Comparing efficacies of moxifloxacin, levofloxacin and gatifloxacin in tuberculosis granulomas using a multi-scale systems pharmacology approach

Elsje Pienaar, Jansy Sarathy, Brendan Prideaux, Jillian Dietzold, Véronique Dartois, Denise E Kirschner, Jennifer J Linderman, Elsje Pienaar, Jansy Sarathy, Brendan Prideaux, Jillian Dietzold, Véronique Dartois, Denise E Kirschner, Jennifer J Linderman

Abstract

Granulomas are complex lung lesions that are the hallmark of tuberculosis (TB). Understanding antibiotic dynamics within lung granulomas will be vital to improving and shortening the long course of TB treatment. Three fluoroquinolones (FQs) are commonly prescribed as part of multi-drug resistant TB therapy: moxifloxacin (MXF), levofloxacin (LVX) or gatifloxacin (GFX). To date, insufficient data are available to support selection of one FQ over another, or to show that these drugs are clinically equivalent. To predict the efficacy of MXF, LVX and GFX at a single granuloma level, we integrate computational modeling with experimental datasets into a single mechanistic framework, GranSim. GranSim is a hybrid agent-based computational model that simulates granuloma formation and function, FQ plasma and tissue pharmacokinetics and pharmacodynamics and is based on extensive in vitro and in vivo data. We treat in silico granulomas with recommended daily doses of each FQ and compare efficacy by multiple metrics: bacterial load, sterilization rates, early bactericidal activity and efficacy under non-compliance and treatment interruption. GranSim reproduces in vivo plasma pharmacokinetics, spatial and temporal tissue pharmacokinetics and in vitro pharmacodynamics of these FQs. We predict that MXF kills intracellular bacteria more quickly than LVX and GFX due in part to a higher cellular accumulation ratio. We also show that all three FQs struggle to sterilize non-replicating bacteria residing in caseum. This is due to modest drug concentrations inside caseum and high inhibitory concentrations for this bacterial subpopulation. MXF and LVX have higher granuloma sterilization rates compared to GFX; and MXF performs better in a simulated non-compliance or treatment interruption scenario. We conclude that MXF has a small but potentially clinically significant advantage over LVX, as well as LVX over GFX. We illustrate how a systems pharmacology approach combining experimental and computational methods can guide antibiotic selection for TB.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Computational model structure and simulated…
Fig 1. Computational model structure and simulated granulomas.
(A) The model tracks plasma PK dynamics using a two-compartment model. The plasma PK model is linked to an agent-based model (ABM) representing spatial and temporal granuloma formation as well as tissue PK, i.e. antibiotic diffusion in the lung tissue and penetration into the granuloma. The model also tracks molecular level antibiotic dynamics such as cell uptake, and caseum binding. Finally the model calculates the antibacterial activity of antibiotics at specific locations in the granuloma using an Emax model based on local antibiotic concentration. Parameter definitions are in Table 3. (B) Emergent behavior of the model system is the formation of in silico granulomas that can represent the spectrum of granulomas observed in vivo, e.g. caseous and cellular granulomas shown. Art adapted from Servier Medical Art (http://servier.com/Powerpoint-image-bank) provided under a Creative Commons Attribution 3.0 Unported License.
Fig 2. Comparison of plasma PK in…
Fig 2. Comparison of plasma PK in rabbits and simulations.
A two-compartment plasma PK model describes plasma dynamics in rabbits. To show variation in simulation outcomes we plot both baseline simulations (dark lines) and standard deviations (shaded) for 100 simulations. To show variation in rabbit data we plot individual measurements (connected circles) for between 3 and 7 rabbits.
Fig 3. Comparison of average FQ concentrations…
Fig 3. Comparison of average FQ concentrations in simulated granulomas (solid lines) recapitulate LCMS measurements in rabbit granulomas (data points).
Lines and data points show means and standard deviations for 100 in silico granulomas, and between 1 and 67 rabbit granulomas. Horizontal dotted lines show C50 values for intracellular (C50,BI), extracellular replicating (C50,BE) and extracellular non-replicating bacteria (C50,BN). Though not used for model calibration, dynamics in uninvolved lung are also in agreement between simulations and rabbit data (Figure in S2 Fig).
Fig 4. Spatial distributions of FQs in…
Fig 4. Spatial distributions of FQs in simulated granulomas recapitulate MALDI-MS imaging in rabbit granulomas.
(A) Representative granulomas from rabbits (left) and simulations (right) showing different spatial distribution of GFX, MXF and LVX at 6 hours post dose. Simulations capture the qualitative differences between the three FQs. A quantitative comparison between our simulations and MALDI-MSI is not possible due to the semi-quantitative nature of the MALDI-MSI data. (B) Different distributions between GFX, MXF and LVX are consistent across all granulomas studied. Figures show average MALDI-MS abundance in rabbit granulomas (left) and concentrations in simulated granulomas (right) plotted as a function of distance from the edge of the granuloma (in μm). Solid lines show mean and dashed lines show standard deviation for 100 simulated granulomas and between 3 and 7 rabbit granulomas.
Fig 5. Simulated bacterial CFU (A-D) and…
Fig 5. Simulated bacterial CFU (A-D) and host immune dynamics (E-F) during treatment are similar between MXF and LVX with GFX killing fewer bacteria.
Dynamics in the total bacterial load (A) are dominated by the non-replicating Mtb population residing the caseum (D), which is not being cleared by any of the FQs. MXF clears the intracellular bacterial population (B) more quickly than LVX and GFX, and all three FQs clear the extracellular bacterial population within days (C). Metrics of inflammation (number of activated macrophages (E), and TNF-α:IL-10 ratio (F)) decline more quickly during MXF treatment compared to LVX and GFX. Lines show means of 210 in silico granulomas, with infection starting at day 0, and daily FQ treatment starting at day 380 (arrows) for 6 months (ending at day 560).
Fig 6. Simulated average free FQ concentrations…
Fig 6. Simulated average free FQ concentrations that each bacterial subpopulation (intracellular (A), extracellular (B) and nonreplicating (C)) is exposed to during one dosing period.
Solid lines show means and dashed lines show standard deviations for 210 in silico granulomas. Horizontal dotted lines show C50 values for intracellular (C50,BI), extracellular replicating (C50,BE) and extracellular non-replicating bacteria (C50,BN) for each FQ.
Fig 7. Simulations show that MXF and…
Fig 7. Simulations show that MXF and LVX sterilize more granulomas than GFX.
Kaplan-Meier curves show percentage granulomas sterilized over 180 days of treatment with MXF, GFX or LVX (N = 210 granulomas).
Fig 8. Simulated effects of non-compliance on…
Fig 8. Simulated effects of non-compliance on bacterial load following treatment.
Treatment simulations are repeated but programmed to randomly miss 20% of doses. Graph shows mean and standard error of total bacteria (CFU) after 180 days of treatment with MXF, GFX or LVX for 100% compliance (solid bars) or 20% missed doses (hashed bars). *: p-value

Fig 9. Simulated effects of non-compliance on…

Fig 9. Simulated effects of non-compliance on granuloma sterilization.

Percentage granulomas sterilized over 180 days…

Fig 9. Simulated effects of non-compliance on granuloma sterilization.
Percentage granulomas sterilized over 180 days of treatment with MXF, GFX or LVX (N = 210 granulomas), comparing 100% compliance (solid lines) to 20% missed doses (dotted lines) for each FQ.

Fig 10

Bacteria in all subpopulations increase…

Fig 10

Bacteria in all subpopulations increase more slowly following MXF treatment interruption, compared to…

Fig 10
Bacteria in all subpopulations increase more slowly following MXF treatment interruption, compared to GFX and LVX (A-D). Lines show means of 210 in silico granulomas, with infection starting at day 0, daily FQ treatment starting at day 380 (arrows). Treatment is interrupted after 10 days (vertical dotted lines), and the simulation is continued to day 560 without antibiotics. (E-F) Immune score (x-axes) and infection score (y-axes) decrease during complete treatment (E) and rebound following treatment interruption after 10 days (F). The start of treatment is located at the intersection of the dotted lines. Filled circles indicate the treatment phase, and open circles indicated progression following treatment interruption.
All figures (10)
Fig 9. Simulated effects of non-compliance on…
Fig 9. Simulated effects of non-compliance on granuloma sterilization.
Percentage granulomas sterilized over 180 days of treatment with MXF, GFX or LVX (N = 210 granulomas), comparing 100% compliance (solid lines) to 20% missed doses (dotted lines) for each FQ.
Fig 10
Fig 10
Bacteria in all subpopulations increase more slowly following MXF treatment interruption, compared to GFX and LVX (A-D). Lines show means of 210 in silico granulomas, with infection starting at day 0, daily FQ treatment starting at day 380 (arrows). Treatment is interrupted after 10 days (vertical dotted lines), and the simulation is continued to day 560 without antibiotics. (E-F) Immune score (x-axes) and infection score (y-axes) decrease during complete treatment (E) and rebound following treatment interruption after 10 days (F). The start of treatment is located at the intersection of the dotted lines. Filled circles indicate the treatment phase, and open circles indicated progression following treatment interruption.

References

    1. WHO, Global tuberculosis report. 2015.
    1. Lin P.L., et al., Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun, 2009. 77(10): p. 4631–42. doi:
    1. Ramakrishnan L., Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol, 2012. 12(5): p. 352–66. doi:
    1. Lenaerts A., Barry C.E. 3rd, and Dartois V., Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol Rev, 2015. 264(1): p. 288–307. doi:
    1. WHO, WHO treatment guidelines for drug-resistant tuberculosis. 2016: Geneva, Switzerland.
    1. Seddon J.A., et al., Post-exposure management of multidrug-resistant tuberculosis contacts: evidence-based recommendations, in Policy Brief No. 1. 2015, Harvard MEdical School Center for Global Health Delivery-Dubai: Dubai, United Arab Emirates.
    1. Fox G.J., et al., Preventing the spread of multidrug-resistant tuberculosis and protecting contacts of infectious cases. Clin Microbiol Infect, 2016.
    1. Johnson J.L., et al., Early and extended early bactericidal activity of levofloxacin, gatifloxacin and moxifloxacin in pulmonary tuberculosis. Int J Tuberc Lung Dis, 2006. 10(6): p. 605–12.
    1. Peloquin C.A., et al., Population pharmacokinetics of levofloxacin, gatifloxacin, and moxifloxacin in adults with pulmonary tuberculosis. Antimicrob Agents Chemother, 2008. 52(3): p. 852–7. doi:
    1. Capitano B., et al., Steady-state intrapulmonary concentrations of moxifloxacin, levofloxacin, and azithromycin in older adults. Chest, 2004. 125(3): p. 965–73.
    1. Sato K., et al., Comparative antimicrobial activities of gatifloxacin, sitafloxacin and levofloxacin against Mycobacterium tuberculosis replicating within Mono Mac 6 human macrophage and A-549 type II alveolar cell lines. J Antimicrob Chemother, 2003. 52(2): p. 199–203. doi:
    1. Saraiva M.F., et al., Synthesis and antitubercular evaluation of new fluoroquinolone derivatives coupled with carbohydrates. Carbohydr Res, 2010. 345(6): p. 761–7. doi:
    1. Cremades R., et al., Comparison of the bactericidal activity of various fluoroquinolones against Mycobacterium tuberculosis in an in vitro experimental model. J Antimicrob Chemother, 2011. 66(10): p. 2281–3. doi:
    1. Rodriguez J.C., et al., Mutant prevention concentration: comparison of fluoroquinolones and linezolid with Mycobacterium tuberculosis. J Antimicrob Chemother, 2004. 53(3): p. 441–4. doi:
    1. Koh W.J., et al., Comparison of levofloxacin versus moxifloxacin for multidrug-resistant tuberculosis. Am J Respir Crit Care Med, 2013. 188(7): p. 858–64. doi:
    1. Jiang R.H., Xu H.B., and Li L., Comparative roles of moxifloxacin and levofloxacin in the treatment of pulmonary multidrug-resistant tuberculosis: a retrospective study. Int J Antimicrob Agents, 2013. 42(1): p. 36–41. doi:
    1. Lee J., et al., Retrospective comparison of levofloxacin and moxifloxacin on multidrug-resistant tuberculosis treatment outcomes. Korean J Intern Med, 2011. 26(2): p. 153–9. doi:
    1. Rustomjee R., et al., A Phase II study of the sterilising activities of ofloxacin, gatifloxacin and moxifloxacin in pulmonary tuberculosis. Int J Tuberc Lung Dis, 2008. 12(2): p. 128–38.
    1. Dartois V., The path of anti-tuberculosis drugs: from blood to lesions to mycobacterial cells. Nat Rev Microbiol, 2014. 12(3): p. 159–67. doi:
    1. Pienaar E., et al., A computational tool integrating host immunity with antibiotic dynamics to study tuberculosis treatment. J Theor Biol, 2015. 367: p. 166–79. doi:
    1. Pienaar E., et al., In silico evaluation and exploration of antibiotic tuberculosis treatment regimens. BMC Syst Biol, 2015. 9: p. 79 doi:
    1. Cilfone N.A., et al., Systems Pharmacology Approach Toward the Design of Inhaled Formulations of Rifampicin and Isoniazid for Treatment of Tuberculosis. CPT: Pharmacometrics & Systems Pharmacology, 2015. 4: p. e22.
    1. Cilfone N.A., et al., Multi-scale modeling predicts a balance of tumor necrosis factor-alpha and interleukin-10 controls the granuloma environment during Mycobacterium tuberculosis infection. PloS one, 2013. 8(7): p. e68680 doi:
    1. Fallahi-Sichani M., et al., Multiscale computational modeling reveals a critical role for TNF-alpha receptor 1 dynamics in tuberculosis granuloma formation. J Immunol, 2011. 186(6): p. 3472–83. doi:
    1. Ray J.C., Flynn J.L., and Kirschner D.E., Synergy between individual TNF-dependent functions determines granuloma performance for controlling Mycobacterium tuberculosis infection. J Immunol, 2009. 182(6): p. 3706–17. doi:
    1. Segovia-Juarez J.L., Ganguli S., and Kirschner D., Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J Theor Biol, 2004. 231(3): p. 357–76. doi:
    1. Lakshminarayana S.B., et al., Comprehensive physicochemical, pharmacokinetic and activity profiling of anti-TB agents. J Antimicrob Chemother, 2015. 70(3): p. 857–67. doi:
    1. Horsburgh C.R. Jr., Barry C.E. 3rd, and Lange C., Treatment of Tuberculosis. N Engl J Med, 2015. 373(22): p. 2149–60. doi:
    1. Mosser D.M. and Edwards J.P., Exploring the full spectrum of macrophage activation. Nat Rev Immunol, 2008. 8(12): p. 958–69. doi:
    1. Harris J., Hope J.C., and Keane J., Tumor necrosis factor blockers influence macrophage responses to Mycobacterium tuberculosis. J Infect Dis, 2008. 198(12): p. 1842–50. doi:
    1. Gutierrez M.G., et al., NF-kappa B activation controls phagolysosome fusion-mediated killing of mycobacteria by macrophages. J Immunol, 2008. 181(4): p. 2651–63.
    1. Gideon H.P., et al., Variability in tuberculosis granuloma T cell responses exists, but a balance of pro- and anti-inflammatory cytokines is associated with sterilization. PLoS Pathog, 2015. 11(1): p. e1004603 doi:
    1. Marino S., et al., A methodology for performing global uncertainty and sensitivity analysis in systems biology. J Theor Biol, 2008. 254(1): p. 178–96. doi:
    1. Donald P.R. and Diacon A.H., The early bactericidal activity of anti-tuberculosis drugs: a literature review. Tuberculosis (Edinb), 2008. 88 Suppl 1: p. S75–83.
    1. Wallis R.S., et al., Predicting the outcome of therapy for pulmonary tuberculosis. Am J Respir Crit Care Med, 2000. 161(4 Pt 1): p. 1076–80. doi:
    1. Eum S.Y., et al., Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest, 2010. 137(1): p. 122–8. doi:
    1. M'Imunya J, M., Kredo T., and Volmink J., Patient education and counselling for promoting adherence to treatment for tuberculosis. Cochrane Database Syst Rev, 2012(5): p. CD006591 doi:
    1. Cramer J.A., et al., Medication compliance and persistence: terminology and definitions. Value Health, 2008. 11(1): p. 44–7. doi:
    1. Lin P.L., et al., Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat Med, 2014. 20(1): p. 75–9. doi:
    1. Chen R.Y., et al., PET/CT imaging correlates with treatment outcome in patients with multidrug-resistant tuberculosis. Sci Transl Med, 2014. 6(265): p. 265ra166 doi:
    1. Lin P.L., et al., Radiologic responses in cynomolgous macaques for assessing tuberculosis chemotherapy regimens. Antimicrob Agents Chemother, 2013.
    1. Connolly C., Davies G.R., and Wilkinson D., Who fails to complete tuberculosis treatment? Temporal trends and risk factors for treatment interruption in a community-based directly observed therapy programme in a rural district of South Africa. Int J Tuberc Lung Dis, 1999. 3(12): p. 1081–7.
    1. Kumar D., Negi B., and Rawat D.S., The anti-tuberculosis agents under development and the challenges ahead. Future Med Chem, 2015. 7(15): p. 1981–2003. doi:
    1. Zumla A.I., et al., New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. Lancet Infect Dis, 2014. 14(4): p. 327–40. doi:
    1. Merle C.S., et al., A four-month gatifloxacin-containing regimen for treating tuberculosis. N Engl J Med, 2014. 371(17): p. 1588–98. doi:
    1. Gillespie S.H., et al., Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med, 2014. 371(17): p. 1577–87. doi:
    1. Jindani A., et al., High-dose rifapentine with moxifloxacin for pulmonary tuberculosis. N Engl J Med, 2014. 371(17): p. 1599–608. doi:
    1. Lounis N., et al., Effectiveness of once-weekly rifapentine and moxifloxacin regimens against Mycobacterium tuberculosis in mice. Antimicrob Agents Chemother, 2001. 45(12): p. 3482–6. doi:
    1. Rosenthal I.M., et al., Potent twice-weekly rifapentine-containing regimens in murine tuberculosis. Am J Respir Crit Care Med, 2006. 174(1): p. 94–101. doi:
    1. Nuermberger E.L., et al., Moxifloxacin-containing regimen greatly reduces time to culture conversion in murine tuberculosis. Am J Respir Crit Care Med, 2004. 169(3): p. 421–6. doi:
    1. Nuermberger E.L., et al., Moxifloxacin-containing regimens of reduced duration produce a stable cure in murine tuberculosis. Am J Respir Crit Care Med, 2004. 170(10): p. 1131–4. doi:
    1. Conde M.B., et al., Moxifloxacin versus ethambutol in the initial treatment of tuberculosis: a double-blind, randomised, controlled phase II trial. Lancet, 2009. 373(9670): p. 1183–9. doi:
    1. Burman W.J., et al., Moxifloxacin versus ethambutol in the first 2 months of treatment for pulmonary tuberculosis. Am J Respir Crit Care Med, 2006. 174(3): p. 331–8. doi:
    1. Ginsburg A.S., et al., Emergence of fluoroquinolone resistance in Mycobacterium tuberculosis during continuously dosed moxifloxacin monotherapy in a mouse model. Antimicrob Agents Chemother, 2005. 49(9): p. 3977–9. doi:
    1. Colijn C., et al., Spontaneous emergence of multiple drug resistance in tuberculosis before and during therapy. PLoS One, 2011. 6(3): p. e18327 doi:
    1. Yeh P., Tschumi A.I., and Kishony R., Functional classification of drugs by properties of their pairwise interactions. Nat Genet, 2006. 38(4): p. 489–94. doi:
    1. Ankomah P. and Levin B.R., Two-drug antimicrobial chemotherapy: a mathematical model and experiments with Mycobacterium marinum. PLoS Pathog, 2012. 8(1): p. e1002487 doi:
    1. Baym M., Stone L.K., and Kishony R., Multidrug evolutionary strategies to reverse antibiotic resistance. Science, 2016. 351(6268): p. aad3292 doi:
    1. Wang Q., et al., Super-compact treatment with a high dose of moxifloxacin in patients with drug-resistant tuberculosis and its resistance mechanisms. Exp Ther Med, 2015. 9(4): p. 1314–1318. doi:
    1. Parumasivam T., et al., Dry powder inhalable formulations for anti-tubercular therapy. Adv Drug Deliv Rev, 2016. 102: p. 83–101. doi:
    1. Gillespie S.H., Early Bactericidal Activity Studies Promise and Pitfalls, in Development of New Antituberculosis Drugs, Yew W.W., Editor. 2006, Nova Publishers.
    1. Prideaux B., et al., The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat Med, 2015. 21(10): p. 1223–7. doi:
    1. Subbian S., et al., Chronic pulmonary cavitary tuberculosis in rabbits: a failed host immune response. Open Biol, 2011. 1(4): p. 110016 doi:
    1. Via L.E., et al., Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect Immun, 2008. 76(6): p. 2333–40. doi:
    1. Waters N.J., et al., Validation of a rapid equilibrium dialysis approach for the measurement of plasma protein binding. J Pharm Sci, 2008. 97(10): p. 4586–95. doi:
    1. Cilfone N.A., et al., Computational modeling predicts interleukin-10 control of lesion sterilization by balancing early host-immunity-mediated antimicrobial responses with caseation during mycobacterium tuberculosis infection. J Immunol, 2015. 194(2): p. 664–677. doi:
    1. Marino S., et al., Computational and Empirical Studies Predict Mycobacterium tuberculosis-Specific T Cells as a Biomarker for Infection Outcome. PLoS Comput Biol, 2016. 12(4): p. e1004804 doi:
    1. Rohatgi, A. WebPlotDigitizer. September, 2016]; 3.10:[.
    1. McKay M.D., Beckman R.J., and Conover W.J., A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 1979. 21(2): p. 239–245.
    1. Helton J.C. and Davis F.J., Illustration of sampling-based methods for uncertainty and sensitivity analysis. Risk Anal, 2002. 22(3): p. 591–622.
    1. Regoes R.R., et al., Pharmacodynamic functions: a multiparameter approach to the design of antibiotic treatment regimens. Antimicrob Agents Chemother, 2004. 48(10): p. 3670–6. doi:
    1. Gill W.P., et al., A replication clock for Mycobacterium tuberculosis. Nat Med, 2009. 15(2): p. 211–4. doi:
    1. Wayne L.G. and Hayes L.G., An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun, 1996. 64(6): p. 2062–9.
    1. Capuano S.V. 3rd, et al., Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infect Immun, 2003. 71(10): p. 5831–44. doi:
    1. Lin P.L., et al., Early events in Mycobacterium tuberculosis infection in cynomolgus macaques. Infect Immun, 2006. 74(7): p. 3790–803. doi:
    1. Nahid P., et al., Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin Infect Dis, 2016. 63(7): p. e147–95. doi:
    1. Blaschke T.F., et al., Adherence to medications: insights arising from studies on the unreliable link between prescribed and actual drug dosing histories. Annu Rev Pharmacol Toxicol, 2012. 52: p. 275–301. doi:

Source: PubMed

3
購読する