Optimization of cytarabine (ARA-C) therapy for acute myeloid leukemia

Richard L Momparler, Richard L Momparler

Abstract

Cytarabine (cytosine arabinoside) is one of the most effective drugs for the treatment of acute myeloid leukemia. The standard dose of cytarabine used to treat this leukemia is 100 mg per square meter. In an attempt to improve the effectiveness of cytarabine against acute myeloid leukemia, a high-dose treatment (3,000 mg per square meter) was introduced into therapy. The side effects of high-dose cytarabine was a major concern, especially its neurological toxicity. A review of recent clinical trials indicates that this high-dose cytarabine can be replaced by the intermediate-dose of 1,000 mg per square meter without loss of efficacy and with less toxicity. This is an important step to improve the efficacy of cytarabine for the treatment of acute myeloid leukemia. Despite the improvements in the therapy for this leukemia, the current overall survival rate for adult patients is less than 30%. To optimize the cytarabine therapy, it is important to determine how some leukemic stem cells survive treatment. Preclinical data suggest that survival of the leukemic stem cells could be due to the long 12 hour interval between infusions of cytarabine, which permits some leukemic cells to escape its S phase specific action. Among the other factors that can lead to leukemic cell survival are the high levels in the liver and spleen of cytidine deaminase, the enzyme that inactivates cytarabine and drug resistance due to deficiency in deoxycytidine kinase, the enzyme that activates the prodrug, cytarabine. Several approaches are proposed in this commentary to overcome these impediments with the goal of increasing the effectiveness of cytarabine for the treatment of acute myeloid leukemia.

Keywords: Acute myeloid leukemia; Cytarabine; Cytosine arabinoside; Drug resistance; Pharmacology.

References

    1. Löwenberg B, Downing JR, Burnet A. Acute myeloid leukemia. N Engl J Med. 1999;341:1051–1062. doi: 10.1056/NEJM199909303411407.
    1. Momparler RL. A model for the chemotherapy of acute leukemia with 1-ß- arabinofuranosylcytosine. Cancer Res. 1974;34:1775–1787.
    1. Reese ND, Schiller GJ. High-dose cytarabine (HD araC) in the treatment of leukemias: a review. Curr Hematol Malig Rep. 2013;8:141–148. doi: 10.1007/s11899-013-0156-3.
    1. Rudnick SA, Cadman EC, Capizzi RL. et al.High dose cytosine arabinoside (HDARAC) in refractory acute leukemia. Cancer. 1979;44:1189–1193. doi: 10.1002/1097-0142(197910)44:4<1189::AID-CNCR2820440404>;2-O.
    1. Early AP, Preisler HD, Slocum H. et al.A pilot study of high-dose 1-beta-D- arabinofuranosylcytosine for acute leukemia and refractory lymphoma: clinical response and pharmacology. Cancer Res. 1982;42:1587–1594.
    1. Herzig RH, Wolff SN, Lazarus HM. et al.High-dose cytosine arabinoside therapy for refractory leukemia. Blood. 1983;62:361–369.
    1. Herzig RH, Hines JD, Herzig GP. et al.Cerebellar toxicity with high-dose cytosine arabinoside. J Clin Oncol. 1987;5:927–932.
    1. Lauzon GJ, Paterson AR, Belch AW. Formation of 1-beta-D-arabinofuranosylcytosine diphosphate choline in neoplastic and normal cells. Cancer Res. 1978;38:1730–1733.
    1. Clark WM. Efficacy of citicoline as an acute stroke treatment. Expert Opin Pharmacother. 2009;10:839–846. doi: 10.1517/14656560902765652.
    1. Bustamante A, Giralt D, Garcia-Bonilla L. et al.Citicoline in pre-clinical animal models of stroke: a meta-analysis shows the optimal neuroprotective profile and the missing steps for jumping into a stroke clinical trial. J Neurochem. 2012;123:217–225. doi: 10.1111/j.1471-4159.2012.07891.x.
    1. Löwenberg B, Pabst T, Vellenga E. et al.Cytarabine dose for acute myeloid leukemia. N Engl J Med. 2011;364:1027–1036. doi: 10.1056/NEJMoa1010222.
    1. Löwenberg B. Sense and nonsense of high-dose cytarabine for acute myeloid leukemia. Blood. 2013;121:26–27. doi: 10.1182/blood-2012-07-444851.
    1. Plunkett W, Liliemark JO, Adams TM. et al.Saturation of 1-beta-D- arabinofuranosylcytosine 5’-triphosphate accumulation in leukemia cells during high-dose 1-beta-D-arabinofuranosylcytosine therapy. Cancer Res. 1987;47:3005–3011.
    1. Capizzi RL, Yang JL, Cheng E. et al.Alteration of the pharmacokinetics of high-dose ara-C by its metabolite, high ara-U in patients with acute leukemia. J Clin Oncol. 1983;1:763–771.
    1. Raza A, Preisler HD, Day R. et al.Direct relationship between remission duration in acute myeloid leukemia and cell cycle kinetics: a leukemia intergroup study. Blood. 1990;76:2191–2197.
    1. Leclerc JM, Momparler RL. Importance of the interval between exposures to cytosine arabinoside on its cytotoxic action on HL-60 myeloid leukemic cells. Cancer Treatment Rep. 1984;68:1143–1148.
    1. Momparler RL, Onetto-Pothier N. In: Resistance to Antineoplastic Drugs. Kessel D, editor. Boca Raton: CRC Press; 1988. Drug resistance to cytosine arabinoside; pp. 353–367.
    1. Flasshove M, Strumberg D, Ayscue L. et al.Structural analysis of the deoxycytidine kinase gene in patients with acute myeloid leukemia and resistance to cytosine arabinoside. Leukemia. 1994;8:780–785.
    1. Onetto N, Momparler RL, Momparler LF. et vitro tests to evaluate the response to therapy of acute leukemia with cytosine arabinoside or 5-aza-deoxycytidine. Semin Oncol. 1987;14:231–237.
    1. Raynal NJ, Momparler LF, Rivard GE. et al.3-Deazauridine enhances the antileukemic action of 5-aza-2’-deoxycytidine and targets drug-resistance due to deficiency in deoxycytidine kinase. Leuk Res. 2011;35:110–118. doi: 10.1016/j.leukres.2010.04.014.
    1. Momparler RL, Momparler LF. Chemotherapy of L1210 and L1210/ARA-C leukemia with 5-aza-2’-deoxycytidine and 3-deazauridine. Cancer Chemother Phamacol. 1989;25:51–54. doi: 10.1007/BF00694338.
    1. Momparler RL, Bouffard DY, Momparler LF. et al.Enhancement of anti-neoplastic activity of cytosine arabinoside against human HL-60 myeloid leukemic cells by 3-deazauridine. Int J Cancer. 1991;49:573–576. doi: 10.1002/ijc.2910490417.
    1. Momparler RL, Chu MY, Fischer GA. Studies on a new mechanism of resistance of L5178Y murine leukemic cells to cytosine arabinoside. Biochem Biophys Acta. 1968;161:481–493. doi: 10.1016/0005-2787(68)90124-X.
    1. Eliolopoulos N, Momparler RL. Drug resistance to 5’-aza-2’-deoxycytidine, 2,2’- difluorodeoxycytidine and cytosine arabinoside conferred by retroviral-mediated transfer of human cytidine deaminase cDNA into murine cells. Cancer Chemother Pharmacol. 1998;42:373–378. doi: 10.1007/s002800050832.
    1. Lachmann N, Brennig S, Phaltane R. et al.Myeloprotection by cytidine deaminase gene transfer in antileukemic therapy. Neoplasia. 2013;15:239–248.
    1. Kreis W, Chan K, Budman DR. et al.Effect of tetrahydrouridine on the clinical pharmacology of 1-beta-D-arabinofuranosylcytosine when both drugs are coinfused over three hours. Cancer Res. 1988;48:1337–1342.
    1. Ebrahem Q, Mahfouz RZ, Ng KP. et al.High cytidine deaminase expression in the liver provides sanctuary for cancer cells from decitabine treatment effects. Oncotarget. 2012;3:1137–1145.
    1. Ho DH. Distribution of kinase and deaminase of 1-beta-D-arabinofuranosylcytosine in tissues of man and mouse. Cancer Res. 1973;33:2816–2820.
    1. Giacinti C, Giordano A. RB and cell cycle progression. Oncogene. 2006;25:5220–5227. doi: 10.1038/sj.onc.1209615.
    1. Momparler RL, Côté S, Momparler LF. Epigenetic action of decitabine (5-aza-2’- deoxycytidine) is more effective against acute myeloid leukemia than cytotoxic action of cytarabine (ARA-C) Leuk Res. 2013;37:980–984. doi: 10.1016/j.leukres.2013.04.019.
    1. Momparler RL, Momparler LF, Samson J. Comparison of the antileukemic activity of 5- aza-2’-deoxycytidine, 1-ß-D-arabinofuranosyl-cytosine and 5-azacytidine against L1210 leukemia. Leuk Res. 1984;8:1043–1049. doi: 10.1016/0145-2126(84)90059-6.
    1. Momparler RL, Samson J, Momparler LF. et al.Cell cycle effects and cellular pharmacology of 5-aza-2’-deoxycytidine. Cancer Chemother Pharmacol. 1984;13:191–194. doi: 10.1007/BF00269027.
    1. Sarry JE, Murphy K, Perry R. et al.Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rγc-deficient mice. J Clin Invest. 2011;121:384–395. doi: 10.1172/JCI41495.
    1. van Rhenen A, Feller N, Kelder A. et al.High stem cell frequency in acute myeloid leukemia at diagnosis predicts high minimal residual disease and poor survival. Clin Cancer Res. 2005;11:6520–6527. doi: 10.1158/1078-0432.CCR-05-0468.
    1. Morisot S, Wayne AS, Bohana-Kashtan O. et al.High frequencies of leukemia stem cells in poor-outcome childhood precursor-B acute lymphoblastic leukemias. Leukemia. 2010;24:1859–1866. doi: 10.1038/leu.2010.184.
    1. Scandura JM, Roboz GJ, Moh M. et al.Phase 1 study of epigenetic priming with decitabine prior to standard induction chemotherapy for patients with AML. Blood. 2011;118:1472–1480. doi: 10.1182/blood-2010-11-320093.
    1. Thépot S, Lainey E, Cluzeau T. et al.Hypomethylating agents reactivate FOXO3A in acute myeloid leukemia. Cell Cycle. 2011;10:2323–2330. doi: 10.4161/cc.10.14.16399.
    1. Soncini M, Santoro F, Gutierrez A. et al.The DNA demethylating agent decitabine activates the TRAIL pathway and induces apoptosis in acute myeloid leukemia. Biochim Biophys Acta. 1832;2013:114–120.
    1. Wattel E, Preudhomme C, Hecquet B. et al.p53 mutations are associated with resistance to chemotherapy and short survival in hematologic malignancies. Blood. 1994;84:3148–3157.
    1. Ng KP, Ebrahem Q, Negrotto S. et al.p53 independent epigenetic-differentiation treatment in xenotransplant models of acute myeloid leukemia. Leukemia. 2011;25:1739–1750. doi: 10.1038/leu.2011.159.
    1. Mahfouz RZ, Englehaupt R, Juersivich JA, Non-Cytotoxic Differentiation TherapyBased On Mechanism of Disease Produces Complete Remission in MyelodysplasticSyndromes (MDS) with High Risk Cytogenetics. Abstract No. 1696; 54th ASH Annual Meeting 2012. .
    1. Saunthararajah Y, Triozzi P, Rini B. et al.p53-Independent, normal stem cell sparing epigenetic differentiation therapy for myeloid and other malignancies. Semin Oncol. 2012;39:97–108. doi: 10.1053/j.seminoncol.2011.11.011.
    1. Raynal NJ, Charbonneau M, Momparler LF. et al.Synergistic effect of 5-aza-2’- deoxycytidine and genistein in combination against leukemia. Oncol Res. 2008;17:223–230. doi: 10.3727/096504008786111356.

Source: PubMed

3
購読する