Autophagy impairment in a mouse model of neuropathic pain

Laura Berliocchi, Rossella Russo, Maria Maiarù, Alessandra Levato, Giacinto Bagetta, Maria Tiziana Corasaniti, Laura Berliocchi, Rossella Russo, Maria Maiarù, Alessandra Levato, Giacinto Bagetta, Maria Tiziana Corasaniti

Abstract

Autophagy is an intracellular membrane trafficking pathway controlling the delivery of cytoplasmic material to the lysosomes for degradation. It plays an important role in cell homeostasis in both normal settings and abnormal, stressful conditions. It is now recognised that an imbalance in the autophagic process can impact basal cell functions and this has recently been implicated in several human diseases, including neurodegeneration and cancer.Here, we investigated the consequences of nerve injury on the autophagic process in a commonly used model of neuropathic pain. The expression and modulation of the main autophagic marker, the microtubule-associated protein 1 light chain 3 (LC3), was evaluated in the L4-L5 cord segment seven days after spinal nerve ligation (SNL). Levels of LC3-II, the autophagosome-associated LC3 form, were markedly higher in the spinal cord ipsilateral to the ligation side, appeared to correlate with the upregulation of the calcium channel subunit α2δ-1 and were not present in mice that underwent sham surgery. However, LC3-I and Beclin 1 expression were only slightly increased. On the contrary, SNL promoted the accumulation of the ubiquitin- and LC3-binding protein p62, which inversely correlates with autophagic activity, thus pointing to a block of autophagosome turnover.Our data showed for the first time that basal autophagy is disrupted in a model of neuropathic pain.

Figures

Figure 1
Figure 1
Spinal nerve ligation induced a severe mechanical allodynia. A severe and persistent mechanical hypersensitivity developed and maintained over time following SNL and was absent in animals that underwent sham surgery. Data were expressed as mean ± SEM of 50% of pain threshold and were normalized to the baseline of each animal (sham: n = 6; SNL: n = 10). For all time points, p < 0.001.
Figure 2
Figure 2
LC3 expression in the spinal cord following spinal nerve ligation. (A) LC3 expression was analyzed by Western blot in the hemi-cord contralateral (C) and ipsilateral (I) to the side of ligation, 7 days after surgery. SNL animals showed higher LC3-I expression than sham animals (A). A clear trend towards an increased LC3-I expression in the ipsilateral (I) compared to the contralateral (C) side, together with the appearance of LC3-II, was observed after ligation (A) and confirmed by densitometric analysis (B and C). The slight increase in LC3-I levels and the apparent formation of LC3-II well correlated with α2δ-1 upregulation (A and D). Signals from each band were normalized towards the corresponding GADPH signal. One representative Western blot is shown. Sham: n = 5, SNL: n = 6.
Figure 3
Figure 3
Beclin 1 expression in the spinal cord following spinal nerve ligation. (A) Beclin 1 expression was analyzed by Western blot in the hemi-cord contralateral (C) and ipsilateral (I) to the side of ligation, 7 days after surgery. SNL animals showed higher Beclin 1 expression than sham animals (A). A clear trend towards an increase in Beclin 1 expression in the ipsilateral (I) compared to the contralateral (C) side was observed after ligation (A) and confirmed by densitometric analysis (B). The slight increase in Beclin 1 expression well correlated with α2δ-1 upregulation (A and C). Signals from each band were normalized towards the corresponding GAPDH signal. One representative Western blot is shown. Sham: n = 5, SNL: n = 6.
Figure 4
Figure 4
Statistical analysis. Quantitative analysis of Western blots by densitometry confirmed a trend towards an increase in LC3-I (A) and Beclin 1 (C) expression in the ipsilateral (I) compared to the controlateral (C) side of SNL animals 7 days after surgery. In the same animals, this was accompanied by a marked increase in LC3-II levels (B) and associated to strong α2δ-1 upregulation (D). For LC3-I, LC3-II, Beclin 1 and α2δ-1: n = 5. Signals from each band were normalized towards the corresponding GAPDH signal. Values were expressed as mean ± SEM, * p < 0.05.
Figure 5
Figure 5
p62 accumulation in the spinal cord following spinal nerve ligation. (A) p62 expression was analyzed by Western blot in the hemi-cord contralateral (C) and ipsilateral (I) to the side of ligation, 7 days after surgery. The minor band detected by the antibody together with the main upper band has been previously suggested as a p62 splicing variant or a partially cleaved product [19]. SNL animals showed higher p62 expression than sham animals (A). A clear trend towards an increased p62 expression in the ipsilateral (I) compared to the contralateral (C) side was observed after ligation (A) and confirmed by densitometric analysis (B). The increase in p62 levels correlated with α2δ-1 upregulation (A and C) and was confirmed by quantitative analysis (n = 5, D). Signals from each band were normalized towards the corresponding GAPDH signal. Values were expressed as mean ± SEM, * p < 0.05.

References

    1. IASP Task Force on Taxonomy. Part III: Pain Terms, A Current List with Definitions and Notes on Usage. In: H. Merskey NB. Seattle, editor. Classification of Chronic Pain, Second Edition. 1994. pp. 209–214.
    1. Ji RR, Kohno T, Moore KA, Woolf CJ. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 2003;26:696–705. doi: 10.1016/j.tins.2003.09.017.
    1. Scholz J, Broom DC, Youn DH, Mills CD, Kohno T, Suter MR, Moore KA, Decosterd I, Coggeshall RE, Woolf CJ. Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J Neurosci. 2005;25:7317–7323. doi: 10.1523/JNEUROSCI.1526-05.2005.
    1. Polgar E, Hughes DI, Arham AZ, Todd AJ. Loss of neurons from laminas I-III of the spinal dorsal horn is not required for development of tactile allodynia in the spared nerve injury model of neuropathic pain. J Neurosci. 2005;25:6658–6666. doi: 10.1523/JNEUROSCI.1490-05.2005.
    1. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132:27–42. doi: 10.1016/j.cell.2007.12.018.
    1. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–1075. doi: 10.1038/nature06639.
    1. Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140:313–326. doi: 10.1016/j.cell.2010.01.028.
    1. Vellai T, Takacs-Vellai K, Sass M, Klionsky DJ. The regulation of aging: does autophagy underlie longevity? Trends Cell Biol. 2009;19:487–494. doi: 10.1016/j.tcb.2009.07.007.
    1. He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67–93. doi: 10.1146/annurev-genet-102808-114910.
    1. Nixon RA, Yang DS, Lee JH. Neurodegenerative lysosomal disorders: a continuum from development to late age. Autophagy. 2008;4:590–599.
    1. Kim SH, Chung JM. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain. 1992;50:355–363. doi: 10.1016/0304-3959(92)90041-9.
    1. Liu CN, Wall PD, Ben-Dor E, Michaelis M, Amir R, Devor M. Tactile allodynia in the absence of C-fiber activation: altered firing properties of DRG neurons following spinal nerve injury. Pain. 2000;85:503–521. doi: 10.1016/S0304-3959(00)00251-7.
    1. Berliocchi L, Russo R, Levato A, Fratto V, Bagetta G, Sakurada S, Sakurada T, Mercuri NB, Corasaniti MT. (-)-Linalool attenuates allodynia in neuropathic pain induced by spinal nerve ligation in c57/bl6 mice. Int Rev Neurobiol. 2009;85:221–235.
    1. Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH, Bazan NG, Blagosklonny MV, Blomgren K, Borner C. et al.Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ. 2009;16:1093–1107. doi: 10.1038/cdd.2009.44.
    1. Bauer CS, Nieto-Rostro M, Rahman W, Tran-Van-Minh A, Ferron L, Douglas L, Kadurin I, Sri Ranjan Y, Fernandez-Alacid L, Millar NS. et al.The increased trafficking of the calcium channel subunit alpha2delta-1 to presynaptic terminals in neuropathic pain is inhibited by the alpha2delta ligand pregabalin. J Neurosci. 2009;29:4076–4088. doi: 10.1523/JNEUROSCI.0356-09.2009.
    1. Li CY, Song YH, Higuera ES, Luo ZD. Spinal dorsal horn calcium channel alpha2delta-1 subunit upregulation contributes to peripheral nerve injury-induced tactile allodynia. J Neurosci. 2004;24:8494–8499. doi: 10.1523/JNEUROSCI.2982-04.2004.
    1. Korolchuk VI, Menzies FM, Rubinsztein DC. A novel link between autophagy and the ubiquitin-proteasome system. Autophagy. 2009;5:862–863.
    1. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005;171:603–614. doi: 10.1083/jcb.200507002.
    1. Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S. et al.Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007;131:1149–1163. doi: 10.1016/j.cell.2007.10.035.
    1. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J. 2000;19:5720–5728. doi: 10.1093/emboj/19.21.5720.
    1. Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T, Ohsumi Y, Tokuhisa T, Mizushima N. The role of autophagy during the early neonatal starvation period. Nature. 2004;432:1032–1036. doi: 10.1038/nature03029.
    1. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y. et al.Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005;169:425–434. doi: 10.1083/jcb.200412022.
    1. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006;441:885–889. doi: 10.1038/nature04724.
    1. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006;441:880–884. doi: 10.1038/nature04723.
    1. Marino G, Madeo F, Kroemer G. Autophagy for tissue homeostasis and neuroprotection. Curr Opin Cell Biol. 2010.
    1. Sandkuhler J. Models and mechanisms of hyperalgesia and allodynia. Physiol Rev. 2009;89:707–758. doi: 10.1152/physrev.00025.2008.
    1. Boland B, Nixon RA. Neuronal macroautophagy: from development to degeneration. Mol Aspects Med. 2006;27:503–519. doi: 10.1016/j.mam.2006.08.009.
    1. Jimenez-Diaz L, Geranton SM, Passmore GM, Leith JL, Fisher AS, Berliocchi L, Sivasubramaniam AK, Sheasby A, Lumb BM, Hunt SP. Local translation in primary afferent fibers regulates nociception. PLoS One. 2008;3:e1961. doi: 10.1371/journal.pone.0001961.
    1. Geranton SM, Jimenez-Diaz L, Torsney C, Tochiki KK, Stuart SA, Leith JL, Lumb BM, Hunt SP. A rapamycin-sensitive signaling pathway is essential for the full expression of persistent pain states. J Neurosci. 2009;29:15017–15027. doi: 10.1523/JNEUROSCI.3451-09.2009.
    1. Asante CO, Wallace VC, Dickenson AH. Mammalian target of rapamycin signaling in the spinal cord is required for neuronal plasticity and behavioral hypersensitivity associated with neuropathy in the rat. J Pain. 2010;11:1356–1367. doi: 10.1016/j.jpain.2010.03.013.
    1. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290:1717–1721.
    1. Kanno H, Ozawa H, Sekiguchi A, Itoi E. Spinal cord injury induces upregulation of Beclin 1 and promotes autophagic cell death. Neurobiol Dis. 2009;33:143–148. doi: 10.1016/j.nbd.2008.09.009.
    1. Kanno H, Ozawa H, Sekiguchi A, Yamaya S, Itoi E. Induction of Autophagy and Autophagic Cell Death in Damaged Neural Tissue after Acute Spinal Cord Injury in Mice. Spine (Phila Pa 1976) 2011;36:1427–1434. doi: 10.1097/BRS.0b013e3181f5dfe0.
    1. Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS, Goldstein LS. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science. 2005;307:1282–1288. doi: 10.1126/science.1105681.
    1. Ravikumar B, Acevedo-Arozena A, Imarisio S, Berger Z, Vacher C, O'Kane CJ, Brown SD, Rubinsztein DC. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet. 2005;37:771–776. doi: 10.1038/ng1591.
    1. Bi X, Zhou J, Lynch G. Lysosomal protease inhibitors induce meganeurites and tangle-like structures in entorhinohippocampal regions vulnerable to Alzheimer's disease. Exp Neurol. 1999;158:312–327. doi: 10.1006/exnr.1999.7087.
    1. Koike M, Shibata M, Waguri S, Yoshimura K, Tanida I, Kominami E, Gotow T, Peters C, von Figura K, Mizushima N. et al.Participation of autophagy in storage of lysosomes in neurons from mouse models of neuronal ceroid-lipofuscinoses (Batten disease) Am J Pathol. 2005;167:1713–1728. doi: 10.1016/S0002-9440(10)61253-9.
    1. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53:55–63. doi: 10.1016/0165-0270(94)90144-9.

Source: PubMed

3
購読する