The international primary ciliary dyskinesia cohort (iPCD Cohort): methods and first results

Myrofora Goutaki, Elisabeth Maurer, Florian S Halbeisen, Israel Amirav, Angelo Barbato, Laura Behan, Mieke Boon, Carmen Casaulta, Annick Clement, Suzanne Crowley, Eric Haarman, Claire Hogg, Bulent Karadag, Cordula Koerner-Rettberg, Margaret W Leigh, Michael R Loebinger, Henryk Mazurek, Lucy Morgan, Kim G Nielsen, Heymut Omran, Nicolaus Schwerk, Sergio Scigliano, Claudius Werner, Panayiotis Yiallouros, Zorica Zivkovic, Jane S Lucas, Claudia E Kuehni, PCD Italian Consortium, Swiss PCD Group, French Reference Centre for Rare Lung Diseases, Genetic Disorders of Mucociliary Clearance Consortium, Myrofora Goutaki, Elisabeth Maurer, Florian S Halbeisen, Israel Amirav, Angelo Barbato, Laura Behan, Mieke Boon, Carmen Casaulta, Annick Clement, Suzanne Crowley, Eric Haarman, Claire Hogg, Bulent Karadag, Cordula Koerner-Rettberg, Margaret W Leigh, Michael R Loebinger, Henryk Mazurek, Lucy Morgan, Kim G Nielsen, Heymut Omran, Nicolaus Schwerk, Sergio Scigliano, Claudius Werner, Panayiotis Yiallouros, Zorica Zivkovic, Jane S Lucas, Claudia E Kuehni, PCD Italian Consortium, Swiss PCD Group, French Reference Centre for Rare Lung Diseases, Genetic Disorders of Mucociliary Clearance Consortium

Abstract

Data on primary ciliary dyskinesia (PCD) epidemiology is scarce and published studies are characterised by low numbers. In the framework of the European Union project BESTCILIA we aimed to combine all available datasets in a retrospective international PCD cohort (iPCD Cohort).We identified eligible datasets by performing a systematic review of published studies containing clinical information on PCD, and by contacting members of past and current European Respiratory Society Task Forces on PCD. We compared the contents of the datasets, clarified definitions and pooled them in a standardised format.As of April 2016 the iPCD Cohort includes data on 3013 patients from 18 countries. It includes data on diagnostic evaluations, symptoms, lung function, growth and treatments. Longitudinal data are currently available for 542 patients. The extent of clinical details per patient varies between centres. More than 50% of patients have a definite PCD diagnosis based on recent guidelines. Children aged 10-19 years are the largest age group, followed by younger children (≤9 years) and young adults (20-29 years).This is the largest observational PCD dataset available to date. It will allow us to answer pertinent questions on clinical phenotype, disease severity, prognosis and effect of treatments, and to investigate genotype-phenotype correlations.

Conflict of interest statement

can be found alongside this article at erj.ersjournals.com

Copyright ©ERS 2017.

Figures

FIGURE 1
FIGURE 1
Countries contributing data to the international primary ciliary dyskinesia cohort (iPCD Cohort). The circle size reflects the size of the dataset and the shades of grey reflect the data richness (semiquantitative measure based on the number of delivered variables).
FIGURE 2
FIGURE 2
Age distribution of 3013 primary ciliary dyskinesia (PCD) patients included in the international PCD cohort (iPCD Cohort), stratified by sex: a) male and b) female (April 2016).

References

    1. Barbato A, Frischer T, Kuehni CE, et al. . Primary ciliary dyskinesia: a consensus statement on diagnostic and treatment approaches in children. Eur Respir J 2009; 34: 1264–1276.
    1. Lucas JS, Walker WT, Kuehni CE, et al. . Primary ciliary dyskinesia. In: Courdier J-F, ed. Orphan Lung Diseases (ERS Monograph). Sheffield, European Respiratory Society, 2011; pp. 201–217.
    1. Noone PG, Leigh MW, Sannuti A, et al. . Primary ciliary dyskinesia: diagnostic and phenotypic features. Am J Respir Crit Care Med 2004; 169: 459–467.
    1. Bush A, Chodhari R, Collins N, et al. . Primary ciliary dyskinesia: current state of the art. Arch Dis Child 2007; 92: 1136–1140.
    1. Shapiro AJ, Davis SD, Ferkol T, et al. . Laterality defects other than situs inversus totalis in primary ciliary dyskinesia: insights into situs ambiguus and heterotaxy. Chest 2014; 146: 1176–1186.
    1. Kennedy MP, Omran H, Leigh MW, et al. . Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation 2007; 115: 2814–2821.
    1. Kuehni CE, Frischer T, Strippoli MP, et al. . Factors influencing age at diagnosis of primary ciliary dyskinesia in European children. Eur Respir J 2010; 36: 1248–1258.
    1. Jackson CL, Behan L, Collins SA, et al. . Accuracy of diagnostic testing in primary ciliary dyskinesia. Eur Respir J 2016; 47: 837–848.
    1. Kurkowiak M, Zietkiewicz E, Witt M. Recent advances in primary ciliary dyskinesia genetics. J Med Genet 2015; 52: 1–9.
    1. Werner C, Onnebrink JG, Omran H. Diagnosis and management of primary ciliary dyskinesia. Cilia 2015; 4: 2.
    1. Lucas JS, Barbato A, Collins SA, et al. . European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J 2017; 49: 1601090.
    1. Goutaki M, Meier B, Halbeisen F, et al. . Clinical manifestations in primary ciliary dyskinesia: systematic review and meta-analysis. Eur Respir J 2016; 48: 1081–1095.
    1. Marthin JK, Petersen N, Skovgaard LT, et al. . Lung function in patients with primary ciliary dyskinesia: a cross-sectional and 3-decade longitudinal study. Am J Respir Crit Care Med 2010; 181: 1262–1268.
    1. Alanin MC, Nielsen KG, von Buchwald C, et al. . A longitudinal study of lung bacterial pathogens in patients with primary ciliary dyskinesia. Clin Microbiol Infect 2015; 21: 1093.
    1. Maglione M, Bush A, Nielsen KG, et al. . Multicenter analysis of body mass index, lung function, and sputum microbiology in primary ciliary dyskinesia. Pediatr Pulmonol 2014; 49: 1243–1250.
    1. Shah A, Shoemark A, MacNeill S, et al. . A longitudinal study characterising a large adult primary ciliary dyskinesia population. Eur Respir J 2016; 48: 441–450.
    1. Miller MR, Pedersen OF, Lange P, et al. . Improved survival prediction from lung function data in a large population sample. Respir Med 2009; 103: 442–448.
    1. Cohen-Cymberknoh M, Simanovsky N, Hiller N, et al. . Differences in disease expression between primary ciliary dyskinesia and cystic fibrosis with and without pancreatic insufficiency. Chest 2014; 145: 738–744.
    1. Svobodova T, Djakow J, Zemkova D, et al. . Impaired growth during childhood in patients with primary ciliary dyskinesia. Int J Endocrinol 2013; 2013: 731423.
    1. Boon M, Smits A, Cuppens H, et al. . Primary ciliary dyskinesia: critical evaluation of clinical symptoms and diagnosis in patients with normal and abnormal ultrastructure. Orphanet J Rare Dis 2014; 9: 11.
    1. Ellerman A, Bisgaard H. Longitudinal study of lung function in a cohort of primary ciliary dyskinesia. Eur Respir J 1997; 10: 2376–2379.
    1. Magnin ML, Cros P, Beydon N, et al. . Longitudinal lung function and structural changes in children with primary ciliary dyskinesia. Pediatr Pulmonol 2012; 47: 816–825.
    1. Davis SD, Ferkol TW, Rosenfeld M, et al. . Clinical features of childhood primary ciliary dyskinesia by genotype and ultrastructural phenotype. Am J Respir Crit Care Med 2015; 191: 316–324.
    1. Orphanet. 2015 Activity Report. Date last accessed: August 1, 2016.
    1. Strippoli MP, Frischer T, Barbato A, et al. . Management of primary ciliary dyskinesia in European children: recommendations and clinical practice. Eur Respir J 2012; 39: 1482–1491.
    1. Werner C, Lablans M, Ataian M, et al. . An international registry for primary ciliary dyskinesia. Eur Respir J 2016; 47: 849–859.
    1. Lucas JS, Paff T, Goggin P, et al. . Diagnostic methods in primary ciliary dyskinesia. Paediatr Respir Rev 2016; 18: 8–17.
    1. Kartagener M. Zur pathogenese der bronkiectasien: bronkiectasien bei situs viscerum inversus. Beitr Klin Tuberk 1933; 82: 489–501.
    1. Lindberg S, Cervin A, Runer T. Low levels of nasal nitric oxide (NO) correlate to impaired mucociliary function in the upper airways. Acta Otolaryngol 1997; 117: 728–734.
    1. Harris PA, Taylor R, Thielke R, et al. . Research electronic data capture (REDCap) – a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 2009; 42: 377–381.

Source: PubMed

3
購読する