Back to the Future: Lessons Learned From the 1918 Influenza Pandemic

Kirsty R Short, Katherine Kedzierska, Carolien E van de Sandt, Kirsty R Short, Katherine Kedzierska, Carolien E van de Sandt

Abstract

2018 marks the 100-year anniversary of the 1918 influenza pandemic, which killed ~50 million people worldwide. The severity of this pandemic resulted from a complex interplay between viral, host, and societal factors. Here, we review the viral, genetic and immune factors that contributed to the severity of the 1918 pandemic and discuss the implications for modern pandemic preparedness. We address unresolved questions of why the 1918 influenza H1N1 virus was more virulent than other influenza pandemics and why some people survived the 1918 pandemic and others succumbed to the infection. While current studies suggest that viral factors such as haemagglutinin and polymerase gene segments most likely contributed to a potent, dysregulated pro-inflammatory cytokine storm in victims of the pandemic, a shift in case-fatality for the 1918 pandemic toward young adults was most likely associated with the host's immune status. Lack of pre-existing virus-specific and/or cross-reactive antibodies and cellular immunity in children and young adults likely contributed to the high attack rate and rapid spread of the 1918 H1N1 virus. In contrast, lower mortality rate in in the older (>30 years) adult population points toward the beneficial effects of pre-existing cross-reactive immunity. In addition to the role of humoral and cellular immunity, there is a growing body of evidence to suggest that individual genetic differences, especially involving single-nucleotide polymorphisms (SNPs), contribute to differences in the severity of influenza virus infections. Co-infections with bacterial pathogens, and possibly measles and malaria, co-morbidities, malnutrition or obesity are also known to affect the severity of influenza disease, and likely influenced 1918 H1N1 disease severity and outcomes. Additionally, we also discuss the new challenges, such as changing population demographics, antibiotic resistance and climate change, which we will face in the context of any future influenza virus pandemic. In the last decade there has been a dramatic increase in the number of severe influenza virus strains entering the human population from animal reservoirs (including highly pathogenic H7N9 and H5N1 viruses). An understanding of past influenza virus pandemics and the lessons that we have learnt from them has therefore never been more pertinent.

Keywords: 1918; external factors; host factors; influenza; pandemic; prevention; societal factors; viral factors.

Figures

Figure 1
Figure 1
Reassortment events of historic pandemic influenza A viruses, adapted from van de Sandt et al. (2015b). Historic serum analysis suggests that the Russian influenza pandemic of 1889–1892 was of the H3Nx subtype and seasonally circulated up to the 1918 influenza pandemic. It remains undefined whether the 1918 H1N1 pandemic virus originated from multiple reassortment events between avian, swine and human influenza viruses, or if it was introduced by a direct zoonotic transmission event of an avian, swine or other influenza virus. The H1N1 virus continued to circulate, causing seasonal epidemics, until 1957 when it reassorted with an avian H2N2 virus. This virus circulated until 1968, when it reassorted again with the avian H3Nx virus, which has caused seasonal epidemics ever since. In 1977 the H1N1 virus was reintroduced in the human population and co-circulated with H3N2 viruses until the influenza pandemic of 2009 when it was replaced by another H1N1 virus which was the result of multiple reassortment events between avian, swine, and human influenza viruses.
Figure 2
Figure 2
Factors that influence the severity and transmissibility of a pandemic influenza virus. The severity and transmissibility of pandemic influenza viruses are the result of a complex interplay of viral, host, and external factors. We have come a long way since 1918 and pandemic preparedness programs have learned from the 1918 and later pandemic outbreaks. Although unlikely, we cannot exclude the possibility that an influenza pandemic with similar severity will repeat itself in the future. However, lessons learned from the 1918 influenza pandemic will ensure that we are better prepared.

References

    1. Afkhami A. (2003). Compromised constitutions: the Iranian experience with the 1918 influenza pandemic. Bull. Hist. Med. 77, 367–392. 10.1353/bhm.2003.0049
    1. Ahmed R., Oldstone M. B., Palese P. (2007). Protective immunity and susceptibility to infectious diseases: lessons from the 1918 influenza pandemic. Nat. Immunol. 8, 1188–1193. 10.1038/ni1530
    1. Alexander J. B. (1919). Cases resembling encephalitis lethargica occurring during the influenza epidemic. Br. Med. J. 1, 794–795. 10.1136/bmj.1.3052.794
    1. Ashley E. A., Pyae Phyo A., Woodrow C. J. (2018). Malaria. Lancet 391, 1608–1621. 10.1016/S0140-6736(18)30324-6
    1. Audubon (2018). Audubon's Birds and Climate Change Report. Available online at: (Accessed May 6, 2018).
    1. Bajardi P., Poletto C., Ramasco J. J., Tizzoni M., Colizza V., Vespignani A. (2011). Human mobility networks, travel restrictions, and the global spread of 2009 H1N1 pandemic. PLoS ONE 6:e16591. 10.1371/journal.pone.0016591
    1. Ballinger M. N., Standiford T. J. (2010). Postinfluenza bacterial pneumonia: host defenses gone awry. J. Interferon Cytokine Res. 30, 643–652. 10.1089/jir.2010.0049
    1. Barber D. L., Andrade B. B., Sereti I., Sher A. (2012). Immune reconstitution inflammatory syndrome: the trouble with immunity when you had none. Nat. Rev. Microbiol. 10, 150–156. 10.1038/nrmicro2712
    1. Barry J. M. (2004). The site of origin of the 1918 influenza pandemic and its public health implications. J. Transl. Med. 2:3. 10.1186/1479-5876-2-3
    1. Barry J. M., Viboud C., Simonsen L. (2008). Cross-protection between successive waves of the 1918-1919 influenza pandemic: epidemiological evidence from US Army camps and from Britain. J. Infect. Dis. 198, 1427–1434. 10.1086/592454
    1. Beck M. A., Handy J., Levander O. A. (2004). Host nutritional status: the neglected virulence factor. Trends Microbiol. 12, 417–423. 10.1016/j.tim.2004.07.007
    1. Belser J. A., Gustin K. M., Pearce M. B., Maines T. R., Zeng H., Pappas C., et al. . (2013). Pathogenesis and transmission of avian influenza A (H7N9) virus in ferrets and mice. Nature 501, 556–559. 10.1038/nature12391
    1. Beveridge W. I. (1977). The start of pandemics: site, season and spread. Dev. Biol. Stand. 39, 443–444.
    1. Blakely D. E. (2006). Mass Mediated Disease: A Case Study Analysis of Three Flu Pandemics and Public Health Policy. Oxford: Lexington Books.
    1. Bodewes R., de Mutsert G., van der Klis F. R., Ventresca M., Wilks S., Smith D. J., et al. . (2011a). Prevalence of antibodies against seasonal influenza A and B viruses in children in Netherlands. Clin. Vaccine Immunol. 18, 469–476. 10.1128/CVI.00396-10
    1. Bodewes R., Fraaij P. L., Geelhoed-Mieras M. M., van Baalen C. A., Tiddens H. A., van Rossum A. M. (2011b). Annual vaccination against influenza virus hampers development of virus-specific CD8+ T cell immunity in children. J. Virol. 85, 11995–12000. 10.1128/JVI.05213-11
    1. Bodewes R., Kreijtz J. H., Baas C., Geelhoed-Mieras M. M., de Mutsert G., van Amerongen G. (2009a). Vaccination against human influenza A/H3N2 virus prevents the induction of heterosubtypic immunity against lethal infection with avian influenza A/H5N1 virus. PLoS ONE 4:e5538. 10.1371/journal.pone.0005538
    1. Bodewes R., Kreijtz J. H., Geelhoed-Mieras M. M., van Amerongen G., Verburgh R. J., van Trierum S. E., et al. . (2011c). Vaccination against seasonal influenza A/H3N2 virus reduces the induction of heterosubtypic immunity against influenza A/H5N1 virus infection in ferrets. J. Virol. 85, 2695–2702. 10.1128/JVI.02371-10
    1. Bodewes R., Kreijtz J. H., Rimmelzwaan G. F. (2009b). Yearly influenza vaccinations: a double-edged sword? Lancet Infect. Dis. 9, 784–788. 10.1016/S1473-3099(09)70263-4
    1. Bootsma M. C., Ferguson N. M. (2007). The effect of public health measures on the 1918 influenza pandemic in U.S. cities. Proc. Natl. Acad. Sci U.S.A. 104, 7588–7593. 10.1073/pnas.0611071104
    1. Brightman I. J. (1935). Streptococcus infection occurring in ferrets inoculated with human influenza virus. Yale J. Biol. Med. 8, 127–135.
    1. Brundage J. F. (2006). Interactions between influenza and bacterial respiratory pathogens: implications for pandemic preparedness. Lancet Infect. Dis. 6, 303–312. 10.1016/S1473-3099(06)70466-2
    1. Brundage J. F., Shanks G. D. (2008). Deaths from bacterial pneumonia during 1918-19 influenza pandemic. Emerg. Infect. Dis. 14, 1193–1199. 10.3201/eid1408.071313
    1. Butler D. (2010). Portrait of a year-old pandemic. Nature 464, 1112–1113. 10.1038/4641112a
    1. CDC (2009). Interim Recommendations for Facemask and Respirator Use to Reduce 2009 Influenza A (H1N1) Virus Transmission. Available online at: (Accessed May 10, 2018).
    1. Chan D. K., Yang S. X., Mullan B., Du X., Zhang X., Chatzisarantis N. L., et al. . (2015). Preventing the spread of H1N1 influenza infection during a pandemic: autonomy-supportive advice versus controlling instruction. J. Behav. Med. 38, 416–426. 10.1007/s10865-014-9616-z
    1. Chen W., Lim C. E., Kang H. J., Liu J. (2011). Chinese herbal medicines for the treatment of type A H1N1 influenza: a systematic review of randomized controlled trials. PLoS ONE 6:e28093. 10.1371/journal.pone.0028093
    1. Chen Y., Liang W., Yang S., Wu N., Gao H., Sheng J., et al. . (2013). Human infections with the emerging avian influenza A H7N9 virus from wet market poultry: clinical analysis and characterisation of viral genome. Lancet 381, 1916–1925. 10.1016/S0140-6736(13)60903-4
    1. Cheng K. F., Leung P. C. (2007). What happened in China during the 1918 influenza pandemic? Int. J. Infect. Dis. 11, 360–364. 10.1016/j.ijid.2006.07.009
    1. Chertow D. S., Memoli M. J. (2013). Bacterial coinfection in influenza: a grand rounds review. J. Am. Med. Assoc. 309, 275–282. 10.1001/jama.2012.194139
    1. Chien Y. W., Klugman K. P., Morens D. M. (2009). Bacterial pathogens and death during the 1918 influenza pandemic. N. Engl. J. Med. 361, 2582–2583. 10.1056/NEJMc0908216
    1. Chowell G., Echevarría-Zuno S., Viboud C., Simonsen L., Tamerius J., Miller M. A., et al. . (2011). Characterizing the epidemiology of the 2009 influenza A/H1N1 pandemic in Mexico. PLoS Med. 8:e1000436. 10.1371/journal.pmed.1000436
    1. Ciancanelli M. J., Huang S. X., Luthra P., Garner H., Itan Y., Volpi S., et al. . (2015). Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science 348, 448–453. 10.1126/science.aaa1578
    1. Clemens E. B., van de Sandt C., Wong S. S., Wakim L. M., Valkenburg S. A. (2018). Harnessing the power of T cells, the promising hope for a Universal Influenza vaccine. Vaccines 6:E18. 10.3390/vaccines6020018
    1. Cliff A. D., Haggett P., Graham R. (1983). Reconstruction of diffusion at local scales: the 1846, 1882 and 1904 measles epidemics in northwest Iceland. J. Hist. Geogr. 9, 347–368. 10.1016/0305-7488(83)90254-2
    1. Cohen M. L. (2000). Changing patterns of infectious disease. Nature 406, 762–767. 10.1038/35021206
    1. Collins S. D. (1931). Age and sex incidence of influenza and pneumonia morbidity and mortality in the epidemic of 1928-29 with comparative data for the epidemic of 1918-19: based on surveys of families in certain localities in the united states following the epidemics. Public Health Rep. 46, 1909–1937. 10.2307/4580139
    1. Conenello G. M., Zamarin D., Perrone L. A., Tumpey T., Palese P. (2007). A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog. 3, 1414–1421. 10.1371/journal.ppat.0030141
    1. Cooper N. J., Sutton A. J., Abrams K. R., Wailoo A., Turner D., Nicholson K. G. (2003). Effectiveness of neuraminidase inhibitors in treatment and prevention of influenza A and B: systematic review and meta-analyses of randomised controlled trials. BMJ 326:1235. 10.1136/bmj.326.7401.1235
    1. Cowling B. J., Zhou Y., Ip D. K., Leung G. M., Aiello A. E. (2010). Face masks to prevent transmission of influenza virus: a systematic review. Epidemiol. Infect. 138, 449–456. 10.1017/S0950268809991658
    1. Crosby A. W. (1976). Epidemic and Peace 1918. Santa Barbara, CA: Abc-Clio.
    1. Crosby A. W. (2003). America's Forgotten Pandemic: the Influenza of 1918. Cambridge: Cambridge University Press.
    1. Dawood F. S., Iuliano A. D., Reed C., Meltzer M. I., Shay D. K, Cheng P. Y., et al. . (2012). Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. Lancet Infect. Dis. 12, 687–695. 10.1016/S1473-3099(12)70121-4
    1. De Clercq E. (2006). Antiviral agents active against influenza A viruses. Nat. Rev. Drug Discov. 5, 1015–1025. 10.1038/nrd2175
    1. De Jong J. C., Rimmelzwaan G. F., Fouchier R. A., Osterhaus A. D. (2000). Influenza virus: a master of metamorphosis. J. Infect. 40, 218–228. 10.1053/jinf.2000.0652
    1. de Jong M. D., Simmons C. P., Thanh T. T., Hien V. M., Smith G. J., Chau T. N., et al. . (2006). Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat. Med. 12, 1203–1207. 10.1038/nm1477
    1. de Vries R. D., McQuaid S., van Amerongen G., Yüksel S., Verburgh R. J., Osterhaus A. D., et al. . (2012). Measles immune suppression: lessons from the macaque model. PLoS Pathog. 8:e1002885. 10.1371/journal.ppat.1002885
    1. de Wit E., Siegers J. Y., Cronin J. M., Weatherman S., van den Brand J. M., Leijten L. M., et al. . (2018). 1918 H1N1 influenza virus replicates and induces proinflammatory cytokine responses in extrarespiratory tissues of ferrets. J. Infect. Dis. 217, 1237–1246. 10.1093/infdis/jiy003
    1. Diavatopoulos D. A., Short K. R., Price J. T., Wilksch J. J., Brown L. E., Briles D. E., et al. . (2010). Influenza A virus facilitates Streptococcus pneumoniae transmission and disease. FASEB J. 24, 1789–1798. 10.1096/fj.09-146779
    1. Dowdle W. R. (1999). Influenza A virus recycling revisited. Bull. World Health Organ. 77, 820–828.
    1. Duncan C. J., Duncan S. R., Scott S. (1997). The dynamics of measles epidemics. Theor. Popul. Biol. 52, 155–163. 10.1006/tpbi.1997.1326
    1. Dunham E. J., Dugan V. G., Kaser E. K., Perkins S. E., Brown I. H., Holmes E. C., et al. . (2009). Different evolutionary trajectories of European avian-like and classical swine H1N1 influenza A viruses. J. Virol. 83, 5485–5494. 10.1128/JVI.02565-08
    1. Ellis G. T., Davidson S., Crotta S., Branzk N., Papayannopoulos V., Wack A. (2015). TRAIL+ monocytes and monocyte-related cells cause lung damage and thereby increase susceptibility to influenza-Streptococcus pneumoniae coinfection. EMBO Rep. 16, 1203–1218. 10.15252/embr.201540473
    1. Ellis J. S., Zambon M. C. (2002). Molecular diagnosis of influenza. Rev. Med. Virol. 12, 375–389. 10.1002/rmv.370
    1. Epstein S. L. (2006). Prior H1N1 influenza infection and susceptibility of cleveland family study participants during the H2N2 pandemic of 1957: an experiment of nature. J. Infect. Dis. 193, 49–53. 10.1086/498980
    1. Everitt A. R., Clare S., Pertel T., John S. P., Wash R. S., Smith S. E., et al. . (2012). IFITM3 restricts the morbidity and mortality associated with influenza. Nature 484, 519–523. 10.1038/nature10921
    1. Flint S. M., Davis J. S., Su J. Y., Oliver-Landry E. P., Rogers B. A., Goldstein A., et al. . (2010). Disproportionate impact of pandemic (H1N1) 2009 influenza on Indigenous people in the Top End of Australia's Northern Territory. Med. J. Aust. 192, 617–622.
    1. Francis T., de Torregrosa M. V. (1945). Combined infection of mice with influenzae, H. and influenza virus by the intranasal route. J. Infect. Dis. 76, 70–77.
    1. Fraser C., Cummings D. A., Klinkenberg D., Burke D. S., Ferguson N. M. (2011). Influenza transmission in households during the 1918 pandemic. Am. J. Epidemiol. 174, 505–514. 10.1093/aje/kwr122
    1. Frost W. H. (1919). Public health weekly reports for August 15, 1919. Public Health Rep. 34, 1823–1926. 10.2307/4575271
    1. Garten R. J., Davis C. T., Russell C. A., Shu B., Lindstrom S., Balish A., et al. . (2009). Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325, 197–201. 10.1126/science.1176225
    1. Georgantopoulos P., Bergquist E. P., Knaup R. C., Anthony J. R., Bailey T. C., Williams M. P., et al. . (2009). Importance of routine public health influenza surveillance: detection of an unusual W-shaped influenza morbidity curve. Am. J. Epidemiol. 170, 1533–1540. 10.1093/aje/kwp305
    1. Gibbon J. (1919). Acquired immunity in influenza. Lancet 193:583 10.1016/S0140-6736(01)25706-7
    1. Glaser L., Stevens J., Zamarin D., Wilson I. A., García-Sastre A., Tumpey T. M., et al. . (2005). A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J. Virol. 79:11533–11536. 10.1128/JVI.79.17.11533-11536.2005
    1. Glover R. E. (1941). Spread of infection from the respiratory tract of the ferret. II. Association of influenza A virus and streptococcus type C. Br. J. Exp. Pathol. 22, 98–107.
    1. Goronzy J. J., Weyand C. M. (2013). Understanding immunosenescence to improve responses to vaccines. Nat. Immunol. 14, 428–436. 10.1038/ni.2588
    1. Gras S., Kedzierski L., Valkenburg S. A., Laurie K., Liu Y. C., Denholm J. T., et al. . (2010). Cross-reactive CD8+ T-cell immunity between the pandemic H1N1-2009 and H1N1-1918 influenza A viruses. Proc. Natl. Acad. Sci. U.S.A. 107, 12599–12604. 10.1073/pnas.1007270107
    1. Griffin D. E. (2010). Measles virus-induced suppression of immune responses. Immunol. Rev. 236, 176–189. 10.1111/j.1600-065X.2010.00925.x
    1. Gunaratnam P. J., Tobin S., Seale H., Marich A., McAnulty J. (2014). Airport arrivals screening during pandemic (H1N1) 2009 influenza in New South Wales, Australia. Med. J. Aust. 200, 290–292. 10.5694/mja13.10832
    1. Hammond J. A. B., Rolland W., Shore T. H. G. (1917). Purulent bronchiti. Lancet 190, 41–46. 10.1016/S0140-6736(01)56229-7
    1. Hancock K., Veguilla V., Lu X., Zhong W., Butler E. N., Sun H., et al. . (2009). Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus. N. Engl. J. Med. 361, 1945–1952. 10.1056/NEJMoa0906453
    1. Harford C. G., Smith M. R., Wood W. B. (1946). Sulfonamide chemotherapy of combined infection with influenza virus and bacteria. J. Exp. Med. 83, 505–518. 10.1084/jem.83.6.505
    1. Hartmann B. M., Albrecht R. A., Zaslavsky E., Nudelman G., Pincas H., Marjanovic N., et al. . (2017). Pandemic H1N1 influenza A viruses suppress immunogenic RIPK3-driven dendritic cell death. Nat. Commun. 8:1931. 10.1038/s41467-017-02035-9
    1. Hatchett R. J., Mecher C. E., Lipsitch M. (2007). Public health interventions and epidemic intensity during the 1918 influenza pandemic. Proc. Natl. Acad. Sci. U.S.A. 104, 7582–7587. 10.1073/pnas.0610941104
    1. Hay A. J., Hayden F. G. (2013). Oseltamivir resistance during treatment of H7N9 infection. Lancet 381, 2230–2232. 10.1016/S0140-6736(13)61209-X
    1. Hay A. J., McCauley J. W. (2018). The WHO global influenza Surveillance and Response System (GISRS) - a future perspective. Influenza Other Respir Viruses. 12, 551–557 10.1111/irv.12565
    1. Hayden F. G., Belshe R., Villanueva C., Lanno R., Hughes C., Small I., et al. (2004). Management of influenza in households: a prospective, randomized comparison of oseltamivir treatment with or without postexposure prophylaxis. J. Infect. Dis. 189, 440–449. 10.1086/381128
    1. Hayward A. C., Wang L., Goonetilleke N., Fragaszy E. B., Bermingham A., Copas A., et al. . (2015). Natural T cell-mediated protection against seasonal and pandemic influenza. Results of the Flu Watch Cohort Study. Am. J. Respir. Crit. Care Med. 191, 1422–1431. 10.1164/rccm.201411-1988OC
    1. Herfst S., Schrauwen E. J., Linster M., Chutinimitkul S., de Wit E., Munster V. J., et al. . (2012). Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336, 1534–1541. 10.1126/science.1213362
    1. Hernandez N., Melki I., Jing H., Habib T., Huang S. S. Y., Danielson J., et al. . (2018). Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency. J Exp Med. 10.1084/jem.20180628. [Epub ahead of print]
    1. Hildreth M. L. (1991). The influenza epidemic of 1918-1919 in France: contemporary concepts of aetiology, therapy, and prevention. Soc. Hist. Med. 4, 277–294. 10.1093/shm/4.2.277
    1. Hirsch H. H., Kaufmann G., Sendi P., Battegay M. (2004). Immune reconstitution in HIV-infected patients. Clin. Infect. Dis. 38, 1159–1166. 10.1086/383034
    1. Hoffman B. L. (2011). Influenza activity in Saint Joseph, Missouri 1910-1923: evidence for an early wave of the 1918 pandemic. PLoS Curr. 2:RRN1287. 10.1371/currents.RRN1287
    1. Hollingsworth T. D., Ferguson N. M., Anderson R. M. (2006). Will travel restrictions control the international spread of pandemic influenza? Nat. Med. 12, 497–499. 10.1038/nm0506-497
    1. Horimoto T., Kawaoka Y. (1994). Reverse genetics provides direct evidence for a correlation of hemagglutinin cleavability and virulence of an avian influenza A virus. J. Virol. 68, 3120–3128.
    1. Hrincius E. R., Liedmann S., Finkelstein D., Vogel P., Gansebom S., Ehrhardt C., et al. . (2015). Nonstructural protein 1 (NS1)-mediated inhibition of c-Abl results in acute lung injury and priming for bacterial co-infections: insights into 1918 H1N1 pandemic? J. Infect. Dis. 211, 1418–1428. 10.1093/infdis/jiu609
    1. Hufnagel L., Brockmann D., Geisel T. (2004). Forecast and control of epidemics in a globalized world. Proc. Natl. Acad. Sci. U.S.A. 101, 15124–15129. 10.1073/pnas.0308344101
    1. Hulme K. D., Gallo L. A., Short K. R. (2017). Influenza virus and glycemic variability in diabetes: a killer combination? Front. Microbiol. 8:861. 10.3389/fmicb.2017.00861
    1. Ikonen N., Strengell M., Kinnunen L., Osterlund P., Pirhonen J., Broman M., et al. . (2010). High frequency of cross-reacting antibodies against 2009 pandemic influenza A(H1N1) virus among the elderly in Finland. Euro Surveill. 15:19478. 10.2807/ese.15.05.19478-en
    1. Imai M., Watanabe T., Hatta M., Das S. C., Ozawa M., Shinya K., et al. . (2012). Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486, 420–428. 10.1038/nature10831
    1. Jagger B. W., Memoli M. J., Sheng Z. M., Qi L., Hrabal R. J., Allen G. L., et al. . (2010). The PB2-E627K mutation attenuates viruses containing the 2009 H1N1 influenza pandemic polymerase. MBio 1:e00067–10. 10.1128/mBio.00067-10
    1. Jain S., Kamimoto L., Bramley A. M., Schmitz A. M., Benoit S. R., Louie J., et al. . (2009). Hospitalized patients with 2009 H1N1 influenza in the United States, April-June 2009. N. Engl. J. Med. 361, 1935–1944. 10.1056/NEJMoa0906695
    1. Johnson N. (2006). Britain and the 1918-19 Influenza Pandemic: A Dark Epilogue. Abingdon: Taylor & Francis Ltd.
    1. Johnson N. P., Mueller J. (2002). Updating the accounts: global mortality of the 1918-1920 “Spanish” influenza pandemic. Bull. Hist. Med. 76, 105–115. 10.1353/bhm.2002.0022
    1. Joseph C., Togawa Y., Shindo N. (2013). Bacterial and viral infections associated with influenza. Influenza Other Respir Viruses 7(Suppl. 2), 105–113. 10.1111/irv.12089
    1. Kash J. C., Tumpey T. M., Proll S. C., Carter V., Perwitasari O., Thomas M. J., et al. . (2006). Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature 443, 578–581. 10.1038/nature05181
    1. Kash J. C., Walters K. A., Davis A. S., Sandouk A., Schwartzman L. M., Jagger B.W., et al. . (2011). Lethal synergism of 2009 pandemic H1N1 influenza virus and Streptococcus pneumoniae coinfection is associated with loss of murine lung repair responses. MBio 2:e00172–11. 10.1128/mBio.00172-11
    1. Kawaoka Y., Krauss S., Webster R. G. (1989). Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J. Virol. 63, 4603–4608.
    1. Kawaoka Y., Webster R. G. (1988). Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 85, 324–328. 10.1073/pnas.85.2.324
    1. Keeling A. W. (2010). Alert to the necessities of the emergency: U.S. nursing during the 1918 influenza pandemic. Publ. Health Rep. 125(Suppl. 3), 105–12. 10.1177/00333549101250S313
    1. Khan K., Arino J., Hu W., Raposo P., Sears J., Calderon F., et al. . (2009). Spread of a novel influenza A (H1N1) virus via global airline transportation. N. Engl. J. Med. 361, 212–214. 10.1056/NEJMc0904559
    1. Klaassen M., Hoye B. J., Nolet B. A., Buttemer W. A. (2012). Ecophysiology of avian migration in the face of current global hazards. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 1719–1732. 10.1098/rstb.2012.0008
    1. Kobasa D., Jones S. M., Shinya K., Kash J. C., Copps J., Ebihara H., et al. . (2007). Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445, 319–323. 10.1038/nature05495
    1. Kobasa D., Takada A., Shinya K., Hatta M., Halfmann P., Theriault S., et al. . (2004). Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature 431, 703–707. 10.1038/nature02951
    1. Kobayashi M., Davis S. M., Utsunomiya T., Pollard R. B., Suzuki F. (1999). Antiviral effect of gingyo-san, a traditional Chinese herbal medicine, on influenza A2 virus infection in mice. Am. J. Chin. Med. 27, 53–62. 10.1142/S0192415X99000082
    1. Krammer F., Smith G. J. D., Fouchier R. A. M., Peiris M., Kedzierska K., Doherty P. C., et al. (2018). Influenza. Nat. Rev. Dis Prim. 4:3 10.1038/s41572-018-0002-y
    1. Kreijtz J. H., de Mutsert G., van Baalen C. A., Fouchier R. A., Osterhaus A. D., Rimmelzwaan G. F. (2008). Cross-recognition of avian H5N1 influenza virus by human cytotoxic T-lymphocyte populations directed to human influenza A virus. J. Virol. 82, 5161–5166. 10.1128/JVI.02694-07
    1. Kunisaki K. M., Janoff E. N. (2009). Influenza in immunosuppressed populations: a review of infection frequency, morbidity, mortality, and vaccine responses. Lancet Infect. Dis. 9, 493–504. 10.1016/S1473-3099(09)70175-6
    1. La Ruche G., Tarantola A., Barboza P., Vaillant L., Gueguen J., Gastellu-Etchegorry M., et al. . (2009). The 2009 pandemic H1N1 influenza and indigenous populations of the Americas and the Pacific. Euro Surveill. 14:19366 10.2807/ese.14.42.19366-en
    1. Langford C. M., Storey P. (1992). Influenza in Sri Lanka, 1918–1919: the impact of a new disease in a premodern third world setting. Health Transition Rev. 2, 97–123.
    1. Larson E. L., Cohen B., Baxter K. A. (2012). Analysis of alcohol-based hand sanitizer delivery systems: efficacy of foam, gel, and wipes against influenza A (H1N1) virus on hands. Am. J. Infect. Control 40, 806–809. 10.1016/j.ajic.2011.10.016
    1. Lee B., Robinson K. M., McHugh K. J., Scheller E. V., Mandalapu S., Chen C., et al. . (2015). Influenza-induced type I interferon enhances susceptibility to gram-negative and gram-positive bacterial pneumonia in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 309, L158–L167. 10.1152/ajplung.00338.2014
    1. Lee L. Y., Ha do L. A., Simmons C., de Jong M. D., Chau N. V., Schumacher R., et al. . (2008). Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals. J. Clin. Invest. 118, 3478–3490. 10.1172/JCI32460
    1. Lemey P., Rambaut A., Bedford T., Faria N., Bielejec F., Baele G., et al. . (2014). Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2. PLoS Pathog. 10:e1003932. 10.1371/journal.ppat.1003932
    1. Little P., Stuart B., Hobbs F. D., Moore M., Barnett J., Popoola D., et al. . (2015). An internet-delivered handwashing intervention to modify influenza-like illness and respiratory infection transmission (PRIMIT): a primary care randomised trial. Lancet 386, 1631–1639. 10.1016/S0140-6736(15)60127-1
    1. Liu Y., Li S., Zhang G., Nie G., Meng Z., Mao D., et al. (2013). Genetic variants in IL1A and IL1B contribute to the susceptibility to 2009 pandemic H1N1 influenza A virus. (2014). BMC Immunol. 14:37 10.1186/1471-2172-14-37
    1. Louie J. K., Acosta M., Samuel M. C., Schechter R., Vugia D. J., Harriman K., et al. (2011). California Pandemic Working, A novel risk factor for a novel virus: obesity and 2009 pandemic influenza A (H1N1). Clin. Infect. Dis. 52, 301–312. 10.1093/cid/ciq152
    1. Louria D. B., Blumenfeld H. L., Ellis J. T., Kilbourne E. D., Rogers D. E. (1959). Studies on influenza in the pandemic of 1957–1958. II. Pulmonary complications of influenza. J. Clin. Invest. 38(1 Part 2), 213–265. 10.1172/JCI103791
    1. Luk J., Gross P., Thompson W. W. (2001). Observations on mortality during the 1918 influenza pandemic. Clin. Infect. Dis. 33, 1375–1378. 10.1086/322662
    1. MacDougall H. (2007). Toronto's health department in action: influenza in 1918 and SARS in 2003. J. Hist. Med. Allied Sci. 62, 56–89 10.1093/jhmas/jrl042
    1. Madhav N. (2013). Modeling a modern-day spanish flu pandemic, in Aircurrents, ed Markey M. J. Available online at: (Accessed May 10, 2018).
    1. Madhi S. A., Klugman K. P., Vaccine Trialist G. (2004). A role for Streptococcus pneumoniae in virus-associated pneumonia. Nat. Med. 10, 811–813. 10.1038/nm1077
    1. Mamelund S. E., Haneberg B., Mjaaland S. (2016). A missed summer wave of the 1918-1919 influenza pandemic, evidence from household surveys in the United States and Norway. Open Forum Infect. Dis. 3:ofw040. 10.1093/ofid/ofw040
    1. Mathews J. D., McBryde E. S., McVernon J., Pallaghy P. K., McCaw J. M. (2010). Prior immunity helps to explain wave-like behaviour of pandemic influenza in 1918-9. BMC Infect. Dis. 10:128. 10.1186/1471-2334-10-128
    1. Mazel-Sanchez B., Boal Carvalho I., Silva F., Dijkman R., Schmolke M. (2018). H5N1 influenza A virus PB1-F2 relieves HAX-1-mediated restriction of avian virus polymerase PA in human lung cells. J. Virol. 92. e00425–18 10.1128/JVI.00425-18
    1. McAuley J. L., Hornung F., Boyd K. L., Smith A. M., McKeon R., Bennink J., et al. . (2007). Expression of the 1918 influenza A virus PB1-F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host Microbe 2, 240–249. 10.1016/j.chom.2007.09.001
    1. McCullers J. A. (2006). Insights into the interaction between influenza virus and pneumococcus. Clin. Microbiol. Rev. 19, 571–582. 10.1128/CMR.00058-05
    1. McCullers J. A., Bartmess K. C. (2003). Role of neuraminidase in lethal synergism between influenza virus and Streptococcus pneumoniae. J. Infect. Dis. 187, 1000–1009. 10.1086/368163
    1. McMichael A. J., Gotch F. M., Noble G. R., Beare P. (1983). Cytotoxic T-cell immunity to influenza. N. Engl. J. Med. 309, 13–17. 10.1056/NEJM198307073090103
    1. Mehle A., Doudna J. A. (2009). Adaptive strategies of the influenza virus polymerase for replication in humans. Proc. Natl. Acad. Sci. U.S.A. 106, 21312–21316. 10.1073/pnas.0911915106
    1. Mehle A., Dugan V. G., Taubenberger J. K., Doudna J. A. (2012). Reassortment and mutation of the avian influenza virus polymerase PA subunit overcome species barriers. J. Virol. 86, 1750–1757. 10.1128/JVI.06203-11
    1. Memoli M. J., Morens D. M., Taubenberger J. K. (2008). Pandemic and seasonal influenza: therapeutic challenges. Drug Discov. Today 13, 590–595. 10.1016/j.drudis.2008.03.024
    1. Memoli M. J., Tumpey T. M., Jagger B. W., Dugan V. G., Sheng Z. M., Qi L., et al. . (2009). An early 'classical' swine H1N1 influenza virus shows similar pathogenicity to the 1918 pandemic virus in ferrets and mice. Virology 393, 338–345. 10.1016/j.virol.2009.08.021
    1. Millard J., Ugarte-Gil C., Moore D. A. (2015). Multidrug resistant tuberculosis. BMJ 350:h882. 10.1136/bmj.h882
    1. Mills I. D. (1986). The 1918-1919 influenza pandemic–the Indian experience. Indian Econ. Soc. Hist. Rev. 23, 1–40. 10.1177/001946468602300102
    1. Mina M. J., Metcalf C. J., de Swart R. L., Osterhaus A. D., Grenfell B. T. (2015). Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality. Science 348, 694–699. 10.1126/science.aaa3662
    1. Monsalvo A. C., Batalle J. P., Lopez M. F., Krause J. C., Klemenc J., Hernandez J. Z., et al. . (2011). Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes. Nat. Med. 17, 195–199. 10.1038/nm.2262
    1. Morales K. F., Paget J., Spreeuwenberg P. (2017). Possible explanations for why some countries were harder hit by the pandemic influenza virus in 2009 - a global mortality impact modeling study. BMC Infect. Dis. 17:642. 10.1186/s12879-017-2730-0
    1. Morens D. M., Fauci A. S. (2007). The 1918 influenza pandemic: insights for the 21st century. J. Infect. Dis. 195, 1018–1028. 10.1086/511989
    1. Morens D. M., Taubenberger J. K. (2015). A forgotten epidemic that changed medicine: measles in the US Army, 1917-18. Lancet Infect. Dis. 15, 852–861. 10.1016/S1473-3099(15)00109-7
    1. Morens D. M., Taubenberger J. K., Fauci A. S. (2008). Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J. Infect. Dis. 198, 962–970. 10.1086/591708
    1. Morens D. M., Taubenberger J. K., Fauci A. S. (2009). The persistent legacy of the 1918 influenza virus. N. Engl. J. Med. 361, 225–229. 10.1056/NEJMp0904819
    1. Morgan O. W., Bramley A., Fowlkes A., Freedman D. S., Taylor T. H., Gargiullo P., et al. . (2010). Morbid obesity as a risk factor for hospitalization and death due to 2009 pandemic influenza A(H1N1) disease. PLoS ONE 5:e9694. 10.1371/journal.pone.0009694
    1. Moss W. J., Griffin D. E. (2012). Measles. Lancet 379, 153–164. 10.1016/S0140-6736(10)62352-5
    1. Moss W. J., Ota M. O., Griffin D. E. (2004). Measles: immune suppression and immune responses. Int. J. Biochem. Cell Biol. 36, 1380–1385. 10.1016/j.biocel.2004.01.019
    1. Mossad S. B. (2009). Influenza in long-term care facilities: preventable, detectable, treatable. Cleve. Clin. J. Med. 76, 513–521. 10.3949/ccjm.76a.09022
    1. Murray C. J., Lopez A. D., Chin B., Feehan D., Hill K. (2006). Estimation of potential global pandemic influenza mortality on the basis of vital registry data from the 1918-20 pandemic: a quantitative analysis. Lancet 368, 2211–2218. 10.1016/S0140-6736(06)69895-4
    1. Murray M. A., Chotirmall S. H. (2015). The Impact of Immunosenescence on pulmonary disease. Mediators Inflamm. 2015:692546 10.1155/2015/692546
    1. Nakamura S., Davis K. M., Weiser J. N. (2011). Synergistic stimulation of type I interferons during influenza virus coinfection promotes Streptococcus pneumoniae colonization in mice. J. Clin. Invest. 121, 3657–3665. 10.1172/JCI57762
    1. National Center for Respiratory Diseases CDC, and Centers for Disease and Prevention (CDC) (2009). Use of influenza A (H1N1) 2009 monovalent vaccine: recommendations of the Advisory Committee on Immunization Practices (ACIP), 2009. MMWR Recomm Rep. 58, 1–8.
    1. Navarini A. A., Recher M., Lang K. S., Georgiev P., Meury S., Bergthaler A., et al. . (2006). Increased susceptibility to bacterial superinfection as a consequence of innate antiviral responses. Proc. Natl. Acad. Sci. U.S.A. 103, 15535–15539. 10.1073/pnas.0607325103
    1. Noymer A. (2011). The 1918 influenza pandemic hastened the decline of tuberculosis in the United States: an age, period, cohort analysis. Vaccine 29(Suppl. 2), B38–B41. 10.1016/j.vaccine.2011.02.053
    1. Noymer A., Garenne M. (2000). The 1918 influenza epidemic's effects on sex differentials in mortality in the United States. Popul. Dev. Rev. 26, 565–581. 10.1111/j.1728-4457.2000.00565.x
    1. Oei W., Nishiura H. (2012). The relationship between tuberculosis and influenza death during the influenza (H1N1) pandemic from 1918–19. Comput. Math. Methods Med. 2012:124861. 10.1155/2012/124861
    1. Oi E. (2018). Avian Influenza Portal, Update On Avian Influenza In Animals (types H5 and H7). World Organization for Animal Health. Available online at: (Accessed May 12, 2018).
    1. Olson D. R., Simonsen L., Edelson P. J., Morse S. S. (2005). Epidemiological evidence of an early wave of the 1918 influenza pandemic in New York City. Proc. Natl. Acad. Sci. U.S.A. 102, 11059–11063. 10.1073/pnas.0408290102
    1. Oseasohn R., Adelson L., Kaji M. (1959). Clinicopathologic study of thirty-three fatal cases of Asian influenza. N. Engl. J. Med. 260, 509–518. 10.1056/NEJM195903122601101
    1. Oswald N. C., Shooter R. A., Curwen M. P. (1958). Pneumonia complicating Asian influenza. Br. Med. J. 2, 1305–1311. 10.1136/bmj.2.5108.1305
    1. Oxford J. S., Lambkin R., Sefton A., Daniels R., Elliot A., Brown R., et al. . (2005). A hypothesis: the conjunction of soldiers, gas, pigs, ducks, geese and horses in northern France during the Great War provided the conditions for the emergence of the “Spanish” influenza pandemic of 1918-1919. Vaccine 23, 940–945. 10.1016/j.vaccine.2004.06.035
    1. Oxford J. S., Sefton A., Jackson R., Innes W., Daniels R. S., Johnson N. P. (2002). World War I may have allowed the emergence of “Spanish” influenza. Lancet Infect. Dis. 2, 111–114. 10.1016/S1473-3099(02)00185-8
    1. Oxford J. S., Sefton A., Jackson R., Johnson N. P, Daniels R. S. (1999). Who's that lady? Nat. Med. 5, 1351–1352.
    1. Pada S., Tambyah P. A. (2011). Overview/reflections on the 2009 H1N1 pandemic. Microbes Infect. 13, 470–478. 10.1016/j.micinf.2011.01.009
    1. Palmer E., Rice G. W. (1992). A Japanese physician's response to pandemic influenza, Ijiro Gomibuchi and the “Spanish flu” in Yaita-Cho, 1918-1919. Bull. Hist. Med. 66, 560–577.
    1. Pappas C., Aguilar P. V., Basler C. F., Solórzano A., Zeng H., Perrone L. A., et al. . (2008). Single gene reassortants identify a critical role for PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus. Proc. Natl. Acad. Sci. U. S. A. 105, 3064–3069. 10.1073/pnas.0711815105
    1. Patterson K. D., Pyle G. F. (1991). The geography and mortality of the 1918 influenza pandemic. Bull. Hist. Med. 65, 4–21.
    1. Peltola V. T., Murti K. G., McCullers J. A. (2005). Influenza virus neuraminidase contributes to secondary bacterial pneumonia. J. Infect. Dis. 192, 249–257. 10.1086/430954
    1. Perry R. T., Gacic-Dobo M., Dabbagh A., Mulders M. N., Strebel P. M., Okwo-Bele J. M., et al. (2014). Centers for disease and prevention, global control and regional elimination of measles, 2000-2012. MMWR Morb. Mortal. Wkly. Rep. 63, 103–107.
    1. Phimister I. R. (1973). The “Spanish” influenza pandemic of 1918 and its impact on the Southern Rhodesian mining industry. Cent. Afr. J. Med. 19, 143–148.
    1. Quiñones-Parra S., Grant E., Loh L., Nguyen T. H., Campbell K. A., Tong S. Y, et al. . (2014). Preexisting CD8+ T-cell immunity to the H7N9 influenza A virus varies across ethnicities. Proc Natl Acad Sci U.S.A. 111, 1049–1054 10.1073/pnas.1322229111
    1. Ravenholt R. T., Foege W. H. (1982). 1918 influenza, encephalitis lethargica, parkinsonism. Lancet 2, 860–864. 10.1016/S0140-6736(82)90820-0
    1. Redford P. S., Mayer-Barber K. D., McNab F. W., Stavropoulos E., Wack A., Sher A., et al. . (2014). Influenza A virus impairs control of Mycobacterium tuberculosis coinfection through a type I interferon receptor-dependent pathway. J. Infect. Dis. 209, 270–274. 10.1093/infdis/jit424
    1. Reed C., Katz J. M. (2010). Serological surveys for 2009 pandemic influenza A H1N1. Lancet 375, 1062–1063. 10.1016/S0140-6736(09)62194-2
    1. Reid A. H., Fanning T. G., Hultin J. V., Taubenberger J. K. (1999). Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. Proc. Natl. Acad. Sci. U.S.A. 96, 1651–1656. 10.1073/pnas.96.4.1651
    1. Reid A. H., Fanning T. G., Janczewski T. A., Lourens R. M., Taubenberger J. K. (2004a). Novel origin of the 1918 pandemic influenza virus nucleoprotein gene. J. Virol. 78, 12462–12470. 10.1128/JVI.78.22.12462-12470.2004
    1. Reid A. H., Janczewski T. A., Lourens R. M., Elliot A. J., Daniels R. S., Berry C. L., et al. . (2003). 1918 influenza pandemic caused by highly conserved viruses with two receptor-binding variants. Emerging Infect. Dis. 9, 1249–1253. 10.3201/eid0910.020789
    1. Reid A. H., Taubenberger J. K., Fanning T. G. (2004b). Evidence of an absence: the genetic origins of the 1918 pandemic influenza virus. Nat. Rev. Microbiol. 2, 909–914. 10.1038/nrmicro1027
    1. Reyes L., Arvelo W., Estevez A., Gray J., Moir J. C., Gordillo B., et al. . (2010). Population-based surveillance for 2009 pandemic influenza A (H1N1) virus in Guatemala, 2009. Influenza Other Respir. Viruses 4, 129–140. 10.1111/j.1750-2659.2010.00138.x
    1. Rice G. W. (2011). Japan and New Zealand in the 1918 influenza pandemic: comparative perspectives on official responses and crisis management, in Spanish Influenza Pandemic of 1918–1919: New Perspectives, ed Killingray D. (Melbourne, VIC: Routledge; ).
    1. Rice G. W., Palmer E. (1993). Pandemic influenza in Japan, 1918–19, mortality patterns and official responses. J. Japan. Stud. 19, 389–420. 10.2307/132645
    1. Richard M., Schrauwen E. J., de Graaf M., Bestebroer T. M., Spronken M. I., van Boheemen S., et al. . (2013). Limited airborne transmission of H7N9 influenza A virus between ferrets. Nature 501, 560–563. 10.1038/nature12476
    1. RIVM (2018). De Lci-Richtlijnen, Stappenplannen En Draaiboeken Zijn Er Voor En Door Professionals in De Infectieziektebestrijding, Influenza. RIVM; Available online at: (Accessed May 05, 2018).
    1. Robertson L., Caley J. P., Moore J. (1958). Importance of Staphylococcus aureus in pneumonia in the 1957 epidemic of influenza A. Lancet 2, 233–236. 10.1016/S0140-6736(58)90060-6
    1. Robinson K. R. (1990). The role of nursing in the influenza epidemic of 1918–1919. Nurs. Forum 25, 19–26. 10.1111/j.1744-6198.1990.tb00845.x
    1. Rockman S., Brown L. (2010). Pre-pandemic and pandemic influenza vaccines. Hum. Vaccin. 6, 792–801. 10.4161/hv.6.10.12915
    1. Rudenko L., Sellwood C., Russell C., Herfst S., Gross D., Dingwall R. (2015). Will there ever be a new influenza pandemic and are we prepared? Vaccine 33, 7037–7040. 10.1016/j.vaccine.2015.08.045
    1. Rvachev L. A., Longini I. M. (1985). A mathematical-model for the global spread of influenza. Math. Biosci. 75, 3–22. 10.1016/0025-5564(85)90064-1
    1. Sauerbrei A., Langenhan T., Brandstadt A., Schmidt-Ott R., Krumbholz A., Girschick H., et al. . (2014). Prevalence of antibodies against influenza A and B viruses in children in Germany, 2008 to 2010. Euro Surveill. 19.
    1. Schäfer J. R., Kawaoka Y., Bean W. J., Süss J., Senne D., Webster R. G. (1993). Origin of the pandemic 1957 H2 influenza A virus and the persistence of its possible progenitors in the avian reservoir. Virology 194, 781–788. 10.1006/viro.1993.1319
    1. Scholtissek C., Rohde W., Von Hoyningen V., Rott R. (1978). On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology 87, 13–20. 10.1016/0042-6822(78)90153-8
    1. Schotsaert M., García-Sastre A. (2014). Influenza vaccines: a moving interdisciplinary field. Viruses 6, 3809–3826. 10.3390/v6103809
    1. Schrauwen E. J., Herfst S., Leijten L. M., van Run P., Bestebroer T. M., Linster M., et al. . (2012). The multibasic cleavage site in H5N1 virus is critical for systemic spread along the olfactory and hematogenous routes in ferrets. J. Virol. 86, 3975–3984. 10.1128/JVI.06828-11
    1. Shaman J., Lipsitch M. (2013). The El Nino-Southern Oscillation (ENSO)-pandemic influenza connection: coincident or causal? Proc. Natl. Acad. Sci. U.S.A. 110(Suppl. 1), 3689–3691. 10.1073/pnas.1107485109
    1. Shanks G. D. (2015). Synergistic mortality caused by Plasmodium falciparum during the 1918 influenza pandemic. Am. J. Trop. Med. Hyg. 92, 941–942. 10.4269/ajtmh.14-0792
    1. Shanks G. D., Brundage J. F. (2012). Pathogenic responses among young adults during the 1918 influenza pandemic. Emerging Infect. Dis. 18, 201–207. 10.3201/eid1802.102042
    1. Shanks G. D., Brundage J. F. (2013). Pacific islands which escaped the 1918–1919 influenza pandemic and their subsequent mortality experiences. Epidemiol. Infect. 141, 353–356. 10.1017/S0950268812000866
    1. Shanks G. D., Burroughs S., Sohn J. D., Waters N. C., Smith V. F., Waller M., et al. . (2016b). Variable mortality from the 1918–1919 influenza pandemic during military training. Mil. Med. 181, 878–882. 10.7205/MILMED-D-15-00124
    1. Shanks G. D., Burroughs S. A., Sohn J. D., Waters N. C., Smith V. F., Waller M., et al. . (2016a). Enhanced risk of illness during the 1918 influenza pandemic after previous influenza-like illnesses in three military populations. Epidemiol. Infect. 144, 2043–2048. 10.1017/S0950268816000479
    1. Shanks G. D., Hu Z., Waller M., Lee S. E., Terfa D., Howard A., et al. . (2014). Measles epidemics of variable lethality in the early 20th century. Am. J. Epidemiol. 179, 413–422. 10.1093/aje/kwt282
    1. Shanks G. D., Lee S. E., Howard A., Brundage J. F. (2011a). Extreme mortality after first introduction of measles virus to the polynesian island of Rotuma, 1911. Am. J. Epidemiol. 173, 1211–1222. 10.1093/aje/kwq504
    1. Shanks G. D., Mackenzie A., McLaughlin R., Waller M., Dennis P., Lee S. E., et al. . (2010). Mortality risk factors during the 1918-1919 influenza pandemic in the Australian army. J. Infect. Dis. 201, 1880–1889. 10.1086/652868
    1. Shanks G. D., MacKenzie A., Waller M., Brundage J. F. (2011b). Low but highly variable mortality among nurses and physicians during the influenza pandemic of 1918-1919. Influenza Other Respir. Viruses 5, 213–219. 10.1111/j.1750-2659.2010.00195.x
    1. Shanks G. D., Wilson N., Kippen R., Brundage J. F. (2018). The unusually diverse mortality patterns in the Pacific region during the 1918–21 influenza pandemic: reflections at the pandemic's centenary. Lancet Infect Dis. 10.1016/S1473-3099(18)30178-6 [Epub ahead of print].
    1. Sheng Z. M., Chertow D. S., Ambroggio X., McCall S., Przygodzki R. M., Cunningham R. E., et al. . (2011). Autopsy series of 68 cases dying before and during the 1918 influenza pandemic peak. Proc. Natl. Acad. Sci. U.S.A. 108, 16416–16421. 10.1073/pnas.1111179108
    1. Sheridan P. A., Paich H. A., Handy J., Karlsson E. A., Hudgens M. G., Sammon A. B., et al. . (2012). Obesity is associated with impaired immune response to influenza vaccination in humans. Int. J. Obes. 36, 1072–1077. 10.1038/ijo.2011.208
    1. Sheth A. N., Patel P., Peters P. J. (2011). Influenza and HIV: lessons from the 2009 H1N1 influenza pandemic. Curr. HIV/AIDS Rep. 8, 181–191. 10.1007/s11904-011-0086-4
    1. Shope R. E. (1958). Influenza: history, epidemiology, and speculation. Public Health Rep. 73, 165–178. 10.2307/4590072
    1. Short K. R., Habets M. N., Hermans P. W., Diavatopoulos D. A. (2012a). Interactions between Streptococcus pneumoniae and influenza virus: a mutually beneficial relationship? Future Microbiol. 7, 609–624. 10.2217/fmb.12.29
    1. Short K. R., Reading P. C., Brown L. E., Pedersen J., Gilbertson B., Job E. R., et al. . (2013). Influenza-induced inflammation drives pneumococcal otitis media. Infect. Immun. 81, 645–652. 10.1128/IAI.01278-12
    1. Short K. R., Reading P. C., Wang N., Diavatopoulos D. A., Wijburg O. L. (2012b). Increased nasopharyngeal bacterial titers and local inflammation facilitate transmission of Streptococcus pneumoniae. MBio 3:e00255-12. 10.1128/mBio.00255-12
    1. Shulman S. T., Shulman D. L., Sims R. H. (2009). The tragic 1824 journey of the Hawaiian king and queen to London: history of measles in Hawaii. Pediatr. Infect. Dis. J. 28, 728–733. 10.1097/INF.0b013e31819c9720
    1. Simonsen L., Chowell G., Andreasen V., Gaffey R., Barry J., Olson D., et al. . (2018). A review of the 1918 herald pandemic wave: importance for contemporary pandemic response strategies. Ann. Epidemiol. 28, 281–288. 10.1016/j.annepidem.2018.02.013
    1. Simonsen L., Clarke M. J., Schonberger L. B., Arden N. H., Cox N. J., Fukuda K. (1998). Pandemic versus epidemic influenza mortality: a pattern of changing age distribution. J. Infect. Dis. 178, 53–60. 10.1086/515616
    1. Slepushkin A. N. (1959). The effect of a previous attack of A1 influenza on susceptibility to A2 virus during the 1957 outbreak. Bull. World Health Organ. 20, 297–301.
    1. Smith A. M., Adler F. R., Ribeiro R. M., Gutenkunst R. N., McAuley J. L., McCullers J.A., et al. . (2013). Kinetics of coinfection with influenza A virus and Streptococcus pneumoniae. PLoS Pathog. 9:e1003238. 10.1371/journal.ppat.1003238
    1. Smith G. J., Bahl J., Vijaykrishna D., Zhang J., Poon L. L., Chen H., et al. . (2009a). Dating the emergence of pandemic influenza viruses. Proc. Natl. Acad. Sci. U.S.A. 106, 11709–11712. 10.1073/pnas.0904991106
    1. Smith G. J., Vijaykrishna D., Bahl J., Lycett S. J., Worobey M., Pybus O. G., et al. . (2009b). Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459, 1122–1125. 10.1038/nature08182
    1. Smith W., Andrewes C. H., Laidlaw P. P. (1933). A virus obtained from influenza patients. Lancet 222, 66–68. 10.1016/S0140-6736(00)78541-2
    1. Spinney L. (2017). Pale Rider: The Spanish Flu of 1918 and How It Changed the World. New York, NY: Public Affairs.
    1. Sridhar S., Begom S., Bermingham A., Hoschler K., Adamson W., Carman W., et al. . (2013). Cellular immune correlates of protection against symptomatic pandemic influenza. Nat. Med. 19, 1305–1312. 10.1038/nm.3350
    1. Starko K. M. (2009). Salicylates and pandemic influenza mortality, 1918–1919 pharmacology, pathology, and historic evidence. Clin. Infect. Dis. 49, 1405–1410. 10.1086/606060
    1. Subbarao E. K., London W., Murphy B. R. (1993). A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J. Virol. 67, 1761–1764.
    1. Subbarao K., Klimov A., Katz J., Regnery H., Lim W., Hall H., et al. . (1998). Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279, 393–396. 10.1126/science.279.5349.393
    1. Suess T., Remschmidt C., Schink S. B., Schweiger B., Nitsche A., Schroeder K., et al. . (2012). The role of facemasks and hand hygiene in the prevention of influenza transmission in households: results from a cluster randomised trial; Berlin, Germany, 2009–2011. BMC Infect. Dis. 12:26. 10.1186/1471-2334-12-26
    1. Suguitan A. L., Jr, Matsuoka Y., Lau Y. F., Santos C. P., Vogel L., Cheng L. I., et al. . (2012). The multibasic cleavage site of the hemagglutinin of highly pathogenic A/Vietnam/1203/2004 (H5N1) avian influenza virus acts as a virulence factor in a host-specific manner in mammals. J. Virol. 86, 2706–2714. 10.1128/JVI.05546-11
    1. Taubenberger J. K., Baltimore D., Doherty P. C., Markel H., Morens D. M., Webster R. G., et al. . (2012). Reconstruction of the 1918 influenza virus: unexpected rewards from the past. MBio 3:e00201–12. 10.1128/mBio.00201-12
    1. Taubenberger J. K., Morens D. M. (2006). 1918 Influenza: the mother of all pandemics. Emerging Infect. Dis. 12, 15–22. 10.3201/eid1209.05-0979
    1. Taubenberger J. K., Reid A. H., Janczewski T. A., Fanning T. G. (2001). Integrating historical, clinical and molecular genetic data in order to explain the origin and virulence of the 1918 Spanish influenza virus. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 1829–1839. 10.1098/rstb.2001.1020
    1. Taubenberger J. K., Reid A. H., Krafft A. E., Bijwaard K. E., Fanning T. G. (1997). Initial genetic characterization of the 1918 “Spanish” influenza virus. Science 275, 1793–1796. 10.1126/science.275.5307.1793
    1. Taubenberger J. K., Reid A. H., Lourens R. M., Wang R., Jin G., Fanning T. G. (2005). Characterization of the 1918 influenza virus polymerase genes. Nature 437, 889–893. 10.1038/nature04230
    1. Thomas Y., Boquete-Suter P., Koch D., Pittet D., Kaiser L. (2014). Survival of influenza virus on human fingers. Clin. Microbiol. Infect. 20, O58–O64. 10.1111/1469-0691.12324
    1. To K. K., Hung I. F., Li I. W., Lee K. L., Koo C. K., Yan W. W., et al. . (2010). Delayed clearance of viral load and marked cytokine activation in severe cases of pandemic H1N1 2009 influenza virus infection. Clin. Infect. Dis. 50, 850–859. 10.1086/650581
    1. To K. K. W., Zhou J., Song Y. Q., Hung I. F. N., Ip W. C. T., Cheng Z. S., et al. . (2014). Surfactant protein B gene polymorphism is associated with severe influenza. Chest 145, 1237–1243. 10.1378/chest.13-1651
    1. Tognotti E. (2003). Scientific triumphalism and learning from facts: bacteriology and the “Spanish flu” challenge of 1918. Soc. Hist. Med. 16, 97–110. 10.1093/shm/16.1.97
    1. Tomkins S. M. (1992). The influenza epidemic of 1918–19 in Western Samoa. J. Pac. Hist. 27, 181–197. 10.1080/00223349208572706
    1. Tumpey T. M., Basler C. F., Aguilar P. V., Zeng H., Solórzano A., Swayne D. E., et al. . (2005). Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310, 77–80. 10.1126/science.1119392
    1. Tumpey T. M., Maines T. R., Van Hoeven N., Glaser L., Solorzano A., Pappas C., et al. . (2007). A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science 315, 655–659. 10.1126/science.1136212
    1. Valleron A. J., Cori A., Valtat S., Meurisse S., Carrat F., Boëlle P. Y. (2010). Transmissibility and geographic spread of the 1889 influenza pandemic. Proc. Natl. Acad. Sci. U.S.A. 107, 8778–8781. 10.1073/pnas.1000886107
    1. van de Sandt C. E, Sagong K. A., Pronk M. R., Bestebroer T. M., Spronken M. I., Koopmans M. P. G., et al. . (2018b). H1N1pdm09 influenza virus and its descendants lack extra-epitopic amino acid residues associated with reduced recognition by M158-66-specific CD8+ T-cells. J Infect Dis. 218, 581–585. 10.1093/infdis/jiy218
    1. van de Sandt C. E., Hillaire M. L., Geelhoed-Mieras M. M., Osterhaus A. D., Fouchier R. A., Rimmelzwaan G. F. (2015a). Human influenza A virus-specific CD8+ T cell response is long-lived. J. Infect. Dis. 212, 81–5. 10.1093/infdis/jiv018
    1. van de Sandt C. E., Kreijtz J. H., de Mutsert G., Geelhoed-Mieras M. M., Hillaire M. L., Vogelzang-van Trierum S. E., et al. . (2014). Human cytotoxic T lymphocytes directed to seasonal influenza A viruses cross-react with the newly emerging H7N9 virus. J. Virol. 88, 1684–1693. 10.1128/JVI.02843-13
    1. van de Sandt C. E., Kreijtz J. H., Geelhoed-Mieras N. J., Nieuwkoop M. I., Spronken M., van de Vijver D. A., et al. . (2015b). Differential recognition of influenza A viruses by M158-66 epitope-specific CD8+ T cells is determined by extraepitopic amino acid residues. J. Virol. 90, 1009–1022. 10.1128/JVI.02439-15
    1. van de Sandt C. E., Pronk M. R., van Baalen C. A., Fouchier R. A. M., Rimmelzwaan G. F. (2018a). Variation at extra-epitopic amino acid residues influences suppression of influenza virus replication by M158-66 epitope-specific CD8+ T lymphocytes. J Virol. 92:e00232–18. 10.1128/JVI.00232-18
    1. van der Sluijs K. F., Nijhuis M., Levels J. H., Florquin S., Mellor A. L., Jansen H. M., et al. . (2006). Influenza-induced expression of indoleamine 2,3-dioxygenase enhances interleukin-10 production and bacterial outgrowth during secondary pneumococcal pneumonia. J. Infect. Dis. 193, 214–222. 10.1086/498911
    1. van Genugten M. L. L., Heijnen M. L. A., Jager J. C. (2001). Scenario-ontwikkeling zorgvraag bij een influenza pandemie, in RIVM-Rapport. RIVM.
    1. Van Kerkhove M. D., Vandemaele K. A., Shinde V., Jaramillo-Gutierrez G., Koukounari A., Donnelly C. A., et al. . (2011). Infection, risk factors for severe outcomes following 2009 influenza A (H1N1) infection: a global pooled analysis. PLoS Med. 8:e1001053. 10.1371/journal.pmed.1001053
    1. van Schaik L., Bakker T. (2017). Climate-migration-security: Making the most of a contested relationship, in Clingendael Policy Brief (Den Haag: Planetary Security Initiative; ).
    1. Wahl B., O'Brien K. L., Greenbaum A., Majumder A., Liu L., Chu Y., et al. . (2018). Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000–15. Lancet Glob. Health 6, e744–e757. 10.1016/S2214-109X(18)30247-X
    1. Wang Z., Wan Y., Qiu C., Quinones-Parra S., Zhu Z., Loh L., et al. (2015). Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8+ T cells. (2010). Nat. Commun. 6:6833 10.1038/ncomms7833
    1. Watanabe T., Watanabe S., Shinya K., Kim J. H., Hatta M., Kawaoka Y. (2009). Viral RNA polymerase complex promotes optimal growth of 1918 virus in the lower respiratory tract of ferrets. Proc. Natl. Acad. Sci. U.S.A. 106, 588–592. 10.1073/pnas.0806959106
    1. Watanabe T., Zhong G., Russell C. A., Nakajima N., Hatta M., Hanson A., et al. . (2014). Circulating avian influenza viruses closely related to the 1918 virus have pandemic potential. Cell Host Microbe 15, 692–705. 10.1016/j.chom.2014.05.006
    1. Wilson H. E., Saslaw S., Doan C. A., Woolpert O. C., Schwab J. L. (1947). Reactions of monkeys to experimental mixed influenza and streptococcus infections: an analysis of the relative roles of humoral and cellular immunity, with the description of an intercurrent nephritic syndrome. J. Exp. Med. 85, 199–215. 10.1084/jem.85.2.199
    1. Wong V. W., Cowling B. J., Aiello A. E. (2014). Hand hygiene and risk of influenza virus infections in the community: a systematic review and meta-analysis. Epidemiol. Infect. 142, 922–932. 10.1017/S095026881400003X
    1. World Health Organization (2005). Evolution of H5N1 avian influenza viruses in Asia. Emerging Infect. Dis. 11, 1515–21. 10.3201/eid1110.050644
    1. World Health Organization (2018a). Global Influenza Virological Surveillance. Available online at: (Accessed May 6, 2018).
    1. World Health Organization (2018b). Pandemic Preparedness. Available online at: (Accessed May 12, 2018).
    1. World Health Organization Writing Group. Bell D., Nicoll A., Fukuda K., Horby P., Monto A., et al. . (2006). Non-pharmaceutical interventions for pandemic influenza, national and community measures. Emerging Infect. Dis. 12, 88–94. 10.3201/eid1201.051371
    1. Worobey M., Han G. Z., Rambaut A. (2014). Genesis and pathogenesis of the 1918 pandemic H1N1 influenza A virus. Proc Natl Acad Sci U.S.A. 111, 8107–8112. 10.1073/pnas.1324197111
    1. Wu J. T., Cowling B. J., Lau E. H., Ip D. K., Ho L. M., Tsang T., et al. . (2010). School closure and mitigation of pandemic (H1N1) 2009, Hong Kong. Emerging Infect. Dis. 16, 538–541. 10.3201/eid1603.091216
    1. Yu X., Tsibane T., McGraw P. A., House F. S., Keefer C. J., Hicar M. D., et al. . (2008). Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature 455, 532–536. 10.1038/nature07231
    1. Zambon M. (2014). Developments in the treatment of severe influenza: lessons from the pandemic of 2009 and new prospects for therapy. Curr. Opin. Infect. Dis. 27, 560–565. 10.1097/QCO.0000000000000113
    1. Zhang Y. H., Zhao Y., Li N., Peng Y. C., Giannoulatou E., Jin R. H., et al. . (2013). Interferon-induced transmembrane protein-3 genetic variant rs12252-C is associated with severe influenza in Chinese individuals. Nat. Commun. 4:1418. 10.1038/ncomms2433
    1. Zhou J., To K. K., Dong H., Cheng Z. S., Lau C. C., Poon V. K., et al. . (2012). A functional variation in CD55 increases the severity of 2009 pandemic H1N1 influenza A virus infection. J. Infect. Dis. 206, 495–503. 10.1093/infdis/jis378
    1. Zhu H., Wang D., Kelvin D. J., Li L., Zheng Z., Yoon S. W., et al. . (2013). Infectivity, transmission, and pathology of human H7N9 influenza in ferrets and pigs. Science 341:183–186. 10.1126/science.1239844.
    1. Zhu W., Zhou J., Li Z., Yang L., Li X., Huang W., et al. . (2017). Biological characterisation of the emerged highly pathogenic avian influenza (HPAI) A(H7N9) viruses in humans, in mainland China, 2016 to 2017. Euro Surveill. 22:30533. 10.2807/1560-7917.ES.2017.22.19.30533
    1. Ziegler T., Mamahit A., Cox N. J. (2018). 65 Years of influenza surveillance by a WHO-coordinated global network. Influenza Other Respir Viruses (2018). 12 558–565 10.1111/irv.12570
    1. Zumla A., Raviglione M., Hafner R., von Reyn C. F. (2013). Tuberculosis. N. Engl. J. Med. 368, 745–755. 10.1056/NEJMra1200894
    1. Zúñiga J., Buendía-Roldán I., Zhao Y., Jiménez L., Torres D., Romo J., et al. . (2012). Genetic variants associated with severe pneumonia in A/H1N1 influenza infection. Eur. Respir. J. 39, 604–610. 10.1183/09031936.00020611

Source: PubMed

3
購読する