG, et al. : Nutritional status of patients with amyotrophic lateral sclerosis: relation to the proximity of death. Am J Clin Nutr. 1996;63(1):130–137.
    1. Reaume AG, Elliott JL, Hoffman EK, et al. : Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet. 1996;13(1):43–47. 10.1038/ng0596-43
    1. Bruijn LI, Houseweart MK, Kato S, et al. : Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science. 1998;281(5384):1851–1854. 10.1126/science.281.5384.1851
    1. Klivenyi P, Ferrante RJ, Matthews RT, et al. : Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med. 1999;5(3):347–350. 10.1038/6568
    1. Shefner JM, Cudkowicz ME, Schoenfeld D, et al. : A clinical trial of creatine in ALS. Neurology. 2004;63(9):1656–1661. 10.1212/01.WNL.0000142992.81995.F0
    1. Groeneveld GJ, Veldink JH, van der Tweel I, et al. : A randomized sequential trial of creatine in amyotrophic lateral sclerosis. Ann Neurol. 2003;53(4):437–445. 10.1002/ana.10554
    1. Hedden T, Gabrieli JD: Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci. 2004;5(2):87–96. 10.1038/nrn1323
    1. Nilsson LG: Memory function in normal aging. Acta Neurol Scand Suppl. 2003;179:7–13.
    1. Sappey-Marinier D, Calabrese G, Fein G, et al. : Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab. 1992;12(4):584–592. 10.1038/jcbfm.1992.82
    1. Rango M, Castelli A, Scarlato G: Energetics of 3.5 s neural activation in humans: a 31P MR spectroscopy study. Magn Reson Med. 1997;38(6):878–883.
    1. Rae C, Digney AL, McEwan SR, et al. : Oral creatine monohydrate supplementation improves brain performance: a double-blind, placebo-controlled, cross-over trial. Proc Biol Sci. 2003;270(1529):2147–2150. 10.1098/rspb.2003.2492
    1. Lyoo IK, Kong SW, Sung SM, et al. : Multinuclear magnetic resonance spectroscopy of high-energy phosphate metabolites in human brain following oral supplementation of creatine-monohydrate. Psychiatry Res. 2003;123(2):87–100. 10.1016/S0925-4927(03)00046-5
    1. McMorris T, Mielcarz G, Harris RC, et al. : Creatine supplementation and cognitive performance in elderly individuals. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2007;14(5):517–528. 10.1080/13825580600788100
    1. Tiraboschi P, Hansen LA, Thal LJ, et al. : The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology. 2004;62(11):1984–1989. 10.1212/01.WNL.0000129697.01779.0A
    1. Pettegrew JW, Panchalingam K, Klunk WE, et al. : Alterations of cerebral metabolism in probable Alzheimer’s disease: a preliminary study. Neurobiol Aging. 1994;15(1):117–132. 10.1016/0197-4580(94)90152-X
    1. Shonk T, Ross BD: Role of increased cerebral myo-inositol in the dementia of Down syndrome. Magn Reson Med. 1995;33(6):858–861.
    1. Huang W, Alexander GE, Daly EM, et al. : High brain myo-inositol levels in the predementia phase of Alzheimer’s disease in adults with Down’s syndrome: a 1H MRS study. Am J Psychiatry. 1999;156(12):1879–1886.
    1. Brewer GJ, Wallimann TW: Protective effect of the energy precursor creatine against toxicity of glutamate and beta-amyloid in rat hippocampal neurons. J Neurochem. 2000;74(5):1968–1978. 10.1046/j.1471-4159.2000.0741968.x
    1. Castegna A, Aksenov M, Thongboonkerd V, et al. : Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J Neurochem. 2002;82(6):1524–1532. 10.1046/j.1471-4159.2002.01103.x
    1. David S, Shoemaker M, Haley BE: Abnormal properties of creatine kinase in Alzheimer’s disease brain: correlation of reduced enzyme activity and active site photolabeling with aberrant cytosol-membrane partitioning. Brain Res Mol Brain Res. 1998;54(2):276–287. 10.1016/S0169-328X(97)00343-4
    1. Gallant M, Rak M, Szeghalmi A, et al. : Focally elevated creatine detected in amyloid precursor protein (APP) transgenic mice and Alzheimer disease brain tissue. J Biol Chem. 2006;281(1):5–8. 10.1074/jbc.C500244200
    1. Tachikawa M, Fukaya M, Terasaki T, et al. : Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis. Eur J Neurosci. 2004;20(1):144–160. 10.1111/j.1460-9568.2004.03478.x
    1. Braissant O, Henry H, Villard AM, et al. : Creatine synthesis and transport during rat embryogenesis: spatiotemporal expression of AGAT, GAMT and CT1. BMC Dev Biol. 2005;5:9. 10.1186/1471-213X-5-9
    1. Straumann N, Wind A, Leuenberger T, et al. : Effects of N-linked glycosylation on the creatine transporter. Biochem J. 2006;393(Pt 2):459–469. 10.1042/BJ20050857
    1. Stachowiak O, Dolder M, Wallimann T, et al. : Mitochondrial creatine kinase is a prime target of peroxynitrite-induced modification and inactivation. J Biol Chem. 1998;273(27):16694–16699. 10.1074/jbc.273.27.16694
    1. Stroke--1989. recommendations on stroke prevention, diagnosis, and therapy. report of the WHO task force on stroke and other cerebrovascular disorders. Stroke. 1989;20(10):1407–1431. 10.1161/01.STR.20.10.1407
    1. World health organization: the top 10 causes of death.2014.
    1. Hickey JV: The clinical practice of neurological and neurosurgical nursing. 5th ed. Philadelphia: Lippincott, Williams & Wilkins,2003.
    1. Ingall T: Stroke--incidence, mortality, morbidity and risk. J Insur Med. 2004;36(2):143–152.
    1. Warner DS, Sheng H, Batinic-Haberle I: Oxidants, antioxidants and the ischemic brain. J Exp Biol. 2004;207(Pt 18):3221–3231. 10.1242/jeb.01022
    1. Wardlaw JM, Murray V, Berge E, et al. : Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev. 2009; (4):CD000213. 10.1002/14651858.CD000213.pub2
    1. Richard MJ, Saleh TM, El Bahh B, et al. : A novel method for inducing focal ischemia in vitro. J Neurosci Methods. 2010;190(1):20–27. 10.1016/j.jneumeth.2010.04.017
    1. Ye R, Li N, Han J, et al. : Neuroprotective effects of ginsenoside Rd against oxygen-glucose deprivation in cultured hippocampal neurons. Neurosci Res. 2009;64(3):306–310. 10.1016/j.neures.2009.03.016
    1. Menzies SA, Hoff JT, Betz AL: Middle cerebral artery occlusion in rats: a neurological and pathological evaluation of a reproducible model. Neurosurgery. 1992;31(1):100–6; discussion 106–7.
    1. Miyake K, Takeo S, Kaijihara H: Sustained decrease in brain regional blood flow after microsphere embolism in rats. Stroke. 1993;24(3):415–420. 10.1161/01.STR.24.3.415
    1. Bacigaluppi M, Comi G, Hermann DM: Animal models of ischemic stroke. Part two: modeling cerebral ischemia. Open Neurol J. 2010;4:34–38. 10.2174/1874205X01004020034
    1. Arsava EM, Gurer G, Gursoy-Ozdemir Y, et al. : A new model of transient focal cerebral ischemia for inducing selective neuronal necrosis. Brain Res Bull. 2009;78(4–5):226–231. 10.1016/j.brainresbull.2008.11.005
    1. Gideon P, Henriksen O, Sperling B, et al. : Early time course of N-acetylaspartate, creatine and phosphocreatine, and compounds containing choline in the brain after acute stroke. A proton magnetic resonance spectroscopy study. Stroke. 1992;23(11):1566–1572. 10.1161/01.STR.23.11.1566
    1. Carter AJ, Muller RE, Pschorn U, et al. : Preincubation with creatine enhances levels of creatine phosphate and prevents anoxic damage in rat hippocampal slices. J Neurochem. 1995;64(6):2691–2699. 10.1046/j.1471-4159.1995.64062691.x
    1. Balestrino M, Rebaudo R, Lunardi G: Exogenous creatine delays anoxic depolarization and protects from hypoxic damage: dose-effect relationship. Brain Res. 1999;816(1):124–130. 10.1016/S0006-8993(98)01131-7
    1. Sestili P, Martinelli C, Bravi G, et al. : Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radic Biol Med. 2006;40(5):837–849. 10.1016/j.freeradbiomed.2005.10.035
    1. Wilken B, Ramirez JM, Probst I, et al. : Anoxic ATP depletion in neonatal mice brainstem is prevented by creatine supplementation. Arch Dis Child Fetal Neonatal Ed. 2000;82(3):F224–7. 10.1136/fn.82.3.F224
    1. Otellin VA, Korzhevskii DE, Kostkin VB, et al. : The neuroprotective effect of creatine in rats with cerebral ischemia. Dokl Biol Sci. 2003;390:197–199. 10.1023/A:1024432911738
    1. Lensman M, Korzhevskii DE, Mourovets VO, et al. : Intracerebroventricular administration of creatine protects against damage by global cerebral ischemia in rat. Brain Res. 2006;1114(1):187–194. 10.1016/j.brainres.2006.06.103
    1. Adcock KH, Nedelcu J, Loenneker T, et al. : Neuroprotection of creatine supplementation in neonatal rats with transient cerebral hypoxia-ischemia. Dev Neurosci. 2002;24(5):382–388. 10.1159/000069043
    1. Zhu S, Li M, Figueroa BE, et al. : Prophylactic creatine administration mediates neuroprotection in cerebral ischemia in mice. J Neurosci. 2004;24(26):5909–5912. 10.1523/JNEUROSCI.1278-04.2004
    1. Perasso L, Spallarossa P, Gandolfo C, et al. : Therapeutic use of creatine in brain or heart ischemia: available data and future perspectives. Med Res Rev. 2013;33(2):336–363. 10.1002/med.20255

Source: PubMed

3
購読する