Intra- and Postoperative Electrocochleography May Be Predictive of Final Electrode Position and Postoperative Hearing Preservation

Brendan P O'Connell, Jourdan T Holder, Robert T Dwyer, René H Gifford, Jack H Noble, Marc L Bennett, Alejandro Rivas, George B Wanna, David S Haynes, Robert F Labadie, Brendan P O'Connell, Jourdan T Holder, Robert T Dwyer, René H Gifford, Jack H Noble, Marc L Bennett, Alejandro Rivas, George B Wanna, David S Haynes, Robert F Labadie

Abstract

Introduction: The objectives of the current study were to (1) determine the relationship between electrocochleography (ECochG), measured from the cochlear implant (CI) electrode array during and after implantation, and postoperative audiometric thresholds, (2) determine the relationship between ECochG amplitude and electrode scalar location determined by computerized tomography (CT); and (3) determine whether changes in cochlear microphonic (CM) amplitude during electrode insertion were associated with postoperative hearing. Materials and Methods: Eighteen subjects undergoing CI with an Advanced Bionics Mid-Scala device were prospectively studied. ECochG responses were recorded using the implant coupled to a custom signal recording unit. ECochG amplitude collected intraoperatively concurrent with CI insertion and at activation was compared with audiometric thresholds postoperatively. Sixteen patients also underwent postoperative CT to determine scalar location and the relationship to ECochG measures and residual hearing. Results: Mean low-frequency pure tone average (LFPTA) increased following surgery by an average of 28 dB (range 8-50). Threshold elevation was significantly greater for electrodes with scalar dislocation. No correlation was found between intraoperative ECochG and postoperative behavioral thresholds collapsed across frequency; however, mean differences in thresholds measured by intraoperative ECochG and postoperative audiometry were significantly smaller for electrodes inserted completely within scala tympani (ST) vs. those translocating from ST to scala vestibuli. A significant correlation was observed between postoperative ECochG thresholds and behavioral thresholds obtained at activation. Discussion: Postoperative audiometry currently serves as a marker for intracochlear trauma though thresholds are not obtained until device activation or later. When measured at the same time-point postoperatively, low-frequency ECochG thresholds correlated with behavioral thresholds. Intraoperative ECochG thresholds, however, did not correlate significantly with postoperative behavioral thresholds suggesting that changes in cochlear physiology occur between electrode insertion and activation. ECochG may hold clinical utility providing surgeons with feedback regarding insertion trauma due to scalar translocation, which may be predictive of postoperative hearing preservation. Conclusion: CI insertion trauma is generally not evident until postoperative audiometry when loss of residual hearing is confirmed. ECochG has potential to provide estimates of trauma during insertion as well as reliable information regarding degree of hearing preservation.

Keywords: audiometry; cochlear implant; cochlear microphonic; electrocochleography; hearing loss; hearing preservation; residual hearing.

Figures

Figure 1
Figure 1
Pre- and postoperative pure-tone thresholds; each symbol represents an individual patient. Scalar location of electrode, when available, has been denoted (the * represents the electrode abutting the basilar membrane). Diagonal lines are used to depict hearing preservation in relation to pure-tone average (PTA) shift bins as follows: PTA shift <15 dB, PTA shift between 15–30 dB, and PTA shift >30 dB.
Figure 2
Figure 2
Scatter plot of low-frequency pure-tone average (PTA) shift depicted according to scalar electrode location. Lower median shift (i.e., better hearing preservation) was noted when comparing electrodes inserted entirely into the scala tympani (ST) to electrodes that translocated into scala vestibuli (SV). Shown are the median and the range of the 25–75th percentile.
Figure 3
Figure 3
The relationship between intraoperative ECochG thresholds, in dB HL, and postoperative behavioral thresholds, also in dB HL, for 125, 250, and 500 Hz are depicted in the entire cohort, and for those cases in which scalar location is known. Bonferroni correction is applied for multiple comparisons, with p < 0.017 indicative of statistical significance. The diagonal and dotted lines represent the ±20 dB difference between ECochG thresholds and behavioral thresholds.
Figure 4
Figure 4
The relationship between postoperative ECochG thresholds and postoperative behavioral thresholds for 125, 250, and 500 Hz frequencies are depicted in the entire cohort, and for those cases in which scalar location is known. Bonferroni correction is applied for multiple comparisons, with p < 0.017 indicative of statistical significance.
Figure 5
Figure 5
Bland-Altman plots depict the average and difference between postoperative behavioral and ECochG thresholds at 125, 250, and 500 Hz. The 95% limits of agreement are shown as two dotted lines. The biases, or average of the differences at each frequency, are reported.
Figure 6
Figure 6
Change in cochlear microphonic (CM) amplitude, in dB re: microVolts, during insertion is shown according to scalar location of the electrode array.

References

    1. Acharya A. N., Tavora-Vieira D., Rajan G. P. (2016). Using the implant electrode array to conduct real-time intraoperative hearing monitoring during pediatric cochlear implantation: preliminary experiences. Otol. Neurotol. 37, e148–e153. 10.1097/mao.0000000000000950
    1. Adunka O. F., Giardina C. K., Formeister E. J., Choudhury B., Buchman C. A., Fitzpatrick D. C. (2016). Round window electrocochleography before and after cochlear implant electrode insertion. Laryngoscope 126, 1193–1200. 10.1002/lary.25602
    1. Adunka O., Gstoettner W., Hambek M., Unkelbach M. H., Radeloff A., Kiefer J. (2004). Preservation of basal inner ear structures in cochlear implantation. ORL 66, 306–312. 10.1159/000081887
    1. Calloway N. H., Fitzpatrick D. C., Campbell A. P., Iseli C., Pulver S., Buchman C. A., et al. . (2014). Intracochlear electrocochleography during cochlear implantation. Otol. Neurotol. 35, 1451–1457. 10.1097/MAO.0000000000000451
    1. Campbell L., Kaicer A., Briggs R., O'Leary S. (2015). Cochlear response telemetry: intracochlear electrocochleography via cochlear implant neural response telemetry pilot study results. Otol. Neurotol. 36, 399–405. 10.1097/MAO.0000000000000678
    1. Campbell L., Kaicer A., Sly D., Iseli C., Wei B., Briggs R., et al. . (2016). Intraoperative real-time cochlear response telemetry predicts hearing preservation in cochlear implantation. Otol. Neurotol. 37, 332–338. 10.1097/mao.0000000000000972
    1. Carlson M. L., Driscoll C. L. W., Gifford R. H., Service G. J., Tombers N. M., Hughes-Borst B. J., et al. . (2011). Implications of minimizing trauma during conventional cochlear implantation. Otol. Neurotol. 32, 962–968. 10.1097/MAO.0b013e3182204526
    1. Choudhury B., Fitzpatrick D. C., Buchman C. A., Wei B. P., Dillon M. T., He S., et al. . (2012). Intraoperative round window recordings to acoustic stimuli from cochlear implant patients. Otol. Neurotol. 33, 1507–1515. 10.1097/MAO.0b013e31826dbc80
    1. Cosetti M. K., Friedmann D. R., Zhu B. Z., Heman-Ackah S. E., Fang Y., Keller R. G., et al. . (2013). The effects of residual hearing in traditional cochlear implant candidates after implantation with a conventional electrode. Otol. Neurotol. 34, 516–521. 10.1097/MAO.0b013e3182785210
    1. Cullen J. K., Ellis M. S., Berlin C. I., Lousteau R. J. (1972). Human acoustic nerve action potential recordings from the tympanic membrane without anesthesia. Acta Otolaryngol. 74, 15–22. 10.3109/00016487209128417
    1. Dalbert A., Huber A., Veraguth D., Roosli C., Pfiffner F. (2016). Assessment of cochlear trauma during cochlear implantation using electrocochleography and cone beam computed tomography. Otol. Neurotol. 37, 446–453. 10.1097/MAO.0000000000000998
    1. Dalbert A., Pfiffner F., Röösli C., Thoele K., Sim J. H., Gerig R., et al. . (2015a). Extra- and intracochlear electrocochleography in cochlear implant recipients. Audiol. Neurootol. 20, 339–348. 10.1159/000438742
    1. Dalbert A., Sim J. H., Gerig R., Pfiffner F., Roosli C., Huber A. (2015b). Correlation of electrophysiological properties and hearing preservation in cochlear implant patients. Otol. Neurotol. 36, 1172–1180. 10.1097/mao.0000000000000768
    1. Dedhia K., Worman T., Meredith M. A., Rubinstein J. T. (2016). Patterns of long-term hearing loss in hearing preservation cochlear implant surgery. Otol. Neurotol. 37, 478–486. 10.1097/MAO.0000000000001011
    1. Dorman M. F., Gifford R. H. (2010). Combining acoustic and electric stimulation in the service of speech recognition. Int. J. Audiol. 49, 912–919. 10.3109/14992027.2010.509113
    1. Dunn C. C., Perreau A., Gantz B., Tyler R. S. (2010). Benefits of localization and speech perception with multiple noise sources in listeners with a short-electrode cochlear implant. J. Am. Acad. Audiol. 21, 44–51. 10.3766/jaaa.21.1.6
    1. Durrant J. D., Wang J., Ding D. L., Salvi R. J. (1998). Are inner or outer hair cells the source of summating potentials recorded from the round window? J. Acoust. Soc. Am. 104, 370–377.
    1. Eshraghi A. A., Ahmed J., Krysiak E., Ila K., Ashman P., Telischi F. F., et al. . (2016). Clinical, surgical, and electrical factors impacting residual hearing in cochlear implant surgery. Acta Otolaryngol. 137, 384–388. 10.1080/00016489.2016.1256499
    1. Eshraghi A. A., Gupta C., Van De Water T. R., Bohorquez J. E., Garnham C., Bas E., et al. . (2013). Molecular mechanisms involved in cochlear implantation trauma and the protection of hearing and auditory sensory cells by inhibition of c-Jun-N-terminal kinase signaling. Laryngoscope 123(Suppl.), S1–S14. 10.1002/lary.23902
    1. Eshraghi A. A., Van de Water T. R. (2006). Cochlear implantation trauma and noise-induced hearing loss: apoptosis and therapeutic strategies. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 288, 473–481. 10.1002/ar.a.20305
    1. Ferraro J. (2010). Electrocochleography: a review of recording approaches, clinical applications, and new findings in adults and children. J. Am. Acad. Audiol. 21, 145–152. 10.3766/jaaa.21.3.2
    1. Finley C. C., Holden T. A., Holden L. K., Whiting B. R., Chole R. A., Neely G. J., et al. . (2008). Role of electrode placement as a contributor to variability in cochlear implant outcomes. Otol. Neurotol. 29, 920–928. 10.1097/MAO.0b013e318184f492
    1. Fitzpatrick D. C., Campbell A., Choudhury B., Dillon M., Forgues M., Buchman C. A., et al. (2014). Round window electrocochleography just prior to cochlear implantation: relationship to word recognition outcomes in adults HHS public access. Otol. Neurotol. 35, 64–71. 10.1097/MAO.0000000000000219
    1. Forgues M., Koehn H. A., Dunnon A. K., Pulver S. H., Buchman C. A., Adunka O. F., et al. . (2014). Distinguishing hair cell from neural potentials recorded at the round window. J. Neurophysiol. 111, 580–593. 10.1152/jn.00446.2013
    1. Friedland D. R., Venick H. S., Niparko J. K. (2003). Choice of ear for cochlear implantation: the effect of history and residual hearing on predicted postoperative performance. Otol. Neurotol. 24, 582–589. 10.1097/00129492-200307000-00009
    1. Gifford R. H., Davis T. J., Sunderhaus L. W., Menapace C., Buck B., Crosson J., et al. (2017). Combined electric and acoustic stimulation (EAS) with hearing preservation: effect of cochlear implant low-frequency cutoff on speech understanding and perceived listening difficulty. Ear Hear. [Epub ahead of print]. 10.1097/AUD.0000000000000418
    1. Gifford R. H., Dorman M. F., Skarzynski H., Lorens A., Polak M., Driscoll C. L. W., et al. . (2013). Cochlear implantation with hearing preservation yields significant benefit for speech recognition in complex listening environments. Ear Hear. 34, 413–425. 10.1097/AUD.0b013e31827e8163
    1. Gifford R. H., Driscoll C. L. W., Davis T. J., Fiebig P., Micco A., Dorman M. F. (2015). A within-subject comparison of bimodal hearing, bilateral cochlear implantation, and bilateral cochlear implantation with bilateral hearing preservation: high-performing patients. Otol. Neurotol. 36, 1331–1337. 10.1097/MAO.0000000000000804
    1. Gifford R. H., Grantham D. W., Sheffield S. W., Davis T. J., Dwyer R., Dorman M. F. (2014). Localization and interaural time difference (ITD) thresholds for cochlear implant recipients with preserved acoustic hearing in the implanted ear. Hear. Res. 312, 28–37. 10.1016/j.heares.2014.02.007
    1. Holden L. K., Finley C. C., Firszt J. B., Holden T. A., Brenner C., Potts L. G., et al. . (2013). Factors affecting open-set word recognition in adults with cochlear implants. Ear Hear. 34, 342–360. 10.1097/AUD.0b013e3182741aa7
    1. Jurawitz M.-C., Büchner A., Harpel T., Schüssler M., Majdani O., Lesinski-Schiedat A., et al. . (2014). Hearing preservation outcomes with different cochlear implant electrodes: nucleus® HYBRID™-L24 and nucleus freedom™ CI422. Audiol. Neurootol. 19, 293–309. 10.1159/000360601
    1. Kamakura T., Nadol J. B. (2016). Correlation between word recognition score and intracochlear new bone and fibrous tissue after cochlear implantation in the human. Hear. Res. 339, 132–141. 10.1016/j.heares.2016.06.015
    1. Koka K., Saoji A. A., Litvak L. M. (2016). Electrocochleography in cochlear implant recipients with residual hearing: comparison with audiometric thresholds Ear Hear. 38, e161–e167. 10.1097/AUD.0000000000000385
    1. Loiselle L. H., Dorman M. F., Yost W. A., Cook S. J., Gifford R. H. (2016). Using ILD or ITD cues for sound source localization and speech understanding in a complex listening environment by listeners with bilateral and with hearing-preservation cochlear implants. J. Speech Lang. Hear. Res. 59, 810. 10.1044/2015_JSLHR-H-14-0355
    1. Loiselle L. H., Dorman M. F., Yost W. A., Gifford R. H. (2015). Sound source localization by hearing preservation patients with and without symmetrical low-frequency acoustic hearing. Audiol. Neurootol. 20, 166–171. 10.1159/000367883
    1. Mandala M., Colletti L., Tonoli G., Colletti V. (2012). Electrocochleography during cochlear implantation for hearing preservation. Otolaryngol. Head Neck Surg. 146, 774–781. 10.1177/0194599811435895
    1. Noble J. H., Schuman T. A., Wright C. G., Labadie R. F., Dawant B. M. (2011). Automatic identification of cochlear implant electrode arrays for post-operative assessment. Proc. SPIE Int. Soc. Opt. Eng. 7962. 10.1117/12.878490
    1. Palmer A. R., Russell I. J. (1986). Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hear. Res. 24, 1–15.
    1. Patuzzi R. B., Yates G. K., Johnstone B. M. (1989). Outer hair cell receptor current and sensorineural hearing loss. Hear. Res. 42, 47–72. 10.1016/0378-5955(89)90117-2
    1. Plant K., Babic L. (2016). Utility of bilateral acoustic hearing in combination with electrical stimulation provided by the cochlear implant. Int. J. Audiol. 55(Suppl. 2), S31–S38. 10.3109/14992027.2016.1150609
    1. Plant K., McDermott H., van Hoesel R., Dawson P., Cowan R. (2016). Factors predicting postoperative unilateral and bilateral speech recognition in adult cochlear implant recipients with acoustic hearing. Ear Hear. 37, 153–163. 10.1097/AUD.0000000000000233
    1. Poch-Broto J., Carricondo F., Bhathal B., Iglesias M.-C., López-Moya J., Rodríguez F., et al. . (2009). Cochlear microphonic audiometry: a new hearing test for objective diagnosis of deafness. Acta Otolaryngol. 129, 749–754. 10.1080/00016480802398962
    1. Prijs V. F. (1991). Evaluation of electrocochleographic audiogram determination in infants. Acta Otolaryngol. Suppl. 482, 27–33. 10.3109/00016489109128025
    1. Radeloff A., Shehata-Dieler W., Scherzed A., Rak K., Harnisch W., Hagen R., et al. . (2012). Intraoperative monitoring using cochlear microphonics in cochlear implant patients with residual hearing. Otol. Neurotol. 33, 348–354. 10.1097/MAO.0b013e318248ea86
    1. Rader T., Fastl H., Baumann U. (2013). Speech perception with combined electric-acoustic stimulation and bilateral cochlear implants in a multisource noise field. Ear Hear. 34, 324–332. 10.1097/AUD.0b013e318272f189
    1. Rosen S. (1992). Temporal information in speech: acoustic, auditory and linguistic aspects. Philos. Trans. R. Soc. Lond. 336, 367–373. 10.1098/rstb.1992.0070
    1. Rubinstein J. T., Parkinson W. S., Tyler R. S., Gantz B. J. (1999). Residual speech recognition and cochlear implant performance: effects of implantation criteria. Am. J. Otol. 20, 445–452.
    1. Santa Maria P. L., Gluth M. B., Yuan Y., Atlas M. D., Blevins N. H. (2014). Hearing preservation surgery for cochlear implantation: a meta-analysis. Otol. Neurotol. 35, e256–e269. 10.1097/MAO.0000000000000561
    1. Schoonhoven R., Prijs V. F., Grote J. J. (1996). Response thresholds in electrocochleography and their relation to the pure tone audiogram. Ear Hear. 17, 266–275. 10.1097/00003446-199606000-00009
    1. Scott W. C., Giardina C. K., Pappa A. K., Fontenot T. E., Anderson M. L., Dillon M. T., et al. . (2016). The compound action potential in subjects receiving a cochlear implant. Otol. Neurotol. 37, 1654–1661. 10.1097/MAO.0000000000001224
    1. Skarzynski H., Matusiak M., Lorens A., Furmanek M., Pilka A., Skarzynski P. H. (2016). Preservation of cochlear structures and hearing when using the Nucleus Slim Straight (CI422) electrode in children. J. Laryngol. Otol. 130, 332–339. 10.1017/S0022215115003436
    1. GraphPad Software Inc (2012). GraphPad Prism. GraphPad.
    1. Sohmer H., Kinarti R., Gafni M. (1980). The source along the basilar membrane of the cochlear microphonic potential recorded by surface electrodes in man. Electroencephalogr. Clin. Neurophysiol. 49, 506–514. 10.1016/0013-4694(80)90393-4
    1. Sweeney A. D., Hunter J. B., Carlson M. L., Rivas A., Bennett M. L., Gifford R. H., et al. . (2016). Durability of hearing preservation after cochlear implantation with conventional-length electrodes and scala tympani insertion. Otolaryngol. Head Neck Surg. 154, 907–913. 10.1177/0194599816630545
    1. Van Abel K. M., Dunn C. C., Sladen D. P., Oleson J. J., Beatty C. W., Neff B. A., et al. . (2015). Hearing preservation among patients undergoing cochlear implantation. Otol. Neurotol. 36, 416–421. 10.1097/MAO.0000000000000703
    1. Verpy E., Weil D., Leibovici M., Goodyear R. J., Hamard G., Houdon C., et al. . (2008). Stereocilin-deficient mice reveal the origin of cochlear waveform distortions. Nature 456, 255–258. 10.1038/nature07380
    1. Wanna G. B., Noble J. H., Carlson M. L., Gifford R. H., Dietrich M. S., Haynes D. S., et al. . (2014). Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes. Laryngoscope 124, S1–S7. 10.1002/lary.24728
    1. Yoshie N. (1973). Diagnostic significance of the electrocochleogram in clinical audiometry. Audiology 12, 504–539. 10.3109/00206097309071666
    1. Yoshie N., Ohashi T., Suzuki T. (1967). Non-surgical recording of auditory nerve action potentials in man. Laryngoscope 77, 76–85. 10.1288/00005537-196701000-00006
    1. Zhang M. (2012). High-frequency hearing impairment assessed with cochlear microphonics. Acta Otolaryngol. 132, 967–973. 10.3109/00016489.2012.679688

Source: PubMed

3
購読する