Atenolol's Inferior Ability to Reduce Central vs Peripheral Blood Pressure Can Be Explained by the Combination of Its Heart Rate-Dependent and Heart Rate-Independent Effects

Tuuli Teeäär, Martin Serg, Kaido Paapstel, Mare Vähi, Jaak Kals, John R Cockcroft, Mihkel Zilmer, Jaan Eha, Priit Kampus, Tuuli Teeäär, Martin Serg, Kaido Paapstel, Mare Vähi, Jaak Kals, John R Cockcroft, Mihkel Zilmer, Jaan Eha, Priit Kampus

Abstract

Objective: Whether the inferior ability of atenolol to reduce central (aortic) compared to peripheral (brachial) blood pressure (BP) is related to its heart rate (HR)-dependent or -independent effects, or their combination, remains unclear. To provide further mechanistic insight into this topic, we studied the acute effects of atenolol versus nebivolol and ivabradine on systolic blood pressure amplification (SBPA; peripheral systolic BP minus central systolic BP) in a model of sick sinus syndrome patients with a permanent dual-chamber cardiac pacemaker in a nonrandomized single-blind single-group clinical trial.

Methods: We determined hemodynamic indices noninvasively (Sphygmocor XCEL) before and at least 3 h after administration of oral atenolol 50 or 100 mg, nebivolol 5 mg, or ivabradine 5 or 7.5 mg during atrial pacing at a low (40 bpm), middle (60 bpm), and high (90 bpm) HR level in 25 participants (mean age 65.5 years, 12 men).

Results: At the low HR level, i.e., when the drugs could exert their HR-dependent and HR-independent effects on central BP, only atenolol produced a significant decrease in SBPA (mean change 0.74 ± 1.58 mmHg (95% CI, 0.09-1.40; P = 0.028)), indicating inferior central vs peripheral systolic BP change. However, we observed no significant change in SBPA with atenolol at the middle and high HR levels, i.e., when HR-dependent mechanisms had been eliminated by pacing.

Conclusion: The findings of our trial with a mechanistic approach to the topic imply that the inferior ability of atenolol to reduce central vs peripheral BP can be explained by the combination of its heart rate-dependent and -independent effects. This trial is registered with NCT03245996.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Copyright © 2020 Tuuli Teeäär et al.

Figures

Figure 1
Figure 1
Trial design. At each visit, hemodynamic data were obtained before and at least three hours after drug ingestion at the middle, low, and high heart rate levels.

References

    1. Whelton P. K., Carey R. M., Aronow W. S., et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Hypertension. 2018;71:e136–e139. doi: 10.1161/hyp.0000000000000075.
    1. National Institute for Health and Clinical Excellence. Hypertension: clinical management of primary hypertension in adults (update) Clinical Guideline 127, 2011, .
    1. Williams B., Mancia G., Spiering W., et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Journal of Hypertension. 2018;36:1953–2041. doi: 10.1097/hjh.0000000000001940.
    1. Williams B., Lacy P. S., Thom S. M., et al. Differential impact of blood pressure–lowering drugs on central aortic pressure and clinical outcomes. Circulation. 2006;113:1213–1225. doi: 10.1161/circulationaha.105.595496.
    1. Ding F. H., Li Y., Li L. H., et al. Impact of heart rate on central hemodynamics and stroke: a meta-analysis of β-blocker trials. American Journal of Hypertension. 2013;26:118–125. doi: 10.1093/ajh/hps003.
    1. Dalal J., Dasbiswas A., Sathyamurthy I., et al. Heart rate in hypertension: review and expert opinion. International Journal of Hypertension. 2019;2019:6. doi: 10.1155/2019/2087064.2087064
    1. Pucci G., Ranalli M. G., Battista F., et al. Effects of β-blockers with and without vasodilating properties on central blood pressure. Hypertension. 2016;67:316–324. doi: 10.1161/hypertensionaha.115.06467.
    1. Kampus P., Serg M., Kals J., et al. Differential effects of nebivolol and metoprolol on central aortic pressure and left ventricular wall thickness. Hypertension. 2011;57:1122–1128. doi: 10.1161/hypertensionaha.110.155507.
    1. Dillinger J. G., Maher V., Vitale C., et al. Impact of ivabradine on central aortic blood pressure and myocardial perfusion in patients with stable coronary artery disease. Hypertension. 2015;66:1138–1144. doi: 10.1161/hypertensionaha.115.06091.
    1. Teeäär T., Serg M., Paapstel K., et al. Heart rate reduction decreases central blood pressure in sick sinus syndrome patients with a permanent cardiac pacemaker. Journal of Human Hypertension. 2018;32:377–384. doi: 10.1038/s41371-018-0051-4.
    1. Cockburn J. A., Brett S. E., Guilcher A., et al. Differential effects of betaadrenoreceptor antagonists on central and peripheral blood pressure at rest and during exercise. British Journal of Clinical Pharmacology. 2010;69:329–335. doi: 10.1111/j.1365-2125.2009.03577.x.
    1. Goupil R., Dupuis D., Troyanov S., et al. Heart rate dependent and independent effects of beta-blockers on central hemodynamic parameters. Journal of Hypertension. 2016;34:1535–1543. doi: 10.1097/hjh.0000000000000978.
    1. Messerli F. H., Rimoldi S. F., Bangalore S., et al. When an increase in central systolic pressure overrides the benefits of heart rate lowering. Journal of the Americal College of Cardiology. 2016;68:754–762. doi: 10.1016/j.jacc.2016.03.610.
    1. Williams B., Lacy P. S. Impact of heart rate on central aortic pressures and hemodynamics: Journal of the Americal College of Cardiology. 2009;54:705–713. doi: 10.1016/j.jacc.2009.02.088.
    1. Lund-Johansen P. Haemodynamic long-term effects of a new beta-adrenoceptor blocking drug, atenolol (ICI 66082), in essential hypertension. British Journal of Clinical Pharmacology. 1976;3:445–451. doi: 10.1111/j.1365-2125.1976.tb00620.x.
    1. Tan I., Kiat H., Barin E., et al. Effects of pacing modality on non-invasive assessment of heart rate dependency of indices of large artery function. Journal of Applied Physiology. 2016;121:771–780. doi: 10.1152/japplphysiol.00445.2016.
    1. Liang Y. L., Gatzka C. D., Du X. J., et al. Effects of heart rate on arterial compliance in men. Clinical and Experimental Pharmacology and Physiology. 1999;26:342–346. doi: 10.1046/j.1440-1681.1999.03039.x.
    1. Thackray S. D. R., Ghosh J. M., Wright G. A., et al. The effect of altering heart rate on ventricular function in patients with heart failure treated with beta-blockers. American Heart Journal. 2006;152:713.e9–713.e13. doi: 10.1016/j.ahj.2006.07.007.
    1. Heusch G., Skyschally A., Gres P., et al. Improvement of regional myocardial blood flow and function and reduction of infarct size with ivabradine: protection beyond heart rate reduction. European Heart Journal. 2008;29:2265–2275. doi: 10.1093/eurheartj/ehn337.
    1. Hirata K., Vlachopoulos C., Adji A., et al. Benefits from angiotensin-converting enzyme inhibitor “beyond blood pressure lowering”: beyond blood pressure or beyond the brachial artery? Journal of Hypertension. 2005;23:551–556. doi: 10.1097/01.hjh.0000160211.56103.48.
    1. Casey D. P., Curry T. B., Joyner M. J., et al. Acute β-adrenergic blockade increases aortic wave reflection in young men and women. Hypertension. 2012;59:145–150. doi: 10.1161/hypertensionaha.111.182337.
    1. Adji A., Hirata K., Hoegler S., et al. Noninvasive pulse waveform analysis in clinical trials: similarity of two methods for calculating aortic systolic pressure. American Journal of Hypertension. 2007;20:917–922. doi: 10.1016/j.amjhyper.2007.03.006.
    1. Koruth J. S., Lala A., Pinney S., et al. The clinical use of ivabradine. Journal of the Americal College of Cardiology. 2017;70:1777–1784. doi: 10.1016/j.jacc.2017.08.038.
    1. Rognoni A., Bertolazzi M., Macciò S., et al. Ivabradine: cardiovascular effects. Recent Patents of Cardiovascular Drug Discovery. 2009;4:61–66. doi: 10.2174/157489009787260016.
    1. Lopatin Y. M., Vitale C. Effect of ivabradine on central aortic blood pressure in patients with stable coronary artery disease: what do we know? International Journal of Cardiology. 2016;224:145–148. doi: 10.1016/j.ijcard.2016.09.054.
    1. Lopatin Y. M., Uskova V. A. The acute and chronic effects of ivabradine on the parameters of central aortic pressure in patients with stable coronary artery disease. European Heart Journal. 2015;36:1100–1101.
    1. Rimoldi S. F., Messerli F. H., Cerny D., et al. Selective heart rate reduction with ivabradine increases central blood pressure in stable coronary artery disease. Hypertension. 2016;67:1205–1210. doi: 10.1161/hypertensionaha.116.07250.
    1. Mangrella M., Rossi F., Fici F., et al. Pharmacology of nebivolol. Pharmacological Research. 1998;38:419–431. doi: 10.1006/phrs.1998.0387.
    1. Heusch G., Kleinbongard P. Ivabradine: cardioprotection by and beyond heart rate reduction. Drugs. 2016;76:733–740. doi: 10.1007/s40265-016-0567-2.
    1. Fischer-Rasokat U., Honold J., Lochmann D., et al. Ivabradine therapy to unmask heart rate-independent effects of β-blockers on pulse wave reflections. Clinical Research in Cardiology. 2014;103:487–494. doi: 10.1007/s00392-014-0679-1.

Source: PubMed

3
購読する