Ion release of chitosan and nanodiamond modified glass ionomer restorative cements

Riaan Mulder, Charney Anderson-Small, Riaan Mulder, Charney Anderson-Small

Abstract

Purpose: Ion release from glass ionomer restorative cements (GICs) plays an important role in GICs. The ion release from chitosan and nanodiamond-modified glass ionomers was assessed.

Materials and methods: Three GICs (Fuji IX, Ketac Universal and Riva Self Cure) were modified in the powder phase per weight by adding 5% or 10% of a commercially available chitosan powder (CH) or nanodiamond (ND) powder to the GICs. The specimens with dimensions 4 mm diameter and 6 mm height manufactured from the 15 GIC formulations were allowed to set for 1 hr and subsequently placed in neutral de-ionised water. The released ions were assessed using inductively coupled plasma-mass spectrometer (ICP-MS) to determine the elemental release. Additionally, three different disc-shaped specimens (3 mm in diameter and 1 mm thick) were constructed from each material for scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (SEM-EDS) microanalysis to establish an ion weight percentage.

Results: There were no significant differences in the ion release between the control materials for aluminium, silicon and strontium. The ion release from CH and most ND-modified GICs were significantly (p<0.00001) increased compared to the control materials. CH modifications significantly increased the ion release of aluminium, sodium, silicon and strontium for all three control materials (with the exception of the strontium release from Ketac Universal that was modified with 5% chitosan).

Conclusion: Ion release can be advantageous to tooth structure due to the interaction of chitosan with the GIC chemistry and moisture during maturation. Ion release up to five times greater than the control was noted for some ions.

Keywords: ICP-MS; aluminium; chitosan; glass ionomer cement; nanodiamond; strontium.

Conflict of interest statement

Riaan Mulder report grants from The Dentistry Development Foundation Trust (DDFT), during the conduct of the study. The authors report no other conflicts of interest relevant to this article.

© 2019 Mulder and Anderson-Small.

Figures

Figure 1
Figure 1
Mean ion release (mg/L) of the commercial materials and their respective modifications.

References

    1. Frencken J, Leal S, Navarro M. Twenty-five-year atraumatic restorative treatment (ART) approach: a comprehensive overview. Clin Oral Investig. 2012;16(5):1337–1346;PMCID: PMC3443346. doi:10.1007/s00784-012-0783-4.
    1. Fúcio S, Carvalho F, Sobrinho L, Sinhoreti M, Puppin-Rontani R. The influence of 30-day-old Streptococcus mutans biofilm on the surface of esthetic restorative materials—an in vitro study. J Dent. 2008;36(10):833–839;PMID: 18621456. doi:10.1016/j.jdent.2008.06.002.
    1. 3M ESPE Deutschland GmbH [Internet] Ketac universal technical product profile; 2016. Available from: . Accessed July23, 2019.
    1. Ausiello P, Ciaramella S, Carcia-Gordoy F, et al. The effects of cavity-margin-angles and bolus stiffness on the mechanical behavior of indirect resin composite class II restorations. Dent Mater. 2017;33(1):e39–e47. doi:10.1016/j.dental.2016.11.002
    1. Ngo H, Mount G, Mc Intyre J, Tuisuva J, Von Doussa R. Chemical exchange between glass-ionomer restorations and residual carious dentine in permanent molars: an in vivo study. J Dent. 2006;34(8):608–613;PMID: 16540227. doi:10.1016/j.jdent.2005.12.012.
    1. Sidhu S, Nicholson J. A review of glass-ionomer cements for clinical dentistry. J Funct Biomat. 2016;7(3):16;PMCID: PMC5040989. doi:10.3390/jfb7030016.
    1. Muzzarelli R. Natural Chelating Polymers; Alginic Acid, Chitin, and Chitosan. Oxford: Pergamon Press; 1973. ISBN: 0080172350 9780080172354.
    1. De Stefano C, Gianguzza A, Piazzese D, Sammartano S. Speciation of chitosan–phosphate and chitosan–nucleotide systems in NaCI aqueous solution. Chem Spec Bioavailab. 2010;22(2):99–107. doi:10.3184/095422910X12692701255297
    1. Hamman J. Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs. 2010;8(4):1305–1322;PMID: 20479980. doi:10.3390/md8041305.
    1. Osswald S, Yushin G, Mochalin V, Kucheyev S, Gogotsi Y. Control of sp2/sp3Carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J Am Chem Soc. 2006;128(35):11635–11642. doi:10.1021/ja063303n
    1. Billington R, Williams J, Pearson G. Ion processes in glass ionomer cements. J Dent. 2006;34(8):544–545;PMID: 16574301. doi:10.1016/j.jdent.2005.09.008.
    1. Wasson E, Nicholson J. A study of the relationship between setting chemistry and properties of modified glass-poly(alkenoate) cements. Br Polym J. 1990;23(1–2):179–183. doi:10.1002/pi.4980230129
    1. Williams J, Billington R, Pearson G. The glass ionomer cement: the sources of soluble fluoride. Biomater. 2002;23(10):2191–2200;PMID: 11962660. doi:10.1016/S0142-9612(01)00352-0
    1. Mulder R. Variation in the dispersions of powder liquid ratios in hand-mix glass ionomers. Open Dent J. 2018;12(1):647–654;PMID: 30369974. doi:10.2174/1745017901814010647.
    1. ISO/TC106/SC1 Filling and restorative materials Technical Committee. ISO 9917-1:2007 Dentistry-Water based cements Part 1: powder/liquid acid-base cements [Internet]. ISO; 2007. Available from: . Accessed February17, 2019.
    1. Menne-Happ U, Ilie N. Effect of heat application on the mechanical behaviour of glass ionomer cements. Clin Oral Investig. 2013;18(2):643–650;PMID: 23740319. doi:10.1007/s00784-013-1005-4.
    1. Twomey E, Towler M, Crowley C, Doyle J, Hampshire S. Investigation into the ultrasonic setting of glass ionomer cements Part II setting times and compressive strengths. J Mater Sci. 2004;39(14):4631–4632. doi:10.1023/B:JMSC.0000034158.69184.84
    1. Hatton P, Brook I. Characterisation of the ultrastructure of glass-ionomer (poly-alkenoate) cement. Br Dent J. 1992;173(8):275–277;PMID: 1449858. doi:10.1038/sj.bdj.4808026
    1. Nicholson J. Maturation processes in glass-ionomer dental cements. Acta Biomater Odontol Scand. 2018;4(1):63–71;PMID: 30083577. doi:10.1080/23337931.2018.1497492.
    1. Czarnecka B, Klos J, Nicholson J. The effect of ionic solutions on the uptake and water-binding behaviour of glass-ionomer dental cements. Ceram-Silik. 2015;59:102–108. Available from .
    1. PlasmaChem GmbH. Purified grade G01 NanoDiamonds. - [Internet]. ; 2019. Available from: . Accessed February17, 2019.
    1. Mochalin V, Shenderova O, Ho D, Gogotsi Y. The properties and applications of nanodiamonds. Nat Nanotechnol. 2011;7(1):11–23;PMID: 22179567. doi:10.1038/nnano.2011.209.
    1. Hill R, Goat C, Wood D. Thermal analysis of a SiO2Al2O3CaOCaF2 glass. J Am Ceram Soc. 1992;75(4):778–785. doi:10.1111/j.1151-2916.1992.tb04141.x
    1. De Maeyer E, Verbeeck R, Vercruysse C. Reactivity of fluoride-containing calcium aluminosilicate glasses used in dental glass-ionomer cements. J Dent Res. 1998;77(12):2005–2011;PMID: 9839789. doi:10.1177/00220345980770120901.
    1. Ibrahim M, Meera Priyadarshini B, Neo J, Fawzy A. Characterization of Chitosan/TiO2 nano-powder modified glass-ionomer cement for restorative dental applications. J Esthet Restor Dent. 2017;29(2):146–156;PMID: 28190299. doi:10.1111/jerd.12282.
    1. Volkov D, Proskurnin M, Korobov M. Elemental analysis of nanodiamonds by inductively-coupled plasma atomic emission spectroscopy. Carbon. 2014;74:1–13. doi:10.1016/j.carbon.2014.02.072
    1. Panich A, Altman A, Shames A, Osipov V, Aleksenskiy A, Vul’ A. Proton magnetic resonance study of diamond nanoparticles decorated by transition metal ions. J Phys D Appl Phys. 2011;44(12):125303. doi:10.1088/0953-8984/25/24/245303

Source: PubMed

3
購読する