Mapping glucose-mediated gut-to-brain signalling pathways in humans

Tanya J Little, Shane McKie, Richard B Jones, Massimo D'Amato, Craig Smith, Orsolya Kiss, David G Thompson, John T McLaughlin, Tanya J Little, Shane McKie, Richard B Jones, Massimo D'Amato, Craig Smith, Orsolya Kiss, David G Thompson, John T McLaughlin

Abstract

Objectives: Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role.

Experimental design: Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250ml) of: 1M glucose+predosing with dexloxiglumide (CCK1 receptor antagonist), 1M glucose+placebo, or 0.9% saline (control)+placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded.

Principal observations: Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose+dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex.

Conclusions: Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway.

Keywords: Cholecystokinin (CCK); Dexloxiglumide; Glucose; nutrient; physMRI.

Copyright © 2014. Published by Elsevier Inc.

Figures

Fig. 1
Fig. 1
(A) Gastric emptying (n = 3/12) and (B) change in gallbladder volume (n = 12) following intragastric glucose (1000 mOsmol), glucose (1000 mOsmol) + dexloxiglumide (600 mg) or saline/water control. Data are mean (SEM). *glucose vs. water/saline, ^glucose + dex vs. glucose, p 

Fig. 2

Brain images showing areas exhibiting…

Fig. 2

Brain images showing areas exhibiting significant effect of time (pFDRc

Fig. 2
Brain images showing areas exhibiting significant effect of time (pFDRc 

Fig. 3

Brain images showing areas exhibiting…

Fig. 3

Brain images showing areas exhibiting significant effect of time (pFDRc

Fig. 3
Brain images showing areas exhibiting significant effect of time (pFDRc 

Fig. 4

Changes in blood-oxygenation-level-dependent (BOLD) signal…

Fig. 4

Changes in blood-oxygenation-level-dependent (BOLD) signal over time in the medulla (A), pons (B),…

Fig. 4
Changes in blood-oxygenation-level-dependent (BOLD) signal over time in the medulla (A), pons (B), midbrain (C), and hypothalamus (D), and motor cortex (E), following bolus intragastric glucose (1000 mOsmol) and glucose + dex, relative to saline.

Fig. 5

Blood glucose (A) and plasma…

Fig. 5

Blood glucose (A) and plasma insulin (B), cholecystokinin (CCK) (C) and glucagon-like peptide-1…

Fig. 5
Blood glucose (A) and plasma insulin (B), cholecystokinin (CCK) (C) and glucagon-like peptide-1 (GLP-1) (D) concentrations following bolus intragastric glucose (1000 mOsmol), glucose + dexloxiglumide, or saline (0.9%). *glucose vs. saline, p 

Fig. 6

Effects of saline, glucose and…

Fig. 6

Effects of saline, glucose and glucose + dexloxiglumide on perceptions of nausea (A),…

Fig. 6
Effects of saline, glucose and glucose + dexloxiglumide on perceptions of nausea (A), hunger (B) and fullness (C). There were no differences in baseline ratings, nor any effect of any treatment, on perceptions of nausea or hunger. There was an effect of treatment for fullness scores (p = 0.05). Glucose increased fullness when compared with saline (p = 0.009), with no differences between saline and glucose + dex. *P 
Similar articles
Cited by
References
    1. Beglinger S., Drewe J., Schirra J., Goke B., D'Amato M., Beglinger C. Role of fat hydrolysis in regulating glucagon-like peptide-1 secretion. J. Clin. Endocrinol. Metab. 2010;95(2):879–886. - PubMed
    1. Brown K.A., Melzack R. Effects of glucose on multi-unit activity in the hypothalamus. Exp. Neurol. 1969;24:363–373. - PubMed
    1. Cecil J.E., Francis J., Read N.W. Relative contributions of intestinal, gastric, oro-sensory influences and information to changes in appetite induced by the same liquid meal. Appetite. 1998;31(3):377–390. - PubMed
    1. Chen M., Zhang T.M., Luo S.L., Zhou C., Wu X.M., Zhou N.N., Cai K., Yang Z.H., Wang W.C., Zhao W.F. Functional magnetic resonance imaging and immunohistochemical study of hypothalamic function following oral glucose ingestion in rats. Chin. Med. J. (Engl.) 2007;120(14):1232–1235. - PubMed
    1. Cook C.G., Andrews J.M., Jones K.L., Wittert G.A., Chapman I.M., Morley J.E., Horowitz M. Effects of small intestinal nutrient infusion on appetite and pyloric motility are modified by age. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1997;273:R755–R761. - PubMed
Show all 42 references
Publication types
MeSH terms
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Fig. 2
Fig. 2
Brain images showing areas exhibiting significant effect of time (pFDRc 

Fig. 3

Brain images showing areas exhibiting…

Fig. 3

Brain images showing areas exhibiting significant effect of time (pFDRc

Fig. 3
Brain images showing areas exhibiting significant effect of time (pFDRc 

Fig. 4

Changes in blood-oxygenation-level-dependent (BOLD) signal…

Fig. 4

Changes in blood-oxygenation-level-dependent (BOLD) signal over time in the medulla (A), pons (B),…

Fig. 4
Changes in blood-oxygenation-level-dependent (BOLD) signal over time in the medulla (A), pons (B), midbrain (C), and hypothalamus (D), and motor cortex (E), following bolus intragastric glucose (1000 mOsmol) and glucose + dex, relative to saline.

Fig. 5

Blood glucose (A) and plasma…

Fig. 5

Blood glucose (A) and plasma insulin (B), cholecystokinin (CCK) (C) and glucagon-like peptide-1…

Fig. 5
Blood glucose (A) and plasma insulin (B), cholecystokinin (CCK) (C) and glucagon-like peptide-1 (GLP-1) (D) concentrations following bolus intragastric glucose (1000 mOsmol), glucose + dexloxiglumide, or saline (0.9%). *glucose vs. saline, p 

Fig. 6

Effects of saline, glucose and…

Fig. 6

Effects of saline, glucose and glucose + dexloxiglumide on perceptions of nausea (A),…

Fig. 6
Effects of saline, glucose and glucose + dexloxiglumide on perceptions of nausea (A), hunger (B) and fullness (C). There were no differences in baseline ratings, nor any effect of any treatment, on perceptions of nausea or hunger. There was an effect of treatment for fullness scores (p = 0.05). Glucose increased fullness when compared with saline (p = 0.009), with no differences between saline and glucose + dex. *P 
Similar articles
Cited by
References
    1. Beglinger S., Drewe J., Schirra J., Goke B., D'Amato M., Beglinger C. Role of fat hydrolysis in regulating glucagon-like peptide-1 secretion. J. Clin. Endocrinol. Metab. 2010;95(2):879–886. - PubMed
    1. Brown K.A., Melzack R. Effects of glucose on multi-unit activity in the hypothalamus. Exp. Neurol. 1969;24:363–373. - PubMed
    1. Cecil J.E., Francis J., Read N.W. Relative contributions of intestinal, gastric, oro-sensory influences and information to changes in appetite induced by the same liquid meal. Appetite. 1998;31(3):377–390. - PubMed
    1. Chen M., Zhang T.M., Luo S.L., Zhou C., Wu X.M., Zhou N.N., Cai K., Yang Z.H., Wang W.C., Zhao W.F. Functional magnetic resonance imaging and immunohistochemical study of hypothalamic function following oral glucose ingestion in rats. Chin. Med. J. (Engl.) 2007;120(14):1232–1235. - PubMed
    1. Cook C.G., Andrews J.M., Jones K.L., Wittert G.A., Chapman I.M., Morley J.E., Horowitz M. Effects of small intestinal nutrient infusion on appetite and pyloric motility are modified by age. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1997;273:R755–R761. - PubMed
Show all 42 references
Publication types
MeSH terms
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Fig. 3
Fig. 3
Brain images showing areas exhibiting significant effect of time (pFDRc 

Fig. 4

Changes in blood-oxygenation-level-dependent (BOLD) signal…

Fig. 4

Changes in blood-oxygenation-level-dependent (BOLD) signal over time in the medulla (A), pons (B),…

Fig. 4
Changes in blood-oxygenation-level-dependent (BOLD) signal over time in the medulla (A), pons (B), midbrain (C), and hypothalamus (D), and motor cortex (E), following bolus intragastric glucose (1000 mOsmol) and glucose + dex, relative to saline.

Fig. 5

Blood glucose (A) and plasma…

Fig. 5

Blood glucose (A) and plasma insulin (B), cholecystokinin (CCK) (C) and glucagon-like peptide-1…

Fig. 5
Blood glucose (A) and plasma insulin (B), cholecystokinin (CCK) (C) and glucagon-like peptide-1 (GLP-1) (D) concentrations following bolus intragastric glucose (1000 mOsmol), glucose + dexloxiglumide, or saline (0.9%). *glucose vs. saline, p 

Fig. 6

Effects of saline, glucose and…

Fig. 6

Effects of saline, glucose and glucose + dexloxiglumide on perceptions of nausea (A),…

Fig. 6
Effects of saline, glucose and glucose + dexloxiglumide on perceptions of nausea (A), hunger (B) and fullness (C). There were no differences in baseline ratings, nor any effect of any treatment, on perceptions of nausea or hunger. There was an effect of treatment for fullness scores (p = 0.05). Glucose increased fullness when compared with saline (p = 0.009), with no differences between saline and glucose + dex. *P 
Similar articles
Cited by
References
    1. Beglinger S., Drewe J., Schirra J., Goke B., D'Amato M., Beglinger C. Role of fat hydrolysis in regulating glucagon-like peptide-1 secretion. J. Clin. Endocrinol. Metab. 2010;95(2):879–886. - PubMed
    1. Brown K.A., Melzack R. Effects of glucose on multi-unit activity in the hypothalamus. Exp. Neurol. 1969;24:363–373. - PubMed
    1. Cecil J.E., Francis J., Read N.W. Relative contributions of intestinal, gastric, oro-sensory influences and information to changes in appetite induced by the same liquid meal. Appetite. 1998;31(3):377–390. - PubMed
    1. Chen M., Zhang T.M., Luo S.L., Zhou C., Wu X.M., Zhou N.N., Cai K., Yang Z.H., Wang W.C., Zhao W.F. Functional magnetic resonance imaging and immunohistochemical study of hypothalamic function following oral glucose ingestion in rats. Chin. Med. J. (Engl.) 2007;120(14):1232–1235. - PubMed
    1. Cook C.G., Andrews J.M., Jones K.L., Wittert G.A., Chapman I.M., Morley J.E., Horowitz M. Effects of small intestinal nutrient infusion on appetite and pyloric motility are modified by age. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1997;273:R755–R761. - PubMed
Show all 42 references
Publication types
MeSH terms
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Fig. 4
Fig. 4
Changes in blood-oxygenation-level-dependent (BOLD) signal over time in the medulla (A), pons (B), midbrain (C), and hypothalamus (D), and motor cortex (E), following bolus intragastric glucose (1000 mOsmol) and glucose + dex, relative to saline.
Fig. 5
Fig. 5
Blood glucose (A) and plasma insulin (B), cholecystokinin (CCK) (C) and glucagon-like peptide-1 (GLP-1) (D) concentrations following bolus intragastric glucose (1000 mOsmol), glucose + dexloxiglumide, or saline (0.9%). *glucose vs. saline, p 

Fig. 6

Effects of saline, glucose and…

Fig. 6

Effects of saline, glucose and glucose + dexloxiglumide on perceptions of nausea (A),…

Fig. 6
Effects of saline, glucose and glucose + dexloxiglumide on perceptions of nausea (A), hunger (B) and fullness (C). There were no differences in baseline ratings, nor any effect of any treatment, on perceptions of nausea or hunger. There was an effect of treatment for fullness scores (p = 0.05). Glucose increased fullness when compared with saline (p = 0.009), with no differences between saline and glucose + dex. *P 
Similar articles
Cited by
References
    1. Beglinger S., Drewe J., Schirra J., Goke B., D'Amato M., Beglinger C. Role of fat hydrolysis in regulating glucagon-like peptide-1 secretion. J. Clin. Endocrinol. Metab. 2010;95(2):879–886. - PubMed
    1. Brown K.A., Melzack R. Effects of glucose on multi-unit activity in the hypothalamus. Exp. Neurol. 1969;24:363–373. - PubMed
    1. Cecil J.E., Francis J., Read N.W. Relative contributions of intestinal, gastric, oro-sensory influences and information to changes in appetite induced by the same liquid meal. Appetite. 1998;31(3):377–390. - PubMed
    1. Chen M., Zhang T.M., Luo S.L., Zhou C., Wu X.M., Zhou N.N., Cai K., Yang Z.H., Wang W.C., Zhao W.F. Functional magnetic resonance imaging and immunohistochemical study of hypothalamic function following oral glucose ingestion in rats. Chin. Med. J. (Engl.) 2007;120(14):1232–1235. - PubMed
    1. Cook C.G., Andrews J.M., Jones K.L., Wittert G.A., Chapman I.M., Morley J.E., Horowitz M. Effects of small intestinal nutrient infusion on appetite and pyloric motility are modified by age. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1997;273:R755–R761. - PubMed
Show all 42 references
Publication types
MeSH terms
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Fig. 6
Fig. 6
Effects of saline, glucose and glucose + dexloxiglumide on perceptions of nausea (A), hunger (B) and fullness (C). There were no differences in baseline ratings, nor any effect of any treatment, on perceptions of nausea or hunger. There was an effect of treatment for fullness scores (p = 0.05). Glucose increased fullness when compared with saline (p = 0.009), with no differences between saline and glucose + dex. *P 

References

    1. Beglinger S., Drewe J., Schirra J., Goke B., D'Amato M., Beglinger C. Role of fat hydrolysis in regulating glucagon-like peptide-1 secretion. J. Clin. Endocrinol. Metab. 2010;95(2):879–886.
    1. Brown K.A., Melzack R. Effects of glucose on multi-unit activity in the hypothalamus. Exp. Neurol. 1969;24:363–373.
    1. Cecil J.E., Francis J., Read N.W. Relative contributions of intestinal, gastric, oro-sensory influences and information to changes in appetite induced by the same liquid meal. Appetite. 1998;31(3):377–390.
    1. Chen M., Zhang T.M., Luo S.L., Zhou C., Wu X.M., Zhou N.N., Cai K., Yang Z.H., Wang W.C., Zhao W.F. Functional magnetic resonance imaging and immunohistochemical study of hypothalamic function following oral glucose ingestion in rats. Chin. Med. J. (Engl.) 2007;120(14):1232–1235.
    1. Cook C.G., Andrews J.M., Jones K.L., Wittert G.A., Chapman I.M., Morley J.E., Horowitz M. Effects of small intestinal nutrient infusion on appetite and pyloric motility are modified by age. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1997;273:R755–R761.
    1. de Boer S.Y., Masclee A.A., Jebbink M.C., Schipper J., Lemkes H.H., Jansen J.B., Lamers C.B. Effect of acute hyperglycaemia on gall bladder contraction induced by cholecystokinin in humans. Gut. 1993;34(8):1128–1132.
    1. Dodds W.J., Groh W.J., Darweesh R.M., Lawson T.L., Kishk S.M., Kern M.K. Sonographic measurement of gallbladder volume. AJR Am. J. Roentgenol. 1985;145(5):1009–1011.
    1. Fried M., Erlacher U., Schwizer W., Lochner C., Koerfer J., Beglinger C., Jansen J.B., Lamers C.B., Harder F., Bischof-Delaloye A. Role of cholecystokinin in the regulation of gastric emptying and pancreatic enzyme secretion in humans. Studies with the cholecystokinin-receptor antagonist loxiglumide. Gastroenterology. 1991;101(2):503–511.
    1. Gibson C.D., Carnell S., Ochner C.N., Geliebter A. Neuroimaging, gut peptides and obesity: novel studies of the neurobiology of appetite. J. Neuroendocrinol. 2010;22(8):833–845.
    1. Grabauskas G., Li Y., Owyang C. Glucose-inhibited neurons in the nodose ganglia modulate feeding behaviour in response to changing glucose concentration in the portal vein. Neurogastroenterol. Motil. 2008;20:128. (Abstract)
    1. Grabauskas G., Song I., Zhou S., Owyang C. Electrophysiological identification of glucose-sensing neurons in rat nodose ganglia. J. Physiol. 2010;588(Pt 4):617–632.
    1. Grossman S.P. Role of the hypothalamus in the regulation of food and water intake. Psychol. Rev. 1975;82:200–224.
    1. Horowitz M., Maddox A.F., Wishart J.M., Harding P.E., Chatterton B.E., Shearman D.J.C. Relationships between oesophageal transit and solid and liquid gastric emptying in diabetes mellitus. Eur. J. Nucl. Med. 1991;18:229–234.
    1. Hunt J.N., Knox M.T. Control of gastric emptying. Am. J. Dig. Dis. 1968;13(4):372–375.
    1. Jones R.B., McKie S., Astbury N., Little T.J., Tivey S., Lassman D.J., McLaughlin J., Luckman S., Williams S.R., Dockray G.J. Functional neuroimaging demonstrates that ghrelin inhibits the central nervous system response to ingested lipid. Gut. 2012;61(11):1543–1551.
    1. Lal S., McLaughlin J., Barlow J., D'Amato M., Giacovelli G., Varro A., Dockray G.J., Thompson D.G. Cholecystokinin pathways modulate sensations induced by gastric distension in man. Am. J. Physiol. Gastrointest. Liver Physiol. 2004;287(7):G72–G79.
    1. Lassman D.J., McKie S., Gregory L.J., Lal S., D'Amato M., Steele I., Varro A., Dockray G.J., Williams S.C.R., Thompson D.G. Defining the role of CCK in the lipid induced human brain activation matrix. Gastroenterology. 2010;138(4):1514–1524.
    1. Lavin J.H., Wittert G., Sun W.M., Horowitz M., Morley J.E., Read N.W. Appetite regulation by carbohydrate: role of blood glucose and gastrointestinal hormones. Am. J. Physiol. Endocrinol. Metab. 1996;271:E209–E214.
    1. Lee J.S., Camilleri M., Zinsmeister A.R., Burton D.D., Choi M.G., Nair K.S., Verlinden M. Toward office-based measurement of gastric emptying in symptomatic diabetics using [13C]octanoic acid breath test. Am. J. Gastroenterol. 2000;95(10):2751–2761.
    1. Levin B.E., Routh V.H., Kang L., Sanders N.M., Dunn-Meynell A.A. Neuronal glucosensing: what do we know after 50 years? Diabetes. 2004;53(10):2521–2528.
    1. Li J., An R., Zhang Y., Li X., Wang S. Correlations of macronutrient-induced functional magnetic resonance imaging signal changes in human brain and gut hormone responses. Am. J. Clin. Nutr. 2012;96(2):275–282.
    1. Lilja P., Fagan C.J., Wiener I., Inoue K., Watson L.C., Rayford P.L., Thompson J.C. Infusion of pure cholecystokinin in humans. Correlation between plasma concentrations of cholecystokinin and gallbladder size. Gastroenterology. 1982;83(1 Pt 2):256–261.
    1. Little T.J., Gupta N., Case R.M., Thompson D.G., McLaughlin J.T. Sweetness and bitterness taste of meals per se does not mediate gastric emptying in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009;297:R632–R639.
    1. Little T.J., Gopinath A., Patel E., McGlone A., Lassman D.J., D'Amato M., McLaughlin J.T., Thompson D.G. Gastric emptying of hexose sugars: role of osmolality, molecular structure and the CCK(1) receptor. Neurogastroenterol. Motil. 2010;22(11):1183–1190. (e314)
    1. Liu Y., Gao J.-H., Liu H.-L., Fox P.T. The temporal response of the brain after eating revealed by functional MRI. Nature. 2000;405:1058–1062.
    1. Matsuda M., Liu Y., Mahankali S., Pu Y., Mahankali A., Wang J., DeFronzo R.A., Fox P.T., Gao J.H. Altered hypothalamic function in response to glucose ingestion in obese humans. Diabetes. 1999;48(9):1801–1806.
    1. McKie S., Del-Ben C., Elliott R., Williams S., del Vai N., Anderson I., Deakin J.F. Neuronal effects of acute citalopram detected by pharmacoMRI. Psychopharmacology (Berl) 2005;180(4):680–686.
    1. McKie S., Richardson P., Elliott R., Vollm B.A., Dolan M.C., Williams S.R., Anderson I.M., Deakin J.F. Mirtazapine antagonises the subjective, hormonal and neuronal effects of m-chlorophenylpiperazine (mCPP) infusion: a pharmacological-challenge fMRI (phMRI) study. NeuroImage. 2011;58(2):497–507.
    1. Moran T.H., Field D.G., Knipp S., Carrigan T.S., Schwartz G.J. Endogenous CCK in the control of gastric emptying of glucose and maltose. Peptides. 1997;18(4):547–550.
    1. Pannacciulli N., Le D.S., Salbe A.D., Chen K., Reiman E.M., Tataranni P.A., Krakoff J. Postprandial glucagon-like peptide-1 (GLP-1) response is positively associated with changes in neuronal activity of brain areas implicated in satiety and food intake regulation in humans. NeuroImage. 2007;35(2):511–517.
    1. Pilichiewicz A.N., Chaikomin R., Brennan I.M., Wishart J.M., Rayner C.K., Jones K.L., Smout A.J., Horowitz M., Feinle-Bisset C. Load-dependent effects of duodenal glucose on glycemia, gastrointestinal hormones, antropyloroduodenal motility, and energy intake in healthy men. Am. J. Physiol. Endocrinol. Metab. 2007;293(3):E743–E753.
    1. Purnell J.Q., Klopfenstein B.A., Stevens A.A., Havel P.J., Adams S.H., Dunn T.N., Krisky C., Rooney W.D. Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans. Diabetes Obes. Metab. 2011;13(3):229–234.
    1. Sanaka M., Urita Y., Sugimoto M., Yamamoto T., Kuyama Y. Comparison between gastric scintigraphy and the [13C]-acetate breath test with Wagner-Nelson analysis in humans. Clin. Exp. Pharmacol. Physiol. 2006;33(12):1239–1243.
    1. Smeets P.A., de Graaf C., Stafleu A., van Osch M.J., van der Grond J. Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories. Am. J. Clin. Nutr. 2005;82(5):1011–1016.
    1. Smeets P.A., de Graaf C., Stafleu A., van Osch M.J., van der Grond J. Functional MRI of human hypothalamic responses following glucose ingestion. NeuroImage. 2005;24(2):363–368.
    1. Smeets P.A., Vidarsdottir S., de Graaf C., Stafleu A., van Osch M.J., Viergever M.A., Pijl H., van der Grond J. Oral glucose intake inhibits hypothalamic neuronal activity more effectively than glucose infusion. Am. J. Physiol. Endocrinol. Metab. 2007;293(3):E754–E758.
    1. Tsurugizawa T., Kondoh T., Torii K. Forebrain activation induced by postoral nutritive substances in rats. Neuroreport. 2008;19(11):1111–1115.
    1. Tsurugizawa T., Uematsu A., Nakamura E., Hasumura M., Hirota M., Kondoh T., Uneyama H., Torii K. Mechanisms of neural response to gastrointestinal nutritive stimuli: the gut–brain axis. Gastroenterology. 2009;137(1):262–273.
    1. Vidarsdottir S., Smeets P.A., Eichelsheim D.L., van Osch M.J., Viergever M.A., Romijn J.A., van der Grond J., Pijl H. Glucose ingestion fails to inhibit hypothalamic neuronal activity in patients with type 2 diabetes. Diabetes. 2007;56(10):2547–2550.
    1. Wan S., Browning K.N. d-Glucose modulates synaptic transmission from the central terminals of vagal afferent fibres. Am. J. Physiol. Gastrointest. Liver Physiol. 2008;294:G757–G763.
    1. Zhou S.Y., Lu Y.X., Owyang C. Gastric relaxation induced by hyperglycemia is mediated by vagal afferent pathways in the rat. Am. J. Physiol. Gastrointest. Liver Physiol. 2008;294(5):G1158–G1164.
    1. Zhu J.N., Wang J.J. The cerebellum in feeding control: possible function and mechanism. Cell. Mol. Neurobiol. 2008;28(4):469–478.

Source: PubMed

3
購読する