Trial of Three Rounds of Mass Azithromycin Administration for Yaws Eradication

Lucy N John, Camila G Beiras, Wendy Houinei, Monica Medappa, Maria Sabok, Reman Kolmau, Eunice Jonathan, Edward Maika, James K Wangi, Petra Pospíšilová, David Šmajs, Dan Ouchi, Iván Galván-Femenía, Mathew A Beale, Lorenzo Giacani, Bonaventura Clotet, Eric Q Mooring, Michael Marks, Martí Vall-Mayans, Oriol Mitjà, Lucy N John, Camila G Beiras, Wendy Houinei, Monica Medappa, Maria Sabok, Reman Kolmau, Eunice Jonathan, Edward Maika, James K Wangi, Petra Pospíšilová, David Šmajs, Dan Ouchi, Iván Galván-Femenía, Mathew A Beale, Lorenzo Giacani, Bonaventura Clotet, Eric Q Mooring, Michael Marks, Martí Vall-Mayans, Oriol Mitjà

Abstract

Background: Treponema pallidum subspecies pertenue causes yaws. Strategies to better control, eliminate, and eradicate yaws are needed.

Methods: In an open-label, cluster-randomized, community-based trial conducted in a yaws-endemic area of Papua New Guinea, we randomly assigned 38 wards (i.e., clusters) to receive one round of mass administration of azithromycin followed by two rounds of target treatment of active cases (control group) or three rounds of mass administration of azithromycin (experimental group); round 1 was administered at baseline, round 2 at 6 months, and round 3 at 12 months. The coprimary end points were the prevalence of active cases of yaws, confirmed by polymerase-chain-reaction assay, in the entire trial population and the prevalence of latent yaws, confirmed by serologic testing, in a subgroup of asymptomatic children 1 to 15 years of age; prevalences were measured at 18 months, and the between-group differences were calculated.

Results: Of the 38 wards, 19 were randomly assigned to the control group (30,438 persons) and 19 to the experimental group (26,238 persons). A total of 24,848 doses of azithromycin were administered in the control group (22,033 were given to the participants at round 1 and 207 and 2608 were given to the participants with yaws-like lesions and their contacts, respectively, at rounds 2 and 3 [combined]), and 59,852 doses were administered in the experimental group. At 18 months, the prevalence of active yaws had decreased from 0.46% (102 of 22,033 persons) at baseline to 0.16% (47 of 29,954 persons) in the control group and from 0.43% (87 of 20,331 persons) at baseline to 0.04% (10 of 25,987 persons) in the experimental group (relative risk adjusted for clustering, 4.08; 95% confidence interval [CI], 1.90 to 8.76). The prevalence of other infectious ulcers decreased to a similar extent in the two treatment groups. The prevalence of latent yaws at 18 months was 6.54% (95% CI, 5.00 to 8.08) among 994 children in the control group and 3.28% (95% CI, 2.14 to 4.42) among 945 children in the experimental group (relative risk adjusted for clustering and age, 2.03; 95% CI, 1.12 to 3.70). Three cases of yaws with resistance to macrolides were found in the experimental group.

Conclusions: The reduction in the community prevalence of yaws was greater with three rounds of mass administration of azithromycin at 6-month intervals than with one round of mass administration of azithromycin followed by two rounds of targeted treatment. Monitoring for the emergence and spread of antimicrobial resistance is needed. (Funded by Fundació "la Caixa" and others; ClinicalTrials.gov number, NCT03490123.).

Copyright © 2022 Massachusetts Medical Society.

Figures

Figure 1. Trial profile
Figure 1. Trial profile
MDA: Mass drug administration. TTT: total targeted treatment. The estimated population was based on a survey conducted in 2016 for bed net distribution. The study area consisted of three Local Level Government (LLG) areas in Namatanai District. Each LLG in the study area has between 7-22 wards that are identified with consecutive numbers. Wards are the lowest administrative unit encompassing a group of 3 to 5 villages that share the same school and/or church. We used the ward as the randomization unit to reduce the risk of spill over between treatment arms; ward residents often attend the same school or church, but this is less common among residents of different wards. The mean population of the wards in Namatanai is 1,177 individuals (range 679-1,902), except for the district capital ward n# 10 in the Namatanai Rural LLG with 3,578. We selected 7/7 wards in Matalai Rural LLG, 14/14 wards in Namatanai Rural LLG, 17/22 wards in Sentral Niu Ailan LLG. Five island wards of Sentral Niu Ailand (1-4) were excluded due to remoteness. The coverage at the 6-month survey (Oct 2018) was lower due to a tropical cyclone that caused roadblocks and reduced access to many villages.
Figure 2. Allelic profile and macrolide resistance…
Figure 2. Allelic profile and macrolide resistance in PCR-confirmed yaws ulcer episodes.
We applied a variation of the three-amplicon multi-locus sequence typing (MLST) scheme previously described for T. pallidum subs. pertenue (see Supplementary Methods for details) which allowed us to grouping bacterial strains according to genetic relatedness, leading to three allelic profiles: J11, S22, and T13. TPE evolutionary distance (K80/K2P model) for the different rounds (not separated by arm) was 0.00207 at baseline, <0.0001 at 6 month, 0.00151, at 12 month, and 0.00055 at 18 months (P-value for the AMOVA when comparing baseline to 18 month 0. 2248)

References

    1. Mitja O, Asiedu K, Yaws Mabey D. Lancet. 2013;381(9868):763–73.
    1. Fitzpatrick C, Asiedu K, Jannin J. Where the Road Ends, Yaws Begins? The Cost-effectiveness of Eradication versus More Roads. PLoS Negl Trop Dis. 2014;8(9):e3165.
    1. Mitjà O, Hays R, Ipai A, et al. Single-dose azithromycin versus benzathine benzylpenicillin for treatment of yaws in children in Papua New Guinea: An open-label, non-inferiority, randomised trial. Lancet. 2012;379(9813):342–7.
    1. World Health Organization. [cited 2021 Feb 22];Summary Report of A Consultation on the Eradication of Yaws. 2012 43 [Internet]. (March 2012). Available from:
    1. World Health Organization. WHO. Eradication of yaws-the Morges Strategy. 2016. [cited 2021 Feb 22]. [Internet]. Available from:
    1. World Health Organization. Yaws. [cited 2021 Aug 5];Fact Sheets. 2021 [Internet]. Available from: .
    1. Mitjà O, Houinei W, Moses P, et al. Mass Treatment with Single-Dose Azithromycin for Yaws. N Engl J Med. 2015;372(8):703–10.
    1. Marks M, Sokana O, Nachamkin E, et al. Prevalence of Active and Latent Yaws in the Solomon Islands 18 Months after Azithromycin Mass Drug Administration for Trachoma. PLoS Negl Trop Dis. 2016;10(8):e0004927.
    1. Abdulai AA, Agana-Nsiire P, Biney F, et al. Community-based mass treatment with azithromycin for the elimination of yaws in Ghana—Results of a pilot study. PLoS Negl Trop Dis. 2018;12(3):e0006303.
    1. Mitjà O, Godornes C, Houinei W, et al. Re-emergence of yaws after single mass azithromycin treatment followed by targeted treatment: a longitudinal study. Lancet. 2018;391(10130):1599–607.
    1. Marks M, Mitjà O, Fitzpatrick C, et al. Mathematical modeling of programmatic requirements for yaws eradication. Emerg Infect Dis. 2017;23(1):22–8.
    1. Dyson L, Marks M, Crook OM, et al. Targeted Treatment of Yaws with Household Contact Tracing: How Much Do We Miss? Am J Epidemiol. 2018;187(4):837–44.
    1. World Health Organization. WHO. Report of a global meeting on yaws eradication surveillance, monitoring and evaluation Geneva, 29–30 January 2018
    1. Holmes A, Tildesley MJ, Solomon AW, et al. Modeling treatment strategies to inform yaws eradication. Emerg Infect Dis. 2020;26(11):2685–93.
    1. Hetzel MW, Saweri OPM, Kuadima JJ, et al. Papua New Guinea malaria indicator survey 2016-2017: malaria prevention, infection and treatment. 2018. [cited 2021 Apr 7]. [Internet]. Available from: .
    1. González-Beiras C, Kapa A, Vall-Mayans M, et al. Single-Dose Azithromycin for the Treatment of Haemophilus ducreyi Skin Ulcers in Papua New Guinea. Clin Infect Dis. 2017;65(12):2085–90.
    1. Grillová L, Bawa T, Mikalová L, et al. Molecular characterization of Treponema pallidum subsp. pallidum in Switzerland and France with a new multilocus sequence typing scheme. PLoS One. 2018;13(7):e0200773.
    1. Orle KA, Gates CA, Martin DH, Body BA, Weiss JB. Simultaneous PCR detection of Haemophilus ducreyi, Treponema pallidum, and herpes simplex virus types 1 and 2 from genital ulcers. J Clin Microbiol. 1996;34(1):49–54.
    1. Marks M, Yin Y-P, Chen X-S, et al. Metaanalysis of the performance of a combined treponemal and nontreponemal rapid diagnostic test for syphilis and yaws. Clin Infect Dis. 2016;63(5):627–33.
    1. Ayove T, Houniei W, Wangnapi R, et al. Sensitivity and specificity of a rapid point-of-care test for active yaws: A comparative study. Lancet Glob Heal. 2014;2(7):e415–21.
    1. Julious SA. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Stat Med. 2005;24(21):3383–4.
    1. Cui J. QIC program and model selection in GEE analyses. Stata J. 2007;7(2):209–20.
    1. Godornes C, Giacani L, Barry AE, Mitja O, Lukehart SA. Development of a multilocus sequence typing (MLST) scheme for Treponema pallidum subsp. pertenue: application to yaws in Lihir Island, Papua New Guinea. PLoS Negl Trop Dis. 2017;11(12):e0006113.
    1. Šmajs D, Pospíšilová P. Macrolide resistance in yaws. Lancet. 2018;391(10130):1555–6.
    1. Mitjà O, Lukehart SA, Pokowas G, et al. Haemophilus ducreyi as a cause of skin ulcers in children from a yaws-endemic area of Papua New Guinea: a prospective cohort study. Lancet Glob Heal. 2014;2(4):e235–41.
    1. Ngono JPN, Tchatchouang S, Noah Tsanga MV, et al. Ulcerative skin lesions among children in Cameroon: It is not always Yaws. PLoS Negl Trop Dis. 2020;15(2):e0009180
    1. G-Beiras C, Ubals M, Corbacho-Monné M, Vall-Mayans M, Mitjà O. Yaws, Haemophilus ducreyi, and Other Bacterial Causes of Cutaneous Ulcer Disease in the South Pacific Islands. Dermatol Clin. 2021;39(1):15–22.

Source: PubMed

3
購読する